
11. Coupled Oscillations

S

11.1 Introduction

Oscillations of multiple interlinked coupled systems play an important part in almost all areas of

physics (see Experiment R). The major phenomena appear already in the coupling of only two

systems. In this experiment, mechanical linear oscillators are used as oscillatory systems. The goal

of the experiment is to characterise the coupled system with the aid of so-called normal modes and

how these are related to the resonance frequencies of the individual system as well as the coupling

between the systems.

11.2 Theory

a) The Linear Oscillator

The linear oscillator consists of a mass m, that is attached to a spring with spring constant k and

that can move in one dimension, e.g. along the x-axis (see fig. 11.1a).

Assuming that the spring is subject to tension in Hooke’s range, meaning that the restoring force

F acting on m is given by F = −k · x, the equation of motion (ignoring friction forces) is given by

m · ẍ = −k · x (11.1)
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Figure 11.1: Linear oscillator
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2 11. Coupled Oscillations

with the solution being

x = A · cos (ω0 · t+ δ) with ω0 =

√
k

m
(11.2)

The oscillator oscillates purely harmonically with a characteristic frequency ω0, the resonance

frequency of the system. The two integration constants, namely the amplitude A and phase δ

are set by the initial conditions. Out of practicality, instead of a single spring, there are two

symmetricallly aligned springs in use for each oscillator in the experiment. The above relations are

still valid if the two springs have the spring constant k/2 (see fig. 11.1ab).

b) Two Coupled Oscillators

Looking at the oscillations of two oscillators, which are coupled by a spring (see fig. 11.2), the two

equations of motions for the masses m1 and m2 are

m1 · ẍ1 = −k1 · x1 − k′ · (x1 − x2) (11.3)

m2 · ẍ2 = −k2 · x2 − k′ · (x2 − x1) (11.4)

Assuming that both oscillators are alike, meaning m1 = m2 = m and k1 = k2 = k, then

m · ẍ1 = −k · x1 − k′ · (x1 − x2) (11.5)

m · ẍ2 = −k · x2 − k′ · (x2 − x1) (11.6)

This coupled system of equations can be solved in different ways. In the following, a descriptive

ansatz is described.

Experimental observation shows, that harmonic solutions exist in which both masses oscillate at

the same frequency. This allows for the following ansatz:

x1 = A · ei ω·t (11.7)

x2 = B · ei ω·t (11.8)

where A and B are complex amplitudes (they contain the phase constant).

By inserting eq. 11.8 in eq. 11.5 and 11.6, it follows

(−m · ω2 + k + k′ ) ·A− k′ ·B = 0 (11.9)

−k′ ·A+ (−m · ω2 + k + k′ ) ·B = 0 (11.10)
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Figure 11.2: Two coupled linear oscillators
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11.2. THEORY 3

This system of two linear homogeneous equations for A and B has only a non-trivial solution for a

vanishing determinant of the coefficient matrix, i.e.∣∣∣∣∣ −m · ω2 + k + k′ −k′

−k′ −m · ω2 + k + k′

∣∣∣∣∣ = (−m · ω2 + k + k′ )2 − k′
2

= 0 (11.11)

There are thus two frequencies that satisfy the ansatz, namely the two positive solutions of the

quadratic eq. 11.11

ω1 =

√
k

m
and ω2 =

√
k + 2 k′

m
(11.12)

From eq. 11.9 follows

B =
−m · ω2 + k + k′

k′
·A (11.13)

and by inserting the two solutions ω1 and ω2 for the frequency, the solutions for the amplitudes

become A1 = B1 and A2 = −B2. To sum up, the two pairs of solutions that solve the ansatz are

x1,ω1 = A1 · eiω1·t and x2,ω1 = A1 · eiω1·t (11.14)

for the resonance frequency ω1 and

x1,ω2 = A2 · eiω2·t and x2,ω2 = −A2 · eiω2·t (11.15)

for the resonance frequency ω2. In real form, the solutions are

x1,ω1 = A1 · cos (ω1 · t+ δ1) and x2,ω1 = A1 · cos (ω1 · t+ δ1) (11.16)

for the resonance frequency ω1 and

x1,ω2 = A2 · cos (ω2 · t+ δ2) and x2,ω2 = −A2 · cos (ω2 · t+ δ2) (11.17)

for the resonance frequency ω2.

These two purely harmonic solutions are called the normal modes of the system of two coupled

oscillators.

The most general solution of the equation of motion is attained by the superposition of the normal

modes

x1 = A1 · cos (ω1 · t+ δ1) +A2 · cos (ω2 · t+ δ2) (11.18)

x2 = A1 · cos (ω1 · t+ δ1) −A2 · cos (ω2 · t+ δ2) (11.19)

As expected, there are four constants A1, A2, δ1, and δ2 to be set by initial conditions, two for each

eq. 11.5 and 11.6.

c) Excitation of Specific Oscillation States

An oscillation state is completely determined by the four intial conditions. In the following, three

important special cases are looked at.
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4 11. Coupled Oscillations

Case 1: Both Oscillators are Released from Rest with Same Displacement

The initial conditions at t = 0 are:

x1(0) = x2(0) = A , ẋ1(0) = ẋ2(0) = 0 (11.20)

Inserting into eq. 11.18 and 11.19 gives the solution A1 = A, A2 = 0, δ1 = 0 with arbitrary δ2. It

follows

x1 = x2 = A · cos (ω1 · t ) with ω1 =

√
k

m
(11.21)

The two oscillators oscillate together. The solution is a normal mode with the lowest frequency.

The spring constant k′ is not present in the solution, the spring is thus not participating in the

oscillation and its tension state does not change (try to observe it!)

Case 2: The two Oscillators are Released from Rest with Opposite Displacement

The intial conditions at t = 0 are:

x1(0) = −x2(0) = B , ẋ1(0) = ẋ2(0) = 0 (11.22)

Inserting into eq. 11.18 and 11.19 gives the solution A1 = 0, A2 = B, arbitrary δ1, and δ2 = 0. It

follows

x1 = −x2 = B · cos (ω2 · t ) mit ω2 =

√
k + 2 k′

m
(11.23)

This is the second normal mode. The two oscillators oscillate opposingly.

Case 3: One Oscillator is Released from Rest, the Other from Rest with Displacement

The initial conditions at t = 0 are:

x1(0) = C , x2(0) = 0 , ẋ1(0) = ẋ2(0) = 0 (11.24)

Inserting into eq. 11.18 and 11.19 gives the solution A1 = A2 = C/2 and δ1 = δ2 = 0. It follows

x1 =
C

2
· ( cos (ω1 · t ) + cos (ω2 · t ) ) = C · cos (

ω2 − ω1

2
· t ) · cos (

ω2 + ω1

2
· t ) (11.25)

x2 =
C

2
· ( cos (ω1 · t ) − cos (ω2 · t ) ) = C · sin (

ω2 − ω1

2
· t ) · sin (

ω2 + ω1

2
· t ) (11.26)

For weak coupling (k′ << k), ω2 ≈ ω1 and thus ω2 − ω1 << ω1 + ω2. Illustrated in fig. 11.3, this

solution can be seen as an oscillation of the frequency ω1+ω2
2 with time varying amplitude.

This is called a beat, that always appears in the superposition of oscillations of almost identical

frequencies. Because the amplitude of an individual oscillator depends here on the time, its energy

is in contrast to the cases 1 and 2 not constant. The energy of the system travels with frequency

Ω = ω2 − ω1 from one oscillator to the other. The total energy of the two oscillators however

remains constant throughout.
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Figure 11.3: Beat: In the middle antinode, the oscillator initially has opposite phase; the beat thus

extends in this case over two antinodes.

d) Generalisation for a System with N Coupled Oscillators

In general, the number of normal modes is equal to the number of degrees of freedom of the whole

system. The generalisation for N coupled oscillators would yield a system of N coupled equations

of motion. Equation 11.11 would be of degree 2N with generally N different positive solutions for

the normal or resonance frequencies ωN .
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6 11. Coupled Oscillations

11.3 Experimental Part

In the experiment, the derived relations of the theoretical part are to be studied qualitatively and

quantitatively. As friction forces are completely ignored in the derivations, the experiment is built

to minimise friction forces. The oscillators consist of two riders, that glide on an air cushion and

that can be coupled with each other using springs.

The springs must not be overstretched in the experiment, as otherwise the underlying assumption

of a linear force law (F = −k · x) would not be justified.

a) Qualitative Observations

• Open the compressed air valve until the riders are lifted off the underlay

• Excite the above mentioned special oscillation cases by chosing the right initial conditions

and compare the behaviour of the oscillators with the expectations.

b) Measurement of the Oscillation Frequencies

The following frequencies are to be experimentally determined:

ω1 =

√
k

m
(1. Normal mode)

ω2 =

√
k + 2 k′

m
(2. Normal mode)

Ω = ω2 − ω1 (Beat frequency)

ω′ =

√
k + k′

m
(Frequency of an oscillator, if the other is retained)

• Measure ω1, ω2, and ω′ by determining the period T of each oscillation through five measure-

ments each over 20 oscillation cycles and calculation of angular frequency from ω = 2π/T . In

each case, calculate the mean of the measurements and estimate the error on ω1, ω2, and ω′.

• Determine the beat frequency Ω and the error on Ω in the same way. Because of the inevitable

damping, the period T has to be identified over 10 oscillation cycles in this case, e.g. over 10×2

nodes of one pendulum (see Fig. 11.3).

• Confirm the expected relations Ω = ω2−ω1 und ω2
1 +ω2

2 = 2ω′2 using the measured frequen-

cies.

• Think about the reasons why the calculated and the experimentally determined values of Ω

differ so much.
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11.3. EXPERIMENTAL PART 7

c) Measurement of the Spring Constant and Calculation of the Oscillation Fre-

quency

The spring constant k0 of the employed springs have to be measured separately. For this, the two

methods illustrated in fig. 11.4 are used. Because the preceding experiments use two springs per

oscillator, use k0 = k/2.

• Put tension on the springs one after another by attaching a known mass m and measure the

difference in length h. Calculate the spring constant using k0 = m · g/h.

• Using the mass m, oscillate the stressed spring vertically and measure the oscillation period

T . Calculate the spring constant using k0 = m · ω2 = m · 4π2/T 2.

• Calculate the expected values of the resonance frequency ω1 and ω2 using the measured spring

constant k0 = k/2 and the known masses of the riders used in the first parts of the experiment.

Compare the expected values of the resonance frequencies ω1 and ω2 with the measured ones.

a) b)

mg = k0 h

k0= mg
h

h

m m y = A cos ωt

                k0ω =                m

y

k0 = mω2

G = mg

Figure 11.4: Measuring the spring constant k.
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