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Abstract

While the LHCb experiment acquires data, the detector and the data
quality are continuously monitored. The �rst part of this thesis describes a
package that was developed for managing monitoring pages. This package is
a subdetector independent tool originally developed for the online monitoring
system of the Silicon Tracker.

In the second half of this thesis, methodes to calculate the common mode
subtracted noise in the Silicon Tracker are compared. Di�erent possible
adjustments are evaluated and possible improvements presented.
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Chapter 1

Introduction

When the LHC restarts in a few months, the largest physics experiment
in history will produce large amounts of data. While acquiring data it is
important to get fast feedback that the detectors are working correctly and
the data produced is of good quality.

To achieve this, a subset of the data produced by the detectors is contin-
uously aggregated into statistical representations. These can then be mon-
itored by scientists on shift. To allow for fast feedback on the data quality
the monitoring system is run online. This means it is run on the data while
it is collected.

As part of this thesis, the online monitoring system for the Silicon Tracker
of the LHCb experiment was extended and improved. A tool was developed
to automate the creation and con�guration of the large number of histogram
pages required to monitor the detector performance. The tool was developed
such that it is detector independent and can be used by all LHCb subdetec-
tors. In the second part of this thesis, di�erent common mode subtraction
algorithms were studied to improve the monitoring of common mode sub-
tracted noise.

1.1 The Silicon Tracker

The LHCb experiment and the physics goals of this experiment have been
described in detail in [9].

The Silicon Tracker consists of two detectors. One is the Tracker Turi-
censis (TT) and the other is the Inner Tracker (IT). Both detectors use
silicon microstrip technology for the tracking of charged particles through
the experiment.

7



8 CHAPTER 1. INTRODUCTION

1.1.1 Readout

Figure 1.1 shows a schematic of the readout process used for the Silicon
Tracker. A detailed description of the readout hardware can be found in
[15].

Data from 
Detector

(128 Channels)

Beetle (128)

Port (32) Port (32) Port (32) Port (32)

Service Box

data from other 
Beetles

Tell1 Board

Computer

data from other 
service boxes

Figure 1.1: The readout process.

The electrical signal from the detector is read out by an electronic com-
ponent called hybrid. Depending on the detector a hybrid contains either 3
(IT) or 4 (TT) Beetle chips. Every Beetle chip has 4 readout ports. Each
port transfers the data of 32 detector channels to a Service Box. There the
analog pulse height is converted into a digital signal. The digitised data is
then sent to the Tell1 readout board through an optical link.

Table 1.1 lists the numbers of components in each of the detectors.

TT IT

channels in total 143360 129024
Beetle chips in total 1120 1008
Tell1s in total 48 42

Table 1.1: Numbers of components for the TT and IT
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Beetle Chip

At the LHC, proton-proton-collisions occur with a bunch-crossing frequency
of 40MHz. The Beetle chip stores pulse-height information from the last
160 bunch crossings in an analogue pipeline memory. This bu�er ensures
a nearly dead time free readout. The position of an event in the pipeline
is identi�ed by the 8-bit pipeline column number (PCN). If the readout of
an event is triggered, the PCN will be encoded into the �rst two bits sent
by each of the 4 ports of a Beetle chip. Together with an unused third and
fourth bit this is the header sent before the data of a port. Details about
the Beetle chip and this encoding can be found in [10].

Tell1 Board

Each Tell1 board processes the output from 24 Beetle chips corresponding to
3072 detector channels in total. The Tell1 board synchronises the data from
the di�erent Beetles, calculates pedestals and common mode and subtracts
these from the data. After these steps, a cluster �nding algorithm detects
hits and the data is zero-suppressed. All these calculations on the Tell1
boards are implemented on FPGAs.

In the last step, the Tell1 board encodes the data in raw banks and sends
these to the data acquisition computers. There are three di�erent raw bank
formats ([4], [5], [6]):

zero-suppressed (ZS) Contains the cluster positions and the ADC values
of the corresponding detector channels. This is the bank format used
for normal data taking.

non zero-suppressed (NZS) Contains the ADC values of all channels in
the detector. Neither pedestal nor common mode will be subtracted
for this data. This bank format is used, for example, to verify the data
processing on the Tell1.

error The error bank data provides detailed information for events that
have shown synchronisation errors. It is sent automatically if an error
is detected by the Tell1.

1.1.2 Noise

The readout electronics registers an ADC value for each detector channel,
even when no particle has passed through the detector. This output value
�uctuates around a constant pedestal. The rms of this �uctuation is called
the raw noise.
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Pedestal

The pedestal is di�erent for each detector channel but is constant over time.
Therefore, it can be determined by calculating the mean value from a set of
events without hits.

As discussed in [7] it was found that the pedestal depends on the parity of
the pipeline column number. Events with an odd PCN have a systematically
higher pedestal than events with an even PCN. In addition, the PCN bits sent
in the header in�uence the pedestal of the �rst detector channels in a port
(header crosstalk). As there are 4 di�erent con�gurations for the header bits
and 2 parity states for the PCN, this gives in total 8 possible con�gurations.
The brute force approach to remove these e�ects, is to calculate 8 separate
pedestals, one for each con�guration. This was tested in the second part of
this thesis but is not yet implemented in the hardware or software used for
data taking or monitoring.

Common Mode Noise

A second contribution to the output signal of the Beetles, is the common
mode. The e�ect from the common mode changes from event to event but
is correlated for all detector channels in one port. The common mode is
calculated by �tting a straight line to all signal values from a given port.

After the pedestal and the common mode are subtracted, the output
signal from a given detector channel still show a random �uctuation around
zero. The rms of this distribution is called common mode subtracted noise
(CMS noise).

1.1.3 Analysis Software

The LHCb software is based on the Gaudi framework described in [2]. It was
developed for high energy physics applications and provides functionality for
di�erent contexts, such as �le access, run-time con�guration or histogram
creation. The run-time con�guration is based on job option �les. For his-
togram creation Gaudi uses the ROOT data analysis framework [17].

The LHCb software is grouped into packages and projects. As explained
in [16], a package is a set of �les, organised according to some directory struc-
ture, which provides some well-de�ned, circumscribed functionality. Most
LHCb packages contain code that can be compiled into one or more libraries.
A project on the other hand is a set of packages that are grouped together
according to some functionality.

The most important projects for this thesis are the Online and the Lb-
com components projects. The Online components project groups together
components and infrastructure software needed for running data processing
applications in the Online computer farm where the monitoring is run. The
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Lbcom components project groups together components shared by data pro-
cessing applications as for example the di�erent algorithms used for data
acquisition or monitoring.

Decoding of Raw Banks

Before the data sent by a Tell1 board can be analysed, the raw bank is
decoded. This is done by a set of algorithms that �ll C++ objects containing
the information from the raw bank. An example of the decoding can be
found in [11] where the decoding of zero-suppressed data is described. For
the monitoring the following data sets are important:

LiteClusters Contains the positions of the clusters (no ADC values) [11].

Clusters Contains the full information available from the zero-suppressed
raw bank. In addition to the position of the cluster this contains the
ADC values of each detector channel in a cluster [11].

Summary Contains information on Tell1 boards that are missing or have
problems, together with the PCN [11].

Errors Contains the information transferred in the error banks [6].

Full Contains the information transferred in the non zero-suppressed raw
banks [5].

Tell1 Emulator

A special component of the Silicon Tracker analysis software is the Tell1
emulator. This application provides a bit-correct emulation of the processing
performed on the Tell1 boards. Using the emulator, one can reconstruct data
at di�erent stages in the Tell1 processing or generate the zero-suppressed
information from non zero-suppressed data.





Chapter 2

Monitoring Framework

2.1 Basic Architecture

This section contains a brief description of the monitoring framework. A full
description is given in [1].

The monitoring system is run on a dedicated computer farm and consists
of three main parts; The monitoring algorithm, a database (HistDB) and
a graphical user interface (Presenter). The monitoring is controlled by the
same control software (PVSS) which is used to control the detector hardware.

Input Data

Monitoring Task

Presenter

DIM- 
Server

Online Histogram 
Database Layout and display 

options for page 
and Histogram

Bin content of 
Histograms

Root-
Histograms

PVSS

Start/Stop

Algorithm 1

Algorithm 2

Figure 2.1: The monitoring system.

Figure 2.1 shows how the di�erent parts of the monitoring system are
connected. The detector data sent to the monitoring farm is processed by
a monitoring algorithm. This algorithm then publishes a set of ROOT his-
tograms that can be displayed by the Presenter. The information on how to
display the histograms is stored in the HistDB.

13
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To start an algorithm automatically when the detector starts taking data,
a monitoring task has to be added in the control software of the correspond-
ing detector. A task can run several algorithms and the control software can
run several tasks for each subdetector.

A detailed description of how an algorithm is added to the monitoring
can be found in the Section A.1.

2.1.1 Presenter

The Presenter is a graphical user interface used to display the ROOT-based
histograms published by the monitoring algorithms. To display histograms,
a page has to be de�ned. A page contains one or more histograms in a
given layout and with given display settings. When the page is selected
in the presenter, the page and histogram con�guration are loaded from the
HistDB. Then the histogram data published by the monitoring algorithm
is read and the pages are displayed. As all display properties are stored in
the HistDB, the Presenter loads only the bins and their content from the
histograms published by the algorithms. The display properties speci�ed by
the algorithm will be ignored. The Presenter is described in [19].

2.1.2 The Online Histogram Database

The online histogram database (HistDB) is an SQL based database storing
the display settings and con�gurations for all histograms and pages. All
histograms published by an algorithm need to be registered in the HistDB.
Histograms are identi�ed by the combination of task name, algorithm name
and histogram name. To allow easy adjustment of display properties for
several histograms, histograms can be grouped into sets with common display
options. A set is de�ned by the occurrence of _$ in the histogram name.

The database can be accessed through a web interface1 as well as through
the presenter.

The OnlineHistDB package contains the SQL de�nition of the HistDB it-
self and provides the source code for the di�erent interfaces to the database.
The package contains the C++ interface used by the Presenter or Hist-
DBPython (see Section 3) as well as the PHP code needed for the web
interface. The OnlineHistDB package is described in detail in [3].

2.2 The ST Monitoring Code

The monitoring of the Silicon Tracker is split into di�erent algorithms de-
pending on the data they process. All monitoring algorithms can be found
in the STMonitors package, which is part of the Lbcom components project.
At the time of writing, it contains the algorithms shown in Table 2.1.

1The web interface can be found at: http://lbhistogramdb.cern.ch/

http://lbhistogramdb.cern.ch/
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Algorithm Control-Tasks

STClusterMonitor Monitoring of zero-suppressed data with clus-
ters

STErrorMonitor Monitoring of error banks
STLiteClusterMonitor Simple monitoring of zero-suppressed data

with clusters
STNZSMonitor Monitoring of NZS data
STSummaryMonitor Monitoring of the information in the event

summary class
STTAEClusterMonitor Monitoring of time aligned events (TAE) used

for detector calibration
STZSMonitor Legacy algorithm for monitoring clusters

Table 2.1: Algorithms in the STMonitors package.

The three algorithms STNZSMonitor, STSummaryMonitor and STEr-
rorMonitor were developed or modi�ed as part of this thesis. They are
described in the following sections.

2.2.1 STNZSMonitor

The STNZSMonitor is used to calculate the raw and CMS noise from non
zero-suppressed data. The algorithm calculates the noise for each channel
and publishes one histogram for each Tell1 board.

Calculating the Noise

The noise is de�ned as the RMS of the distribution of the ADC values and
can be calculated as

σ =

√√√√ 1
N

·

N∑
i=1

(adc2i )−

(
1
N

·

N∑
i=1

adci

)2

, (2.1)

where N is the total number of events processed. For each channel, the
STNZSMonitor needs to store the mean of all ADC values ( 1

N

∑
adc) as well

as the mean of all squared ADC values ( 1
N

∑
(adc2)). After a given number

of events the noise can then be calculated using relation 2.1.

The sensitivity of such a noise calculation to the last event will decrease
with the increasing number of processed events. To avoid this the STNZS-
Monitor implements a moving average as

mi = mi−1 ·

n− 1
n

+ adci ·
1
n

with n =

{
i if i < N

N if i ≤ N
,
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where mi is the pedestal after the i
th event and N is the following period.

After i reaches N , this formula gives an exponentially decreasing weight to
old events. The moving average is calculated in the same way for the squared
ADC values.

Subtracting Common Mode

Originally, the STNZSMonitor produced only one set of noise histograms. It
could be used to monitor the raw noise when running on the raw data. To
monitor the CMS noise, the raw data had to be preprocessed by the Tell1
emulator to calculate the common mode subtracted values.

As running the Tell1 emulator signi�cantly increased the complexity of
the monitoring it was decided to add a simple common mode subtraction
algorithm to the STNZSMonitor. This allows the calculation of the CMS
noise without having to use the Tell1 Emulator. Di�erent common mode
subtraction algorithms were evaluated. This is described in the second part
of this thesis (Section 4). The �nal implementation of the selected algorithm
could not be �nished in the timescale of this thesis.

Speed Optimisation

While evaluating the di�erent algorithms it became evident that the ST-
NZSMonitor was too slow and had to be optimised for speed. Running the
algorithm in a pro�ler2 showed that the way the ADC values were stored
and accessed had a huge impact on the performance.

Change no CMS [s/event] with CMS [s/event]

initial 0.167 0.374
store in vector 0.075 0.186
iterator access 0.039 0.080

Table 2.2: Performance of STNZSMonitor before and after optimisation

Table 2.2 shows the estimate for the time needed to process one event at
di�erent optimisation stages. Originally the Tell1 data was stored in maps3.
Replacing the maps by vectors gave a performance gain of a factor of two.
Another factor of two could be achieved by replacing the direct element
access4 by iterator access.

Replacing the maps by vectors has the disadvantage that the Tell1 boards
can no longer be accessed by the original Tell1 identi�ers. Vector indices need

2A tool for software performance analysis.
3Maps are containers from the C++ Standard Template Library. Maps store elements

by the combination of a key value and a mapped value.
4This is done by using brackets ([])
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to be consecutive integers starting with 0 and the original Tell1 identi�ers are
not consecutive. The downside of using the iterator access is that memory
access errors are harder to �nd.

2.2.2 STSummaryMonitor and STErrorMonitor

The STSummaryMonitor and STErrorMonitor algorithms analyse the infor-
mation from Tell1 boards that have errors. The STSummaryMonitor pub-
lishes histograms based on the summary information. Since the summary
information is �lled as part of the zero-suppressed decoding, the histograms
are only available for zero-suppressed data. STSummaryMonitor publishes
three histograms:

� The PCN distribution allows to check that no position in the pipeline
is selected systematically more often than the other positions.

� The total data size allows to check that the expected amount of data
is transferred for each event.

� The error information counts the accumulated number of errors.

For every event processed, one entry is added to each of these histograms.
As an example, Figure 2.2 shows a screenshot from the presenter displaying
the PCN distribution histogram.

Figure 2.2: The PCN distribution histogram as displayed in the presenter.

The STErrorMonitor processes the error information in the error bank
and publishes two types of histograms. Firstly, an overview histogram is
published that counts the number of error banks per Tell1. In addition, a
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2D histogram is published for each Tell1 that sends an error bank. These
histograms display the error type versus the optical link number.

2.3 The ST Monitoring Tree

As explained in Section 2.1, histograms are displayed on pages. These pages
are organised in a tree of pages and folders. The organisation of this tree
should allow for simple and fast access to the needed information.

The monitoring tree is split into two separate top levels, one for IT and
one for TT. Below this top level, each tree is split into two branches as shown
in Table 2.3. The summary branch contains histograms used by the person
on shift to check the status of the detector. In case of problems, the expert
can access the pages in the expert branch to get more detailed information
about a speci�c Tell1 board or detector region. The initial lists of pages for
the two branches are given in 2.3. Both branches are likely to be expanded
based on the experiences gained from running the detector.

Summary
� ClusterCharge
� ClusterSize
� Clusters per TELL1
� ClustersPerEvent
� DataSize
� ErrorBanks
� ErrorSummary
� HitMap
� pcnDistribution

Expert
� NoiseAllTell1s
� perTell

� tell1
� ErrorType
� Noise

� tell2
� ErrorType
� Noise

� · · ·

Table 2.3: The TT monitoring tree.

For detector commissioning and debugging a third branch is available
in each tree. This third branch is the TAE branch, containing pages for
monitoring time aligned data. In time alignment mode several consecutive
bunch crossings are read out for each trigger.
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Managing Pages with

HistDBPython

As shown in the previous section, the monitoring tree contains hundreds of
pages. Often, these pages are very similar and it would be tedious to set up
each of them manually using the presenter or the web interface.

The OnlineHistDB package contains C++ classes that allow pages to be
set up and con�gured by implementing a C++ algorithm. The downside of
this approach is that one needs to write a separate C++ algorithm for every
set of pages and has to recompile the source code every time something in
the de�nition of these pages changes.

To avoid these downsides, generic algorithms were written that set up
and con�gure pages according to a given de�nition. These algorithms are
collected in the HistDBPython package. HistDBPython makes use of the
power that GaudiPython o�ers when writing option �les. GaudiPython is a
Python interface to the Gaudi framework and allows the use of Python code
inside the option �les. Therefore, one can use variables and loops to simplify
the de�nition of similar pages.

The remaining part of this Section will document the HistDBPython
package and its algorithms. Appendix A.2 contains a step-by-step guide for
this package and extensively commented example �les.

3.1 Example Use Case

This section illustrates the use of the HistDBPython package, using the Noise
pages for TT as an example.

To monitor the raw noise, STNZSMonitor produces a histogram for each
Tell1 board. These histograms are called noise_$tell1, noise_$tell2 and
so on up to noise_$tell48. The _$ in the names allows to group all these
histograms into one set. This allows the adjustment of display properties for
all histograms in the set at once. Each histogram is displayed on the Noise

19
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page in the directory /TT/Expert/perTell/tellX, where X is the sequential
number of the Tell1. This is the same number as used in the histogram name
(e.g. noise_$tellX).

Only few parameters change between these pages. This means that all
these pages can be set up by running the CreateHistDBPages algorithm of
HistDBPython. When doing so, only one option �le needs to be con�gured.
Since these options are written in Python, one can use counters and loops
to de�ne all the similar pages. The �le example_page.py in Appendix A.2.4
shows the code needed to achieve this. In addition, the code in this �le adds
a second histogram cms_$tellX for monitoring CMS noise to the page.

For each of the other algorithms an example �le is included in Appendix
A.2.4. The example �les belong to di�erent histograms and pages. They
were selected as they use all the available features in HistDBPython.

3.2 Preparing HistDBPython for use

The HistDBPython package is part of the Online components project. It
can be found at Online/HistDBPython1.

The properties of the di�erent algorithms in this package are explained
below. General properties can be put into separate �les that can be included
by other option �les. This allows to reuse these settings for di�erent sets of
pages.

Once the algorithms are con�gured, they can be run by calling gaudi-

run.py with the speci�ed option �le.

3.2.1 Specifying the password

Since HistDBPython writes to the Histogram Database, one needs to provide
a username and password. Since the password is needed for every access to
the database, it was no option to ask the user to type in the password
everytime an algorithm is run. On the other hand, the password could not
be hard-coded in the source code of HistDBPython, as it would then appear
in the source version control system (CVS) and be visible on the internet.

The algorithm is therefore con�gured to read the password from an ad-
ditional �le. This �le is not included in CVS. It needs to be created by the
user before running an algorithm. This solution allows to store the password
without having to put it into the source code.

1http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/Online/HistDBPython/?root=

lhcb&pathrev=cms

http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/Online/HistDBPython/?root=lhcb&pathrev=cms
http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/Online/HistDBPython/?root=lhcb&pathrev=cms
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3.3 Creating Pages

The algorithm to create pages is CreateHistDBPages. A page is de�ned by
three main parts: a name and path, the number of histograms to show, and
a layout that speci�es how the histograms should be placed on the page.

A design choice for CreateHistDBPages was that one option �le can only
create pages with the same layout. Each option �le therefore contains exactly
one page layout de�ned. To store the page de�nitions, the option �les contain
two lists with the same number of entries. The �rst list (PageNames) gives
the page names (including the path) of all pages that should be created. The
second list (HistoNames) is two dimensional and contains a list of histograms
for each page. This solution had to be used as there is no easy way in Gaudi
Python to translate complex python structures into C++ objects.

The properties of this algorithm are:

PageNames The names of all pages to create. The names can be given
with a path and the values of this list will be pre�xed with the con-
tent of PageBase. The order of the pages in this list is important for
HistoNames.

PageDoc The page documentation strings. The page documentation is
displayed in the presenter and can be used to store information for the
users. If the length of this list does not match the number of pages,
the �rst string will be used for every page.

HistoNames The histograms that should be displayed on the di�erent
pages. For each page, a list with histogram identi�ers is given. All
pages need to have the same number of histograms as the page layout
(PageLayout).

HistoLinks The matching of pages and histograms used for linking. The
presenter can display a new page when a histogram is clicked upon.
This property is used to de�ne these links. Not all histograms need to
have a link. As the linked pages are a property of the histogram, only
one page can be linked with a given histogram even if the histogram is
displayed on di�erent pages.

PageLayout The layout used to display the histograms on the pages. For
each histogram a list with 4 values gives Xmin, Ymin, Xmax and Ymax.
One entry needs to exist for each histogram on the pages. If Xmin is
smaller than 0, the histogram will be drawn into the same frame as
the previous histogram. This allows to overlay two histograms. As the
same layout will probably be used for di�erent pages this property is
best de�ned in a separate layout �le.
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PasswordFile The location of the password �le to use. The �le can be
given with absolute or relative path. The property is best de�ned in a
separate �le containing property common to multiple sets of pages.

PageBase A pre�x for all pages. PageBase can be used to de�ne the correct
main folder for the project. This is especially useful if de�ned in a
separate �le containing properties common to multiple sets of pages.

HistoBase A pre�x for all histogram names. HistoBase can be used to
de�ne a �xed part for all histogram names. This is especially useful if
this part is common for di�erent sets of pages and might be changed in
the future (e.g. task and algorithm name). The property is therefore
best de�ned in a separate �le.

3.4 Con�guring Histograms

Histograms are con�gured by adjusting the display options stored in the
OnlineHistDB. These display options provide access to most properties of
ROOT histograms. The data type of all display options is either integer,
�oat or string. As an example, the option named NDIVX contains an integer
specifying the number of divisions for the X-axis A full list of all display
options available for the histograms and their data type can be found in [3].

The algorithm to set display options in the histogram database is Set-
HistDisplayOptions. To de�ne the display option, the algorithm uses a
separate python dictionary for each of the three data types. Each dictionary
maps the names of display options to their respective values.

In addition to the display options that should be set, the histograms for
which these options are to be set need to be given. For this, an additional
dictionary is used. This dictionary maps the histogram name to a second
boolean value. If the boolean value is true, the display options given will be
applied for the whole set of histograms.2

The properties of SetHistDisplayOptions are:

HistoNames The histograms or histogram sets that should be updated.
For each entry, one can specify if only this histogram or the whole set
should be adjusted.

UnsetOptions If this boolean is set to true the display options will be reset
to defaults before applying the new options given in the �le.

intOptions/�oatOptions/stringOptions The display options of the cor-
responding type3.

2As mentioned in Section 2.1.2 histograms can be grouped into sets. This allows
convenient management for a large number of similar histograms.

3For a full list of available display options and their data type see [3].
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xLabels/yLabels The labels to use for the bins on the X/Y-axis. Each bin
can have its own label. example_dopts.py uses this to name the bins
for the di�erent error types (see Appendix A.2.4).

PasswordFile/HistoBase as described in Section 3.3.

3.5 Adding Histograms

To add new histograms to the database, AddNewHistToDB is used. As adding
histograms is normally done only once, it is often easier to add histograms
to the database using the presenter. The downside of using the presenter is
that it can only access histograms that are published at the time. Histograms
are only published if the corresponding data is available. Therefore, missing
histograms cannot be added to the database using the presenter.

The monitoring task, the monitoring algorithm and the histograms can
be added using AddNewHistToDB. This algorithm can only add histograms
that belong to the same task and monitoring algorithm and are of the same
type.

The properties of AddNewHistToDB are:

TaskName The name of the task running the algorithm.

AlgorithmName The name of the algorithm publishing the histograms.

HistoNames The histograms to be added to the database.

HistoType The type of the histograms. Only histograms of the same type
can be added to the database with the same option �le.

PasswordFile as described in Section 3.3.

3.6 Removing Pages

In some cases it is necessary to delete pages from the monitoring tree. The
presenter and the web interface o�er an e�cient and safe way to remove a
small number of pages. On the other hand this is a slow and painful process
if one or more branches should be removed. For this, HistDBPython provides
the RemovePages algorithm. To remove branches from the monitoring tree,
one simply adds the top folders of each branch to the list of start folders of
RemovePages. The branch will then be parsed recursively and all pages and
subfolders are selected for removal.

Removing is always a dangerous task. Therefore di�erent measures were
taken to avoid accidental deletes. First of all the RemovePages has an option
to simulate execution. This prints a list of all pages selected for removal
but does not remove anything. In addition, the algorithm makes sure that
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a given startpage is neither the root of the monitoring tree nor a top level
directory. The latter check can be switched o� if necessary.

Properties of RemovePages are:

startFolders The root of each branch that should be deleted.

dryRun If this boolean is set to true (default), nothing will be written to
the database. This should always be active in the �rst run to prevent
accidental deletions. Special care needs to be taken when adjusting an
existing option �le.

protectTopLevel If this boolean is set to true, top level directories in
startFolders will be ignored. Normally this should not be deacti-
vated. Often it is safer to use the presenter for deleting an empty top
level directory.

PasswordFile as described in Section 3.3.



Chapter 4

Common Mode Subtraction

As part of the monitoring of non zero-suppressed data, the common mode
subtracted noise (CMS noise) is of interest. As mentioned in Section 1.1.3,
the common mode subtraction can in principle be done using the Tell1 emu-
lator. However, this requires installing additional software on the monitoring
cluster and increases the complexity of the monitoring.

Therefore, the existing noise monitor STNZSMonitor (see Section 2.2.1)
was modi�ed to add a common mode subtraction algorithm. Di�erent algo-
rithms were implemented and their performance compared.

This chapter �rst explains the modi�cations made to the STNZSMon-
itor and describes the di�erent common mode subtraction algorithms im-
plemented. In Sections 4.3 and 4.4 the di�erent algorithms are compared.
The data used consists of non zero-suppressed data collected during detector
commissioning. This data contains no hits from particles. As the LHC is not
running yet, no data with hits is available. Therefore, Monte Carlo gener-
ated hits were added to the measured data in order to test the behaviour of
the common mode algorithms in the presence of hits. All �gures are shown
for data from Tell1 board 15 which is a typical example. For �gures showing
the noise as a function of the channel numbers, channels 1500 to 1600 were
selected. This range covers three ports (with 32 channels each) from two
Beetle chips.

4.1 Calculation of Noise

4.1.1 Main Structure of STNZSMonitor

The main structure of the extended STNZSMonitor is shown in Figure 4.1.
Compared to the initial version of the algorithm as described in Section 2.2.1,
three main changes were implemented:

� Superposition of Monte Carlo generated hits on existing data was
added.

25
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� Calculation of separate pedestals for each PCN con�guration (PCN-
pedestals) was added.

� Simultaneous calculation of raw noise and CMS noise was implemented.

raw noise CMS noise

add MC hits

get ADC values

add MC 
hits?

no

yes

CMS calculationraw calculation

subtract 
PCN-pedestal

Fig.  4.3

Figure 4.1: The main structure of the noise algorithm.

Simulating Hits

Due to lack of data with real hits, Monte Carlo hits are added for occupancy
studies. The desired strip occupancy has to be speci�ed for the simula-
tion. The algorithm then adds the corresponding number of clusters, with
a cluster-size distribution derived from a full Monte Carlo simulation of the
LHCb detector.

Clusters are added by processing the non zero-suppressed input data
channel by channel. Each channel has a probability p to be part of a cluster,
where p is calculated from the strip occupancy:

p =
Ω∑4

i=1 (fi · i)
,

with Ω being the strip occupancy and fi the fraction of clusters having size
i (i ∈ {1, . . . , 4}).
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The fractions fi were determined from a full LHCb Monte Carlo simula-
tion of Bs → J/ψφ decays [14]. Table 4.1 shows the numbers used.

cluster size i fi (TT) fi (IT)

1 0.175 0.291
2 0.507 0.516
3 0.295 0.178
4 0.023 0.014

Table 4.1: Distribution of the cluster size.

For each channel in a cluster, 30 ADC counts are added to the non zero-
suppressed input data1.

PCN-dependant Pedestals

As described in Section 1.1.2, two e�ects on the raw noise (the header
crosstalk and the PCN-parity dependent pedestals) can be removed by using
separate pedestals depending on the PCN of the event. To study the e�ect
this has on the CMS noise, the calculation of 8 PCN-dependant pedestals
was added to the STNZSMonitor algorithm as an option. If this is activated,
the pedestal corresponding to the PCN of the event (PCN-pedestal) gets sub-
tracted before the noise calculation. The calculation of the PCN-pedestals
is described in Section 4.1.2.

Calculating the Noise

After these preparations, the data is duplicated. One set of data is used to
calculate the raw noise. The common pedestal and the common mode are
subtracted from the second set of data and the CMS noise is then calculated.
The basic concept of the noise calculation has been explained in Section 2.2.1.

A detailed description of the process used to calculate the CMS noise is
given in Section 4.1.3 and in the descriptions of the di�erent common-mode
algorithms (4.2).

4.1.2 Initialisation of Pedestals and Raw Noise

Before the common mode can be subtracted, the pedestals and the raw noise
for each channel have to be known. For this, the �rst N +S events are used
where

N = number of events used to calculate the 8 PCN-pedestals.
S = number of events used for the calculation of the common pedestal and

the raw noise.

130 ADC counts is to the expected signal height for a single-strip cluster
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These events should not contain any hits as no hit removal is performed
for these calculations. As Figure 4.2 shows, the �rst N events are used to
determine the PCN-pedestals. First, the PCN con�guration is determined
for each event. The PCN-pedestals are then calculated as simple arithmetic
means of the corresponding ADC values. There is no check that each PCN-
pedestal is calculated from a minimal number of events.2

In the next S events, the PCN-pedestal is subtracted and the common
pedestal and the raw noise for each channel are calculated as described in
Section 1.1.2. If PCN-dependant pedestals are used, the common pedestal
should be zero. When running the STNZSMonitor algorithm as part of the
monitoring, these values need to be prepared beforehand.

get event

x events 
processed

x < N

N < x < N+S

x > N+S

main process 
(see Fig. 4.1)

prepare 
PCN-pedestals

pedestal & 
raw noise

subtract 
PCN-pedestal

update
mean of ADC and 

mean of ADC2

Figure 4.2: Preparation steps.

4.1.3 Calculation of CMS Noise

The CMS noise calculation is shown in Figure 4.3.

First, the common pedestal is subtracted from the data used for the com-
mon mode calculation. In the pedestal subtracted data, outliers are identi�ed
by an ADC count larger than 3 times the raw noise for the corresponding
channel. Outliers are marked in the data so that the CMS algorithm can
use or ignore this information depending on the options set. The data set is

2The frequencies with which the di�erent PCN-con�gurations appear are not exactly
equal. For example, In the �rst port only 4 of the 8 PCN con�gurations are possible and,
therefore, occur with twice the frequency.
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passed to the common-mode algorithm which calculates and subtracts the
common mode.

From then on the raw data and the CMS data are treated in the same way.
The noise is calculated based on moving averages (Eq. 2.1). Channels that
have been marked are set to the current moving average of the ADC values
for the corresponding channel. This approach was chosen as the algorithm
would otherwise need to store the number of processed events separately for
each channel instead of each Beetle. Thus, lower memory consumption and
faster processing can be achieved.

raw noise CMS noise

set channels 
with hit to mean 

of ADC

set channels 
with hit to mean 

of ADC

Hits

CMS Algorithm

subtract 
pedestal

Flag Hits

update
mean of ADC and 

mean of ADC2

update
mean of ADC and 

mean of ADC2

processed ADC 
values (see Fig. 

4.1) Preparation Steps
(see Fig. 4.2)

pedestal

noise

Figure 4.3: Processing ADCs for noise calculation.

4.2 CMS Algorithms

Three CMS algorithms were implemented for comparison. The �rst is the
linear common mode subtraction algorithm as it is currently used on the
Tell1 boards for the Silicon Tracker (ST algorithm). This is a simpli�ed
version of the algorithm used by the Vertex Locator (VELO). The full VELO
algorithm was implemented as a second option. The VELO algorithm is
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described in [8]. As a third option, an algorithm originally proposed by
Achim Vollhardt (two-point algorithm or 2P algorithm) was added. All
three algorithms calculate a linear common mode for the 32 channels in a
port.

4.2.1 ST Algorithm

The following list summarises the processing steps of the ST algorithm. The
steps are explained in the text below. Figure 4.4 shows the ADC values for
one port at di�erent stages in this algorithm.

1. calculate mean of the 32 ADC values
2. subtract mean
3. detect hits (>13 ADC counts)
4. set hits and neighbours to zero
5. calculate new mean of the 32 ADC values
6. substract new mean
7. �t straight line to the 32 ADC values
8. substract line

First, the mean over all 32 ADC values in the port is calculated and sub-
tracted. After this, hits are detected as ADC values above a given threshold.
The implementation on the Tell1 board determines an individual threshold
for each channel based on the raw noise of that channel. These threshold val-
ues are stored in a database and loaded into the memory of the Tell1 board.
Thresholds usually lie between 12 and 14 ADC counts. For this study the
same threshold of 13 ADC counts was used for all channels. Using the hits
marked after the pedestal subtraction3 was tested as well. As the simulated
hit amplitude of 30 ADC counts per channel provides a clear signal, the
impact of this change was found to be negligible.

ADC values for channels with hits and the neighbouring channels are set
to zero. Then, the mean of the 32 channels is calculated and subtracted
again. A simpli�ed least-squares �t is then used to determine and subtract
the linear common mode. The details of this �t are described in the docu-
mentation for the VELO algorithm [8].

The design of the ST algorithm was strongly in�uenced by the limited
resources on the FPGAs used on the Tell1 boards. As the FPGAs do not
allow for �oating point arithmetic, only integers can be used and divisions,
except by powers of two, are costly. Therefore, the least-squares �t had
to be simpli�ed for implementation on the Tell1 board. A question to be
answered by this study was therefore how large the di�erence is between noise
calculated with integer values and noise calculated with double-precision
values.4 To answer this question the ST algorithm was implemented with

3see Section 4.1.3
4see Section 4.3.2 for results.
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Figure 4.4: ADC val-
ues at di�erent process-
ing stages of the ST
algorithm.

both data types. The integer version is implemented using the simpli�ed
least-squares �t, while the double version uses an exact least-squares �t.

4.2.2 VELO Algorithm

The algorithm implemented by the VELO is described in [8]. The basic
concepts are the same for the VELO and the ST algorithm. Since the VELO
reads out a smaller number of detector channels per Tell1 board, a more
complex algorithm could be adopted. The following list summarises the
processing steps of the VELO algorithm.

1. calculate mean of the 32 ADC values
2. substract mean
3. �t �rst straight line to the 32 ADC values
4. substract �rst line
5. detect hits (> 3 times rms of the 32 ADC values)
6. set hits to zero (leave neighbours)
7. calculate new mean of the 32 ADC values
8. substract new mean
9. �t second line to the 32 ADC values
10. substract second line

The VELO �ts a straight line before and after hit detection instead of
only subtracting the mean before hit detection. After subtracting the �rst
line, the ADC distribution on a port should be �at. The distribution of the
32 ADC values in a port can be used to detect hits. The rms of the 32 ADC
values is calculated and any channel with an ADC count higher then 3 times
this rms is considered a hit.
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4.2.3 Two-Point Algorithm

The least-squares �t used in the ST algorithm and the VELO algorithm,
gives a larger weight to strips at the border of the �t range [13]. Therefore
the �tted straight line will tend to be closer to the ADC values in these
channels. After subtraction of the linear common mode, ADC values in these
channels will �uctuate less, i.e. these channels will have smaller CMS noise
then channels in the middle of the �t range. In order to avoid this artefact,
an alternative approach was suggested. The following list summarises the
processing steps of the two-point algorithm (2P algorithm).

1. detect hits (> 3 times raw noise of the channel)
2. split channels in two sets (channels 1-16, 17-32)
3. calculate mean ADC counts and mean strip number for each set
4. calculate slope and o�set of the line through the two points
5. substract line

The data is split into two groups of 16 channels each (channels 1-16 and
channels 17-32). In each group the mean over the ADC counts and over the
strip numbers is calculated. These means de�ne two points to which a line
is �tted.

In the implementation of this algorithm the hit information available
from the common mode data5 was used to remove hits. As explained in
Section 4.2.1, however, the impact of using either the marked hits or a �xed
threshold is negligible.

4.3 Studies Without Hits

The performance of the di�erent algorithms is presented in the following sec-
tions. This section presents the results of studies on measured data without
hits. In a second phase simulated hits were added to the data. The results
of the studies with hits are presented in Section 4.4.

4.3.1 Comparing two Algorithms

All the following histograms compare the CMS algorithms pairwise. Unless
otherwise stated the ST algorithm with double-precision, no PCN-pedestals
and no hits is used as the reference con�guration.

For both algorithms under investigation the CMS noise is calculated. Fig-
ure 4.5 shows, as an example, the raw noise and the CMS noise as a function
of channel number. The noise is calculated using the reference algorithm as
explained above and the ST algorithm with integer-precision. Next, for each
channel the di�erence of the two resulting CMS noise values is calculated.

5see Section 4.1.3
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A histogram is then created with these di�erences. The histogram resulting
for the con�guration above is shown in Figure 4.6.

channel on Tell1
1500 1520 1540 1560 1580 1600

AD
C 

co
un

ts

0

1

2

3

4

5

6
Entries  3072
Mean     1546
RMS     29.56

Raw (reference)
CMS (reference)
Raw
CMS

Figure 4.5: Noise calculated us-
ing the integer and double (refer-
ence) implementation of the ST
Algorithm.

4.3.2 Studying Di�erent Settings for the ST Algorithm

Comparing Integer and Double Implementation

The di�erence between the CMS noise calculated using double-precision and
integer-precision is shown in Figure 4.6. On average, the di�erence is 0.03
ADC counts. This agrees with the expected value of 0.02 ADC counts. The
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Figure 4.6: Distribution of
CMSint − CMSdouble.

expected value can be determined from the fact that the error between the
double and the integer value is expected to be equally distributed between
0 and 1. This gives a root mean square of

σ =
1√
12
≈ 0.29

This error then needs to be combined with the common mode subtracted
noise of approximately 2.3 ADC counts (see Figure 4.6). Using basic error
propagation, this gives √

2.32 + 0.292 − 2.3 = 0.02
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E�ect of Using PCN-dependent Pedestals

The e�ect on the CMS noise using the PCN-pedestals was studied. As
Victor Hangartner shows in his master thesis [7] this removes the e�ects of
the header crosstalk and the PCN-parity dependent pedestals in the raw
noise6.

Figure 4.7(a) shows the distribution of the di�erence between the CMS
noise calculated with common pedestal and with PCN-pedestals. The main
peak of the distribution is centred around 0.02 ADC counts, showing that us-
ing PCN-pedestals slightly increases the CMS noise for most channels. How-
ever, the tail below zero shows that this modi�cation signi�cantly improves
the noise of some channels. As expected these are the channels a�ected by
header crosstalk (e.g. channels 1504 - 1506 in Figure 4.7(b)).

ADC counts
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

#c
ha

nn
el

s

0
20
40
60
80

100
120
140
160
180
200

Entries  3072
Mean   -0.01655
RMS    0.09136

(a) Distribution of CMS 8 − CMS 1.
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Figure 4.7: Using PCN-pedestals.

4.3.3 Comparison between Di�erent Algorithms

After studying the di�erent e�ects on the ST algorithm, the e�ects on the
other two algorithms were studied and the results were compared. Figure
4.8 shows the resulting distributions for the 2P algorithm and the VELO
algorithm for both common pedestal and PCN-pedestals.

VELO Algorithm

The noise calculated by the VELO algorithm is slightly lower than the one
from the ST algorithm, as shown in Figure 4.8(c). This is mainly due to the
3σ cut in the hit detection this algorithm uses (see Section 4.2.2). When
the same �xed threshold hit detection is used for the VELO algorithm and
the ST algorithm, the results are the same. As there are no hits in the data

6see Section 1.1.2 for an explanation of these e�ects.
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ADC counts
-0.1 -0.05 0 0.05 0.1 0.15

#c
ha

nn
el

s

0

50

100

150

200

250

300
Entries  3072
Mean   -0.01045
RMS    0.007545

(c) VELO algorithm, common pedestal
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Figure 4.8: Comparing VELO algorithm and 2P algorithm to the ST al-
gorithm. Figures 4.8(a) & 4.8(c) compared to the ST algorithm using the
common pedestal, 4.8(b) & 4.8(d) compared to the ST algorithm using the
PCN-pedestal.
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analysed, the VELO hit detection seems to cut into the noise distribution.
However, this still needs to be studied in detail.

2P Algorithm

The 2P algorithm shows a smaller noise for most channels and a tail to
positive values. Figure 4.9 shows that the channels with increased noise are
primarily the channels close to the edge of each port. As shown in Section
4.3.2, using PCN-pedestals removes the header crosstalk e�ects. For the �rst
and the last channels of each port, the ST algorithm shows a decrease of the
noise. This is due to the already mentioned artefact from the least-squares
�t which gives a higher weight to the �rst and last channels (see Section
4.2.3). The �atter noise resulting from the 2P algorithm can therefore be
considered an improvement.

Figure 4.9: Raw noise and CMS
noise for the ST algorithm (ref-
erence) and the 2P algorithm. channel on Tell1
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As shown in this study, comparing the algorithms using PCN-pedestals
gives very similar results as comparing them using a common pedestal.7

Further studies, therefore, use only either the common or the PCN-pedestal
setting.

4.4 Studies With Hits

An important property of the common mode subtraction algorithm is its
performance in the presence of hits. This was studied for all three algorithms
for strip occupancies up to 20%. For operation at nominal LHCb luminosity
strip occupancies up to 2-3% are expected [12].

4.4.1 Occupancy Study for the ST Algorithm

Figure 4.10 shows the development of the CMS noise for increasing strip oc-
cupancies. The mean of the noise distribution is stable for strip occupancies

7e.g. 4.8(a) is similar to 4.8(b) and 4.8(c) is similar to 4.8(d).



4.4. STUDIES WITH HITS 37

ADC counts
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

#c
ha

nn
el

s

0
200
400
600
800

1000
1200
1400
1600
1800

Entries  3072
Mean   -0.006363
RMS    0.007395

(a) 1% strip occupancy

ADC counts
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

#c
ha

nn
el

s

0

100

200

300

400

500

600
Entries  3072
Mean   0.0008462
RMS    0.02411

(b) 5% strip occupancy

ADC counts
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

#c
ha

nn
el

s

0

50

100

150

200

250

300
Entries  3072
Mean   0.07626
RMS    0.04827

(c) 10% strip occupancy

ADC counts
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

#c
ha

nn
el

s

0

20

40

60

80

100

120

140

160 Entries  3072
Mean   0.3696
RMS    0.09792

(d) 20% strip occupancy

Figure 4.10: Di�erence of the CMS noise calculated with the ST algorithm
without hits (reference) and with the ST algorithm for di�erent strip occu-
pancies.
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up to 5%. The width of the distribution however starts to increase. For
higher occupancies, the width of the noise distribution continues to increase
while at the same time the mean shifts towards higher values. Figure 4.10(d)
shows that the average CMS noise has increased by approximately 0.4 ADC
counts for a strip occupancy of 20%.

Figure 4.11: Noise from the
ST algorithm with 20% strip
occupancy. channel on Tell1
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Decreasing Raw Noise

Figure 4.11 displays the raw noise and the CMS noise as a function of strip
number for 20% strip occupancy. This �gure shows that the raw noise de-
creased at the same time as the CMS noise increased. This is an artefact
of the way the STNZSMonitor handles hits. As explained in Section 4.1.3,
channels that contain hits are set to the moving average of the ADC values.
For this reason they do not in�uence the moving average. They do how-
ever reduce the �uctuations around the average and thereby decrease the
calculated noise value.

Increasing CMS Noise

Independent of the CMS algorithm used, the e�ect described above would be
expected for the CMS noise as well. The real increase of the CMS noise due
to the increasing occupancy must therefore be larger than shown in Figure
4.10. The increase of the CMS noise for the ST algorithm results from setting
hits to zero. This e�ect is studied in detail in Section 4.4.4.

4.4.2 Occupancy Study for the VELO Algorithm

As shown in Section 4.3.3, the hit removal seems to bias the CMS noise
calculated by the VELO algorithm even when there are no hits. When hits
are added to the data, the hit removal leads to a rapid increase of the CMS
noise.

Figure 4.12(a) shows that the CMS noise increases by almost 0.08 ADC
counts for 1% strip occupancy. This is the same noise increase as the ST
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algorithm shows for 10% strip occupancy. That this e�ect is entirely due
to the hit detection algorithm is demonstrated in Figure 4.12(b). There,
a �xed threshold is used for hit detection and the VELO algorithm gives
results comparable to the ST algorithm.

ADC counts
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

#c
ha

nn
el

s

0

20

40

60

80

100

120

140
Entries  3072
Mean   0.07693
RMS    0.04141

(a) default hit detection
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Figure 4.12: Di�erent hit detection methods for the VELO algorithm. For
both plots 1% strip occupancy was used.

The reason why the default hit detection method leads to high CMS noise
values is illustrated in Figure 4.13. The �gure shows the ADC values of all
32 channels in one port at di�erent stages of the common mode processing.
The port contains one cluster with strips 16, 17 and 18. As explained in
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Figure 4.13: Common
mode processing for one
port.

Section 4.2.2 the hit threshold is determined from the rms of the 32 ADC
values after the �rst linear subtraction. Detected hits are then set to zero.
The rms is large if the data contains hits. In the example, the calculated hit
threshold falls exactly between the ADC values of the outer channels and the
ADC value of the central channel in the cluster. Only the central channel is
set to zero and the other two escape detection. The second iteration of the
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linear �t then gives the wrong result, which leads to a high noise value for
all channels.

4.4.3 Occupancy Study for 2P Algorithm

ADC counts
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

#c
ha

nn
el

s

0
100
200
300
400
500
600
700
800
900

Entries  3072
Mean   -0.002614
RMS    0.03437

(a) 1% strip occupancy
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(b) 5% strip occupancy
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(c) 10% strip occupancy
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(d) 20% strip occupancy

Figure 4.14: Di�erence of the CMS noise calculated by the 2P algorithm
with the given strip occupancies and the noise for the ST algorithm without
hits.

The 2P Algorithm shows the best behaviour even for high occupancies.
Figure 4.14 shows the development of the CMS noise for strip occupancies
of 1%, 5%, 10% and 20%. In contrast to the corresponding plots for the ST
algorithm (Figure 4.10), the CMS noise decreases with increasing occupancy.
This is the expected e�ect of setting hits to the moving average before the
noise calculation (see Section 4.4.1).

4.4.4 Comparing ADC Values

The reason why the 2P algorithm gives better results than the ST algorithm
is illustrated in 4.16. The �gure shows the output of one Beetle chip for
the ST algorithm and the 2P algorithm. Shown are the common mode
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channel on Tell1
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Figure 4.15: Raw noise and CMS
noise for the 2P algorithm with
20% strip occupancy. As refer-
ence the ST algorithm is shown.

subtracted ADC values of both algorithms when for data without hits and
for the same data with hits added. It is evident that in the presence of
hits the 2P algorithm returns the original values almost perfectly while the
ST algorithm sometimes shows large di�erences between results with and
without hits. The ST algorithm therefore gives a too high noise.
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Figure 4.16: Comparing common mode subtracted ADC values with and
without MC hits.

The reason for this di�erence lies in the way hits are handled by the two
algorithms. The ST algorithm sets detected hits and their neighbours to
zero before calculating and subtracting the mean for the second time. This
potentially distorts the common mode. Figure 4.17 and Table 4.2 illustrate
the problem. If the hit in the original data is set to zero the calculated
common mode correction will be too low.

Setting hits to zero is necessary for the ST algorithm. Masking them cor-
rectly would break the central assumptions on which the simpli�ed straight
line �t8 is based, namely that 32 channels are processed. The 2P algorithm
as implemented here makes no such assumption. Hits are masked correctly,
i.e. they are not taken into account in the calculation of the averages from

8Step 7 in Section 4.2.1.
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Figure 4.17: ADC values of
the ST algorithm before cal-
culating slope.
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data used calculated slope
of �tted line

without hit 0.28
with hit 0.41
hit set to zero 0.24

Table 4.2: Setting hits to zero distorts the common mode.

which the straight line parameters are determined (see Section 4.2.3 For the
calculation of the correct averages, divisions with integer values between 1
and 16 are needed. If the 2P algorithm can be implemented on the Tell1
board, therefore, depends on the possibility to carry out these divisions on
the FPGAs. Studying such an implementation in detail was not possible in
the timescale of this thesis.

4.5 Summary and Outlook

Table 4.3 summarises the results for the three common mode algorithms
compared in this thesis.

The study of these di�erent common mode algorithms gave a number of
important insights. First, the study demonstrated that the current STNZS-
Monitor calculates a biased noise if the strip occupancy is high. To �x this,
fundamental changes in the algorithm are needed. Whether this is necessary
or not will be discussed and decided by the LHCb Silicon Tracker group.

A second result is that using the PCN-dependant pedestals removes the
header crosstalk as expected but leads to a small increase in average CMS
noise and a large increase in memory consumption.

Finally, Figure 4.18 clearly shows that masking the hits correctly makes
an algorithm a lot more robust at high occupancies. As the 2P algorithms
is simpler than the ST algorithm, it might be possible to implement the 2P
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Figure 4.18: Mean and RMS for the noise distributions.

algorithm on the Tell1 board with correct hit-masking. The main obstacle
for the implementation in the FPGA is the division needed to calculate the
mean values. An implementation of the 2P algorithm on the Tell1 board
therefore needs to be studied.

Algorithm ST VELO 2P

integers +0.03 n/a n/a

PCN- +0.02 similar to similar to
pedestals removes header

crosstalk
ST algorithma ST algorithma

CMS noise reference −0.01 −0.01
without hits increase for chan-

nels with header
crosstalk

CMS noise < 0.01 +0.08 < 0.01
1% strip oc-
cupancy

stable if ST hit
detection is used

CMS noise +0.08b n/a −0.1b

10% strip oc-
cupancy
a see Section 4.3.3
b see Section 4.4.4

Table 4.3: Comparison between algorithms. All numbers given are mean
values of the di�erences in ADC counts when compared to the ST algo-
rithm with double-precision, no PCN-pedestals and no hits.
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Appendix A

User Guide for the Online

Monitoring

A.1 Adding an Algorithm to the Monitoring

A.1.1 Preparing the code

1. Set up the environment for the monitoring:

$ export CMTCONFIG=$CMTDEB

$ export User_release_area=/group/st/sw/cmtuser

$ SetupProject Online

2. Source the setup.sh �le in the most recent release.
3. Compile if necessary (cmt br make).
4. Generate the *.vars �les.

$ source /group/online/dataflow/scripts/shell_macros.sh

$ crsetup

5. Create an option �le for the new algorithm
(e.g. /group/st/sw/scripts/TTNZSMon.opts).

A.1.2 Adding Task and assigning job options �le

1. Login in to ttecs01 (or any other machine with PVSS installed).
2. Run

$ cd /group/online/dataflow/scripts

$ ./pvssui -JOBOPTIONS

3. Click on Show Task Types.
4. Right click in list of known task types and select new.
5. Choose task name and click Create.
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6. Give a name to the task (e.g. TTNZSMon).
7. Double click on the newly created task (e.g. TTNZSMon).
8. Specify the script and tick the Require Defaults box.
9. Double click on the task.
10. Specify options the �le

(e.g. #include �/group/st/sw/scripts/TTNZSMon.opts�).

A.1.3 Running Monitoring Task in Online Monitoring

1. Run

$ ./pvssui -stream

2. Select TTECS: TT_RunInfo.
3. Select Monitoring.
4. Add a line for the new task

(e.g. TTNZSMon/1/Stream1).

A.2 Step by Step Guide to HistDBPython

1. Install the HistDBPython package

� Make sure HistDBPython is part of the project

� Prepare a working directory

� Add example �les

� Create a password �le (default password)

2. Con�gure the algorithms
3. Run gaudirun.py [-nv] FILE

A.2.1 Installation

1. To use the HistDBPython package add the following line to the re-
quirements �le of your project:

use HistDBPython * Online

2. Create a directory where you plan to store your Python option �les.
This directory can get crowded so it might be a good idea to cre-
ate a subdirectory for each of the four algorithms provided by Hist-
DBPython.

3. When this directory is ready copy the example �les from the docu-
mentation directory of the HistDBPython package1 into your working
directory.

1http://isscvs.cern.ch/cgi-bin/viewcvs-all.cgi/Online/HistDBPython/doc/?root=lhcb
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4. Create a password �le in the root of your working directory. The �le
should contain only the password for HIST_WRITER. The password
can be obtained from Giacomo Graziani. Make sure there is no empty
line at the end of the password �le. This will lead to an error.

A.2.2 Con�guration

The four algorithms are controlled by di�erent option �les. For each al-
gorithm an extensively commented example �le exists that document the
di�erent options available for each algorithm. All example �les can be found
in Section A.2.4.

A.2.3 Running

After con�guring an algorithm it can be run by calling gaudirun.py with the
corresponding option �le. If you want to run the option �le page.py you
would therefore call:

$ gaudirun.py page.py

Hint: Use gaudirun.py -vn ... to check the con�guration �le. This

command just parses the option �le without executing any algorithm.

If you want to run several option �les you can use a shell script like
runOptionFiles.sh in Section A.2.4. This �le is part of the HistDBPython
package as well.
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A.2.4 Example Files

runOptionFiles.sh

#!/bin/bash

###############################################

# #

# Script to run multiple option files #

# Nicola Chiapolini, 03.06.2009 #

# #

###############################################

# print help text if necessary

if [[ $# -eq $startPageList ]]

then

echo " Usage: ./runOptionFiles.sh file1.py file2.py ..."

exit 0

fi

# run the gaudi app for each page file specified on the commandline

for file in $@

do

if [ -f $file ]

then

gaudirun.py $file

else

echo "$file does not exist in search path!"

fi

done
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example_add.py

from Gaudi.Configuration import *

from Configurables import AddNewHistToDB

addHistAlg = AddNewHistToDB("addHistAlg")

# set task and algorithm name of the histograms

# if needed task and algorithm will be added to the DB as well

addHistAlg.TaskName = "TTSumMon"

addHistAlg.AlgorithmName = "STErrorMonitor"

# ***********************************************

# defining helper variables to generate the histogram names

histName = "error-types_$tell"

histNum = range(1, 49)

# ***********************************************

# setting the type for all histograms

# only histograms of the same type can be generated at the same

# time

# possible values are (OnlineHistDB v5r0):

# H1D, H2D, P1D, P2D, CNT

addHistAlg.HistoType = "H2D"

# filling HistoNames

# HistoNames is a list with the names of all histograms that

# should be created

addHistAlg.HistoNames = []

for num in histNum:

addHistAlg.HistoNames.append(histName + str(num))

# ***********************************************

# setting the Output level

addHistAlg.OutputLevel = INFO

# specifying the password file

# this sting points to the file containing the password for

# HIST_WRITER the file can be given either relative to the run

# directory or with an absolut path.

# the default value is 'password'

#addHistAlg.PasswordFile = "password"

# Add the algorithm to the application manager from Gaudi

app = ApplicationMgr()

app.TopAlg.append(addHistAlg)
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example_page.py

from Gaudi.Configuration import *

from Configurables import CreateHistDBPages

createHistAlg = CreateHistDBPages("createHistAlg")

# ***********************************************

# defining helper variables to create the page

# and histogram names

# page info

folderBase = "Expert/perTell/tell"

page = "Noise"

# histogram info

histoSet1 = "Raw/noise_$tell"

histoSet2 = "CMS/cms_$tell"

histoNum = range(1, 49)

# ***********************************************

# setting the options for the algorithm

# defining the pages that should be created

# PageNames is a list of strings that contains one entry for each

# page to be created.

# The page names will be prefixed with PageBase

createHistAlg.PageNames = []

# define the documentation string for each page

# PageDoc is a list of strings with the same ordering as PageNames

# depending on the size of the list, the follwing actions will be

# taken:

# - if the list is empty, no documentation will be added.

# - if the list has one entry for each page, these will

# be used.

# - otherwise the first documentation will be used for

# every page.

createHistAlg.PageDoc = []

continued on next page
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example_page.py - continued

# define the histograms that should be shown on each page

# HistoNames is a list of lists. Each inner list is a list of

# strings containing the histogram names for one page.

# the structure is [pageNumber][histogram]

# e.g.: HistoNames => {

# page1 => { histo1A, histo1B }

# page2 => { histo2A, histo2B }

# }

# Conditions:

# - each page vector needs to have the same number of entries as the

# layout definition.

# - the page vectors need to be sorted according to PageNames above.

createHistAlg.HistoNames = []

# define the pages histograms should be linked with

# HistoLinks is a dictionary with structure { string : string }

# *) the first string is the name of a histogram in HistoNames.

# *) the second string is the full path of the page that should be

# displayed when one clicks on the histogram.

# The page to display is a property of the histogram, so only one

# page can be defined per histogram.

createHistAlg.HistoLinks = {}

# loop filling the variables defined above

for num in histoNum:

id = str(num)

createHistAlg.PageNames.append("/"+folderBase+id+"/"+page)

folderHistos = []

folderHistos.append(histoSet1+id)

folderHistos.append(histoSet2+id)

createHistAlg.HistoNames.append(folderHistos)

# this is useless and just for demonstartion

createHistAlg.HistoLinks[histoSet1+id] =

createHistAlg.HistoLinkshistoSet1+id =

"/TT/Expert/NoiseAllTell1s/"

# ***********************************************

# importing common configuration files

# layout definition

importOptions("example_layout.py")

# general options

importOptions("example_genCreate.py")
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The last two lines of example_page.py include additional option �les. These could

also be added directly to the �le but putting them into a separate �le allows to

reuse them for multiple pages.

example_layout.py

from Gaudi.Configuration import *

from Configurables import CreateHistDBPages

createHistAlg = CreateHistDBPages("createHistAlg")

# define the layout for this page type

# this is a list containing one entry for each histogram. each

# entry is itself a list with four double values giving the

# position of the histogram

# the structure is:

# PageLayout => {

# histo1 => { Xmin, Ymin, Xmax, Ymax }

# histo2 => { Xmin, Ymin, Xmax, Ymax }

# }

# if Xmin < 0 the histogram will be overlayed on the previous

# histogram.

createHistAlg.PageLayout = []

createHistAlg.PageLayout.append([0.01, 0.01, 0.99, 0.99])

createHistAlg.PageLayout.append([-1.0, 0, 0, 0])
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example_genCreate.py

from Gaudi.Configuration import *

from Configurables import CreateHistDBPages

createHistAlg = CreateHistDBPages("createHistAlg")

# specifying the password file

# this sting points to the file containing the password for

# HIST_WRITER the file can be given either relative to the run

# directory or with an absolut path.

# the default value is 'password'

#createHistAlg.PasswordFile = "password"

# define a fixed part for all page names

# This will be prepended to all page names and should be used to

# define the correct main folder for the project

createHistAlg.PageBase = "/TestDir"

# define a fixed part for all histogram names

# This will be prepended to all histogram names and can be used to

# specify task and algorithm name

createHistAlg.HistoBase = "TestMon"

# set the output level for the message service

# use one of:

# DEBUG (2), INFO (3), WARNING (4), ERROR (5), FATAL (6)

# additionally there are:

# NIL (0), VERBOSE (1), ALWAYS (7), NUM_LEVELS (8)

createHistAlg.OutputLevel = INFO

# Add the algorithm to the application manager from Gaudi

app = ApplicationMgr()

app.TopAlg.append(createHistAlg)
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example_dopts.py

from Gaudi.Configuration import *

from Configurables import SetHistDisplayOptions

setDisplay = SetHistDisplayOptions("setDisplay")

# Setting up the dictionaries for the display options.

# There is one dictionary for each data type with the structure

# { string : <datatype> }

# (floatOptions is internally stored in a <string, double>-map

# but the values are cast to float before setting)

setDisplay.intOptions = {}

setDisplay.floatOptions = {}

setDisplay.stringOptions = {}

# ***********************************************

# defining the histograms to edit

# HistoNames is a dictionary with strucutre { string : boolean }

# *) the string is the identifier of the histogram, the string

# will get prefixed with the content of HistoBase

# *) if int is true, saveHistoSetDisplayOptions() will be called

# i.e. the changes will be applied for the whole set

setDisplay.HistoNames = {

"/error-types_$tell1" : True

}

# Should all display options for these Histograms be unset

# before the changes below are made?

setDisplay.UnsetOptions = True

# Filling the display option dicitonaries with entries

setDisplay.stringOptions["LABEL_X"] = "Optical Link"

setDisplay.intOptions["NDIVX"] = 424

setDisplay.floatOptions["LAB_X_SIZE"] = 0.04

setDisplay.floatOptions["LAB_Y_SIZE"] = 0.04

setDisplay.stringOptions["DRAWOPTS"] = "box"

continued on next page
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example_dopts.py - continued

# ***********************************************

# Define custom bin labels

# for each axis there is a list with one

# string for each bin

#setDisplay.xLabels = [];

setDisplay.yLabels = []

setDisplay.yLabels.append("None");

setDisplay.yLabels.append("CorruptedBank");

setDisplay.yLabels.append("OptLinkDisabled");

setDisplay.yLabels.append("TlkLinkLoss");

setDisplay.yLabels.append("OptLinkNoClock");

setDisplay.yLabels.append("SyncRAMFull");

setDisplay.yLabels.append("SyncEvtSize");

setDisplay.yLabels.append("OptLinkNoEvent");

setDisplay.yLabels.append("PseudoHeader");

setDisplay.yLabels.append("WrongPCN");

# ***********************************************

# application manager and messag service settings

importOptions("example_genSet.py")
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As with example_page.py an additional option �le is included in the �le above.

The code below could be included directly in the �le as well, but as the same

algorithm usually publishes di�erent histograms these settings can be reused if

put into a separate �le.

example_genSet.py

from Gaudi.Configuration import *

from Configurables import SetHistDisplayOptions

setDisplay = SetHistDisplayOptions("setDisplay")

# specifying the password file

# this sting points to the file containing the password for

# HIST_WRITER the file can be given either relative to the run

# directory or with an absolut path.

# the default value is 'password'

#setDisplay.PasswordFile = "password"

# define a fixed part for all histogram names

# (e.g. task and algorithm name)

setDisplay.HistoBase = "TestMon"

# set the output level for the message service

# use one of:

# DEBUG (2), INFO (3), WARNING (4), ERROR (5), FATAL (6)

# additionally there are:

# NIL (0), VERBOSE (1), ALWAYS (7), NUM_LEVELS (8)

setDisplay.OutputLevel = DEBUG

# Add the algorithm to the application manager from Gaudi

app = ApplicationMgr()

app.TopAlg.append(setDisplay)
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example_remove.py

from Gaudi.Configuration import *

from Configurables import RemovePages

rmAlg = RemovePages("rmAlg")

# defining the root of the branches to delete

# StartFolders is a list of stings

# !! All pages and subfolders will be delete

rmAlg.StartFolders = [ "/TestFolder/subfolder1",

"/TestFolder/subfolder2" ]

# simulate deletion?

# If DryRun = True all pages affected by this configuration will

# be printed but no changes will be written to the OnlineHistDB.

# This should be used to check which pages really get deleted.

rmAlg.DryRun = True

# specifying the password file

# this sting points to the file containing the password for

# HIST_WRITER the file can be given either relative to the run

# directory or with an absolut path.

# the default value is 'password'

#rmAlg.PasswordFile = "password"

# Protect top level directories from deletion

# ----------------------------------------

# !! do not change unless you know what !!

# !! you are doing! !!

# ----------------------------------------

# if ProtectTopLevel is True, top level directories (e.g. "/TT"

# or "/VELO") in StartFolders will get ignored

#rmAlg.ProtectTopLevel = True

# set output level

rmAlg.OutputLevel = INFO

app = ApplicationMgr()

app.TopAlg.append(rmAlg)
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