
RAMBUTAN MANUAL

Section Page
Computing primes. 1 2
Control codes . 23 7
Other information . 29 9
Bibliography. 34 10

RAMBUTAN MANUAL 1

The Rambutan Manual

Rambutan is a literate programming system for Java with TEX, closely resembling CWEB and the original
WEB system.* I developed it using Norman Ramsey’s Spidery WEB.

This manual is an example of a Rambutan literate program; that is to say, the file Manual.w consists
of code and documentation written together in the Rambutan idiom. From this common source, the
Rambutan system does two things:

javatangle Manual

extracts a compilable Java applet to compute the first N primes, and

javaweave Manual

produces a TEX file laying out code and documentation together, including these words.
Actually, the above is a slight oversimplification: Manual.w could have contained the whole source, but

in fact I have distributed the source between Manual.w, Primes.w, and Manual.ch, in order to illustrate
multiple source files—but more on that later.

The example code follows this preamble, and introduces the main ideas of literate programming, as relevant
to Rambutan. (The reader is assumed to be reasonably familiar with Java and TEX.) After the program
there are short explanations of all of Rambutan’s features. The important features are few and simple
and explained first; the arcana for literate-programming experts come later. A brief annotated bibliography
concludes.

Version 1.32 (Dec 2007)

* In other words, what you would expect to be called JavaWEB. But since JavaWEB sounds too much like a Sun trademark and is a clumsy
word anyway, the system as a whole is called Rambutan. But inside Rambutan the usual naming conventions apply: the preprocessors
are called javatangle and javaweave and the TEX macro file is called javaweb.tex. (A rambutan, by the way, is a delicious fruit, not
unlike a lychee, widely enjoyed in Java and elsewhere.)

2 RAMBUTAN MANUAL COMPUTING PRIMES §1

1. Computing primes. This is a Java applet that takes two numbers N1 ,N2 and prints out the N1 -th
prime to the N2 -th prime.

Like all literate programs, this one consists of a series of numbered sections. We are currently in section 1.
(Any material before section 1 is called limbo; in this case, the introduction.) Most sections consist of a
short text part followed by a short code part. Some sections (such as this one) contain only text, some
others contain only code.

Section 1 is always a starred section. That just means it has a title: ‘Computing primes’ in this case.
The title is supposed to describe a large group of consecutive sections, and gets printed at the start and on
the page headline. Long programs have many starred sections, which behave like chapter headings.

The source for this section begins

@* Computing primes. This is...

In the source, @* begins a starred section, and any text up to the first period makes up the title.

2. This is an ordinary (i.e., unstarred) section, and its source begins

@ This is an ordinary...

In the source, @ followed by space or tab or newline begins an ordinary section.
In the next section things get more interesting.

3. 〈 Imported packages 3 〉 ≡
import java .applet .∗;
import java .awt .∗;
import java .awt .event .∗;
import java .util .∗;

This code is used in section 5.

4. The source for section 3 begins

@ @<Imported packages@>=

import java.applet...

The result is to make @<Imported packages@> an abbreviation for four Java statements—note the = in the
source.

The bit 〈 Imported packages 3 〉 is called the section name, not to be confused with the title of a starred
section. Notice how Rambutan has attached the number 3 and inserted a forward reference to section 5.

5. Now we have a whole Java class in abbreviated form. The section 〈 Imported packages 3 〉 is used here,
as promised; so are other sections that haven’t been defined yet.
(Primes.java 5) ≡
〈 Imported packages 3 〉
public class Primes extends Applet implements ActionListener
{ 〈Fields 12 〉
〈Code for initializing 13 〉
〈The event handler 18 〉

}

§6 COMPUTING PRIMES RAMBUTAN MANUAL 3

6. The source for section 5 is

@ Now we have...

@(Primes.java@>=

@<Imported packages@>

public class Primes extends Applet

implements ActionListener

{ @<Fields@>

@<Code for initializing@>

@<The event handler@>

}

Note the left parenthesis in (Primes.java 5), in contrast with the angle brackets used for other section
names. The source for the section name (Primes.java 5) is

@(Primes.java@>=

rather than
@<Primes.java@>=

Because of this, section 5 is an output section: its expansion is output to the specified file Primes.java.
Aside: The filename Primes.java has to be given by the programmer; Rambutan is not smart enough

to figure out the correct filename from context.

7. That’s it for the really essential features of a literate programming system: javatangle collects the code
fragments into a compilable program and javaweave cross-references the sections. The remaining features
of Rambutan are basically refinements. This example will illustrate a few more features, but the full list
can wait till the next chapter of this manual. Meanwhile we’ll get on with explaining the program.

8. The algorithmic job of this program is to produce a list of primes, which it does inductively.
First, note that testing p for primeness is easy if we know all the primes < p. We set pmul [j] to consecutive

odd multiples of prime [j] and check whether we ever hit p. It is enough to try multiples of primes ≤ √p.
〈Set factor ← true if p is a multiple of a prime 8 〉 ≡

for (int j ← 2; psqr [j] ≤ p; j++)
{ while (pmul [j] < p) pmul [j] +← 2 ∗ prime [j];

if (pmul [j] ≡ p) factor ← true;
}

This code is used in section 9.

9. Now suppose we have found prime [1] through prime [k − 1]. We then try successive odd numbers
p > prime [k − 1] until we find a prime p.
〈Compute prime [k] 9 〉 ≡

if (k ≡ 1) prime [k]← 2;
else if (k ≡ 2) prime [k]← 3;
else

for (int p← prime [k − 1] + 2; ; p
+← 2)

{ boolean factor ← false;
〈Set factor ← true if p is a multiple of a prime 8 〉
if (¬factor)
{ prime [k]← p; break;
}

}
pmul [k]← prime [k]; psqr [k]← prime [k] ∗ prime [k];

This code is used in section 20.

4 RAMBUTAN MANUAL COMPUTING PRIMES §10

10. 〈Arrays for computing primes 10 〉 ≡
int[] prime ← new int[N2 + 1];
int[] pmul ← new int[N2 + 1]; int[] psqr ← new int[N2 + 1];

This code is used in section 20.

11. When we use the code from section 8 in section 9, the source actually gives the section name as

@<Set |factor=true| if...@>=

with the three dots. Once a section name has appeared in the source Rambutan can complete it from this
kind of three-dot shorthand. (And by the way, Rambutan sensibly collapses extra spaces or newlines in
section names.)

Another feature is the usage |factor=true| which tells javaweave to typeset the enclosed text in code-
style.

12. The rest of this program is the GUI. Here are the elements for it. (We restrict ourselves to Java 1.1,
which more people’s browsers will interpret than Java 2.)

The code here includes some comments; literate programs usually need comparatively few comments.
Rambutan knows about the // comment syntax in Java but not about /*...*/ comments.

If you need to include strings in the .java file that Rambutan can’t parse, enclose them in @=...@>. A
@=/** javadoc comment */@> can be inserted in this way.
〈Fields 12 〉 ≡

int N1 ← 0,N2 ← 0; TextField N1 txt ,N2 txt ; Button run ; Panel panel ; . . . for input
TextArea disp ; . . . for output

This code is used in section 5.

13. This method makes a labelled TextField and attaches it to panel .
〈Code for initializing 13 〉 ≡

TextField new tf (String str , int n)
{ Panel p← new Panel (); TextField t← new TextField (n);

p.add (new Label (str ,Label .CENTER)); p.add (t); p.add (new Label (" ",Label .CENTER));
panel .add (p);
return t;

}
See also section 15.

This code is used in section 5.

14. Section 15 has the same section name as section 13. When two or more sections have the same name,
Rambutan automatically concatenates them. Note the forward reference in section 13 and the continuation
mark ‘+ ≡ ’ in section 15.

15. The applet’s init () method. Because disp here is Center in a BorderLayout , it will take up any spare
space.
〈Code for initializing 13 〉+ ≡

public void init ()
{ panel ← new Panel (); N1 txt ← new tf ("N1", 4); N2 txt ← new tf ("N2", 4);

run ← new Button ("run"); panel .add (run); run .addActionListener (this);
disp ← new TextArea (); disp .setEditable (false);
setLayout (new BorderLayout ()); add ("North", panel); add ("Center", disp);

}

§16 COMPUTING PRIMES RAMBUTAN MANUAL 5

16. Some (very rare) sections have a definitions part.
define intN (i) ≡ Integer .parseInt (N@& i@& txt .getText ())

17. In section 16 we have a macro. The @& removes any space between its neighbors in the java file.
Accordingly, intN (1) will do something with the variable N1 txt , and so on.

18. 〈The event handler 18 〉 ≡
public void actionPerformed (ActionEvent event)
{ run .setEnabled (false);

try
{ int n1 ← intN (1); int n2 ← intN (2);

if (n1 ≥ 1 ∧ n2 ≥ n1)
{ N1 ← n1 ; N2 ← n2 ;
〈Compute and display primes 20 〉

}
else
{ 〈Restore old values of N1 ,N2 19 〉
}

}
catch (NumberFormatException ex)
{ 〈Restore old values of N1 ,N2 19 〉
}

run .setEnabled (true);
}

This code is used in section 5.

19. 〈Restore old values of N1 ,N2 19 〉 ≡
if (N1 ≡ 0)
{ N1 txt .setText (""); N1 txt .setText ("");
}

else
{ N1 txt .setText (Integer .toString (N1)); N2 txt .setText (Integer .toString (N2));
}

This code is used in section 18.

20. 〈Compute and display primes 20 〉 ≡
〈 If too extravagant return 21† 〉
StringBuffer lyne ← new StringBuffer (); disp .setText ("");
〈Arrays for computing primes 10 〉
for (int k ← 1; k ≤ N2 ; k++)
{ 〈Compute prime [k] 9 〉

String num ← new String (Integer .toString (prime [k]) + " ");
if (k ≥ N1)
{ lyne .append (num);

if (lyne .length () < 64) disp .append (num);
else
{ disp .append ("\n" + num); lyne ← new StringBuffer (num);
}

}
}

This code is used in section 18.

6 RAMBUTAN MANUAL COMPUTING PRIMES §21

21†. 〈 If too extravagant return 21† 〉 ≡
if (N2 −N1 ≥ 2000)
{ disp .setText ("Printing more than "); disp .append ("2000 primes ");

disp .append ("is too boring\n"); disp .append ("Try increasing N1");
run .setEnabled (true);
return;
}

This code is used in section 20.

22†. The source of this program is actually in the file Primes.w, while Manual.w says

@i Primes.w

to include that file.
If you look in Primes.w, you will find that it considers printing > 1000 primes as already too boring,

rather than > 2000 primes. The relevant lines of code have been overridden by the change file Manual.ch.
This last file contains

@x

if (N2−N1 >= 1000)

{ disp.setText("Printing more than ");

{ disp.setText("1000 primes ");

@y

if (N2−N1 >= 2000)

{ disp.setText("Printing more than ");

{ disp.setText("2000 primes ");

@z

and continues with a similar construction containing this section. The section numbers 21 and 22 have
daggers attached to indicate that a change file is involved.

A change file consists of constructions of the type

@x

〈Lines quoted from the source file〉
@y

〈Replacement lines〉
@z

The change-file name is an optional second input parameter on the command line. Thus

javatangle Manual.w Manual.ch

or simply
javatangle Manual Manual

and similarly for javaweave.

§23 CONTROL CODES RAMBUTAN MANUAL 7

23. Control codes. Following are the complete set of control codes understood by Rambutan. Only the
first two sections are really important.

24. Basic controls. These cover the essentials of a literate programming system.
@〈space 〉 Begins a new section. (A tab or newline is also read as space here.)

@*〈group title 〉. Begins a starred section.
@<〈section name 〉@>= Section definition, which is really the code-part definition. A section can have

at most one such definition. The code can be continued in later sections (see
examples in sections 13 and 15).

@<〈section name 〉@> Code-part of the named section used. A section can have any number of these.
After a section name has first appeared (whether as definition or use) it can be
abbreviated using three trailing dots. (See example in section 11).

@(〈filename 〉@>= Output-section definition. Written to the named file.
@u Output-section; the filename is inferred by replacing the main source file’s exten-

sion with java.

25. File controls. These are for using multiple files
@i 〈filename 〉 Includes the file. Must be followed by a newline.

@x〈. . . 〉@y〈. . . 〉@z Valid only in change files. The control codes @x, @y, @z, must appear at the
beginning of a line, and the rest of such a line is ignored. Any material outside
the blocks @x〈. . . 〉@y〈. . . 〉@z is also ignored.

26. Special tangle controls. These are for getting special effects in the output java file. We have met the
first three in the prime-numbers example.

@d 〈name 〉 = 〈defn 〉 Defines a macro. [@D is equivalent.]
〈token1 〉 @& 〈token2 〉 javatangle outputs the two tokens without intervening space.

@=〈code text 〉@> javatangle passes the 〈code text 〉 verbatim into the java file.
@’〈digits 〉 An octal constant (must be positive). For example, @’100 tangles to 64 and

weaves to 1́00 .
@"〈digits 〉 A hexadecimal constant. For example, @"D0D0 tangles to 53456 and weaves to

˝D0D0.

8 RAMBUTAN MANUAL CONTROL CODES §27

27. Special weave controls. These are for fine-tuning the typesetting. We have met the first one in the
prime-numbers example.

|〈code fragment 〉| Used in text, or section names, to format a code fragment in code-style. The
〈code fragment 〉 must not contain section names. [This is the only Rambutan
control code not involving @.]

@t〈text 〉@> The 〈text 〉 is put into a TEX \hbox. For example, |size < @t2^{15}@>|
produces size < 215. The 〈text 〉 must not contain newlines.

@f 〈id1 〉 〈id2 〉 Format definition; an optional comment enclosed in braces can follow. [@F is
equivalent.] Makes javaweave treat 〈id1 〉 as it currently treats 〈id2 〉. Format
definitions appear between the text part and the code part of a section, together
with @d macros (in any order).

@/ Produces a line break. [Should not be used inside expressions.]
@# Like @/ but adds some extra vertical space.
@− Like @/ but indents the next line, to show that it is a continuation line.
@| Recommends a line break, but does not force one. [Can be used inside expres-

sions.]
@+ Cancels a line break that might otherwise be inserted by javaweave.
@, A thin space.
@; Formats code as if there were a semicolon there.
@@ javaweave outputs a single @. This cannot be used inside @<〈text 〉@> or similar

contexts. An alternative is \AT! in text.

28. Index controls. These are for fine-tuning the index, and ignored by javatangle.
@^〈text 〉@> The 〈text 〉 will appear in the index in roman type.
@.〈text 〉@> The 〈text 〉 will appear in the index in typewriter type.
@:〈text 〉@> In the index, the TEX file will have \9{〈text 〉} and the user can define \9 freely

in TEX.
@!〈token 〉 In the index entry for 〈token 〉 the section number will be underlined.

A reserved word or an identifier of length one will not be indexed except for
underlined entries.

§29 OTHER INFORMATION RAMBUTAN MANUAL 9

29. Other information. The input syntax for javatangle is

javatangle 〈source file 〉 〈change file 〉 −I〈path 〉

The 〈source file 〉 has default extension .w while the optional 〈change file 〉 has default extension .ch and the
default 〈path 〉 is the current directory.

The input syntax for javaweave is similar:

javaweave 〈source file 〉 〈change file 〉 −x −I〈path 〉

The additional −x option omits the index.
Both programs also implement the −−version and −−help options.

30. If you use pdftex on the output of javaweave, section-number cross-references will be clickable. Using
\LP{〈section number 〉} in text will also give you a clickable link.

31. TEX macros are in javaweb.tex, which is based on the original webmac.tex but considerably modified
and reorganized. The default format is a standalone Plain TEX document, but if you want to use LATEX, or
embed within a larger document, minimal changes will be necessary.

32. To get a table of contents (listing the starred sections), put

\contents

at the very top of the input file. Unlike in WEB and CWEB, the table of contents comes first. So you will have
to run TEX twice to get an up-to-date list.

If you use pdftex the contents will also appear as bookmarks.

33. If you are using a change file and want to view only the changed sections, put

\let\maybe\iffalse

in the source file or the change file, in the limbo part.
Using this option with pdftex will generally produce a lot of clickable links to absent sections, but such

links will behave sensibly.

10 RAMBUTAN MANUAL BIBLIOGRAPHY §34

34. Bibliography. The basic introductory reference on literate programming in general is Knuth’s article:
Literate Programming, in The Computer Journal 27, 97-111 (1984).

which is also reprinted in Knuth’s anthology of the same title. (The prime-numbers example in this manual
is adapted from the Knuth article.)

For reviews and links on all aspects of literate programming, see Daniel Mall’s literate programming web
site:
www.literateprogramming.com
Normal Ramsey’s Spidery WEB (a generator for tangle and weave programs) is described in:
Literate programming: Weaving a language-independent WEB, Communications of the ACM, 32, 1051–
1055 (1989)

and archived on CTAN. I made a few modifications (such as adding hyperlinks) to the Spidery WEB system
itself; such modifications are through change files, so Ramsey’s original code is untouched. The change files
are included in the Rambutan distribution. Ramsey himself now deprecates Spidery WEB and favors the
simpler noweb system:

Literate programming simplified, IEEE Software, 11, 97–105 (1994)
which is language independent but sacrifices many features, including automatic cross-referencing. See also
Ramsey’s web site:
www.eecs.harvard.edu/~nr

I use noweb too, but I think Spidery WEB still has a place.
Finally, the Rambutan distribution is available from
www.qgd.uzh.ch/projects/rambutan/

and is also archived on CTAN.

http://www.literateprogramming.com
http://www.eecs.harvard.edu/~nr
http://www.qgd.uzh.ch/projects/rambutan/

	1. Computing primes
	23. Control codes
	29. Other information
	34. Bibliography

