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1 Measurements and uncertainties

A measurement can never be perfectly precise. Whenever a measurement is performed, measuring

errors are being made. Error calculus aims to estimate and calculate measuring errors and so-called

uncertainties as well as estimating their consequences. This document provides a short outline of

the field of error calculus as you will need it in the lab courses, and in a shortened version.

1.1 Measurements

To measure means to match a physical quantity against a normalized unit, like e.g. the length of a

rod with the help of a measuring tape. Doing so, one reads off the number which is closest to the

end of the rod. The result will be represented in form of a number and a unit, e.g.

x = 213 mm.

In reality, this measurement is only approximate, since the result gives only an estimation of

the actual length. The exact, “true” value is unknown. The deviation from the true length of

the measured result is denoted as the measurement error of a single measurement. In this

example, it will probably be of the order of a millimetre. Since the read-off is the only thing we

know, neither the true value, nor the error in measurement is known.

Error calculus deals with estimating both, the true value of a quantity and the presumable error

in the measurement. One could, for example, repeat a measurement multiple times and obtain the

mean x of the measured values, which is a better approximation for the true value than the single

measurement.

The uncertainty in this measurement can be estimated from the distribution of the measured values

or the quality and the accuracy of the measurement device.

A correct result always has to including the estimated measurement error:

x = (213± 1) mm.

1.2 Systematic and statistical (random) errors

Measurement errors can be categorized into systematic and statistical (or random) errors.

Often, both sources of errors produce both types of uncertainties (like e.g. the background radiation

in experiment Ab), and thus, the frontier in between them is not always to be drawn unambiguously.

Systematic errors are caused by the measurement process itself, an inaccurate calibration of

the measuring device, defective functionality or even by a faulty read out of the pointer
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instruments. Systematic errors exist, when the measurement (the measuring process or the

measuring device) modifies the measured quantity. A practical example is the fact that during

the measurement of a temperature of an object, this object is being cooled down due to the

contact with the thermometer. These systematic errors are characterized by the fact that

they deviate the measured value always in one (predictable) direction. Once determined,

such errors can in principle be eliminated or reduced by adapting the experimental procedure

and/or appratus. Systematic errors can not be minimized by repeated measurements under

the same conditions.

Statistical (random) errors Statistical uncertainty results in fluctuations of the measured quan-

tity. After repeated measurements of the same quantity and calculation of the mean value,

we say that the measured values scatter around the mean value to higher and lower values

with the same probability and with a given spread which we are to quantify. Random erros

cannot be avoided but minimized with repeated measurements. A statistical analysis includes

a calculation of the scattering of the measured values around the mean (best) value, given

the measurements has been undertaken equal circumstances. One distinguishes the following

cases:

Measurement uncertainty If the measured quantity has a fixed value, the results of repea-

ted mesurements will scatter around a mean value. The mean will generally get closer to

the true value, the more measurements are being made. The distribution of the measured

values around the mean allows for an estimation of the error.

Distribution of the measured quantity In this case the main interest lies in the distri-

bution of the measured values, which reflects the distribution of the measured quantity

for many different samples/objects, like e.g. the body height of many people. The most

important attributes of this distribution are its mean value and a criterion for the sta-

tistical scatter of the results.

In this lab course we are mostly concerned with the first variant, the measurements uncertainty

due to the fluctuations of the measurement results.

1.3 Statistical measurement uncertainty

Consider the measurement of a physical quantity. x̂ shall be its true value. Let xi be a single

measurement. We assume that the probability to measure some pre-defined value x increases the

more x is close to x̂, like in this gaussian distribution:

f(x) dx = 
  Wahrscheinlichkeit dass
  Messgrösse x im Intervall dx

xx dx

f(x)
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w(x) be the probability to measure the value x. Often, it is more convenient to use the so-called

probability density:

f(x) =
dw(x)

dx
(1)

which is defined as probability dw for the measured value x to lie within the interval [x, x + dx]:

dw(x) = f(x) · dx. Since any measurement must yield some result the function f(x) must be

normalized:

+∞∫
−∞

dw =

+∞∫
−∞

f(x) · dx = 1 (2)

Key parameters of a probability distribution

Quantity Meaning Definition

1st Statistical moment Mean value µ =
∞∫
−∞

f(x) · x dx

2nd Statistical moment Variance V := σ2 =
∫
f(x) · (x− x̂)2 ·

dx

Standard deviation Scatter of the data σ =
√
V =

√
σ2

Uncertainty of a single measu-

rement

In many cases the distribution of the measured values follows a gaussian distribution. Other im-

portant distributions include the binominal distribution or Poisson statistics like e.g. for radioactive

decays (see experiment Ab).

The Gaussian distribution reads:

f(x) =
1√
2πσ

· exp

(
−(x− µ)2

2σ2

)
(3)

xμ

f(x)

μ−σ μ+σ

σ
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The parameter σ is the standard deviation which defines the width of the distribution. It is related

to the full width at half maximum (FWHM) by FWHM ≈ 2.35 σ. The area underneath the graph

of f(x)dx represents the probability to find a measured value within the interval dx. Statistically,

68% of all measured values lie inside [µ − σ, µ + σ], and 95% or 99.7% of all measured values lie

within the 2σ- or the 3σ-intervals, respectively.

1.4 Estimation of the true values

In practice, neither µ nor σ are known and have to be estimated based on a number of n sample

measurements. Considering that, one has to make a distinction between two cases, which you are

going to encounter both in these lab courses:

1.4.1 ... in the case of repeated measurements under identical conditions

This means, that the very same measurement is being repeated multiple times, such as the measu-

ring of the period of a pendulum with constant length and for always the same initial amplitude.

As a consequence we may assume that the statistical uncertainties, i.e. the standard deviation be

always the same for all measurements.

Let x1, x2, ...., xn be the n sample measurements. One then may use the following estimations:

• Estimation for the mean value µ using the arithmetic mean value of the single measurements:

µ ≈ x̄ =
1

n

n∑
i=1

xi (4)

• Estimation for the standard deviation σ:1

σ ≈ s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (5)

The denominator (n− 1) for s takes into account that we use the same n data for calculating the

mean value x̄ which in turn enters the calculation of s. One speaks about n degrees of freedom of

our sampling with one being used for the mean value.

It is obvious that the more measurements are taken, the more accurate the estimations will be:

lim
n→∞

x̄ = µ and lim
n→∞

s = σ.

The central limit theorem states that for different samples of n measurements each, the dis-

tribution of the corresponding mean values x̄ always converges on a Gaussian distribution with a

variance σ2/n for large n, irrespective of the initial distribution of measurement data xi.

This theorem allows for the estimation of the statistical error, which is called the uncertainty of

the estimated mean:

mx̄ =
√
σ2 = s/

√
n.

In brief : For the measurement of a quantity using n samples with measured values xi, the true

mean value and its uncertainty can be estimated using the following formulas:

1Often, the letter σ is used for the estimated standrad deviation instead of s. Doing so one always has to keep in

mind that we deal with an estimate rather than with a precise value.
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Result of the measurement:

x̄±mx̄ (6)

Where x̄ is the estimate for the true physical quantity

x̄x =
1

n

n∑
k=1

xk, (7)

and m the estimate for the uncertainty:

m =
s√
n

=

√√√√ 1

n(n− 1)

n∑
k=1

(xk − x̄)2 (8)

Generally, one should specify one or maximum two decimal places for

the error. As a rule of thumb, we use two digits if the first digit of the

error is smaller than 4, otherwise only one. Errors are always rounded

off towards higher values. The number of decimal places must be the

same both for the error and the measured value.

Example: x = 1.57± 0.24 with mx = 0.24 or r = mx/x = 0.15.

While the error mx of the mean value decreases with a increasing number of samples, the average

deviation of single measurements s converges on σ. The width of the distribution of the measured

values, i.e. the scatter of the data, depends only on the experimental conditions but not on the

number of samples taken.

For computing the standard deviation and the statistical uncertainty, one commonly uses the

following conversions:

n∑
k=1

(xk − x̄)2 =
∑
k

(xk
2 − 2xkx̄+ x̄2) =

∑
k

xk
2 − nx̄2 (9)

⇒ m =

√
1

n− 1
(

∑
k xk

2

n
− x̄2). (10)

1.4.2 ... in the case of repeated measurements with different uncertainties

If the measured quantity is measured several times with different accuracy due to different con-

ditions like, e.g. the speed of the gyroscope in experiment K, the data taken must be weighted

by their respective uncertainties before averaging. This is referred to as weighted mean value.

Those values which have small uncertainties will have higher weight in the average than those with

larger scatter.

We measure a quantity x n times, where we obtain the values xi and the corresponding uncertainties

mi (we didn’t use the letter σ or s;on purpose). Defining the weights as gi = 1/m2
i , one gets the

mean value:
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x̄ =
1

G

N∑
i=1

gi xi =
1

G

N∑
i=1

xi
m2

i

. (11)

The parameter G is used for the normalization:

G =

n∑
i=1

gi =

n∑
i=1

1

m2
i

.

Likewise the error on the mean value has to account for the weighting. This leads to:

mx̄ =

√
1

G
. (12)

As an exercise, you may recover the the formulae for the case of measurements with identical

uncertainties in section 1.4.1 by using mi = constant = s.

1.5 Error propagation

When having measured one ore various physical quantities, one often has to perform further cal-

culations using those initial results:

Let u = f(x1, x2, . . . , xN ) be a function which depends on some N variables. We would like to know

how large the uncertainty mu is. In order to do this, one uses error propagation. Let mi be the

uncertainty of the value of xi.

Equation of error propagation:

m2
u =

(
mx1

∂u

∂x1

)2

+

(
mx2

∂u

∂x2

)2

+ . . . +

(
mxN

∂u

∂xN

)2

(13)

where ∂/∂xi denotes the partial derivative with respect to variable xi.

For relations which include only summations and subtractions or only multiplications, divisions

and powers, one uses the following simplified principles:

Summations:

Let u = x+ 3y − z , whereas one measured:

x = x̄±mx y = ȳ ±my z = z̄ ±mz

Then one ahas

ū = x̄+ 3 · ȳ − z̄ where m2
u = m2

x + (3 ·my)2 +m2
z (14)

→ The absolute errors, multiplied with the (constant) pre-factors, sum up quadratically.

Multiplications:

Let u = xy/z · a3, whereas one measured:

x = x̄±mx y = ȳ ±my z = z̄ ±mz a = ā±ma

resp. rx = mx/x̄ ry = my/ȳ rz = mz/z̄ ra = ma/ā

Then one has:

ū = x̄ȳ/z̄ · ā3 with r2
u = r2

x + r2
y + r2

z + (3 · ra)2 and mu = ruū (15)

→ The relative errors, multiplied with the respective powers, sum up quadratically.
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Important! Both rules are only valid, if the measured errors are independent of each other.

2 Graphic representation and evaluation of measured results

2.1 Graphic representation

Measured results are often displayed in form of graphs. Thereby, one plots the results on the

ordinate (y-axis) against the quantity (abscissa or x-axis) which has been varied in the associated

experiment.

Example: For the measurement of the velocity, one measures the walked distance as a function of

time. The measuring errors have been estimated with the measurement accuracy, which is assumed

to be constant in this example. They are being drawn as horizontal (error of the time measurement)

or as vertical (error in the measurement of distance) bars respectively, whose lengths correspond

to the particular measuring error. They are known as error bars.

The graph shows that it is about a straight line, i.e. a graph with constant slope. In our example,

this line corresponds to the equation

∆x = v ·∆t

for a constant velocity v.

Remark: The data points should not be connected with lines, unless one has not enough measuring

measuring points to be able to draw a smooth curve.
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The boundaries, i.e. the minimum and maximum values, which are represented on the axis, should

always correspond to the lowest and highest data values, respectively. Furthermore, graphical ex-

trapolations are not very inaccurate in general. Suppose one would like to determine a systematic

error by “drawing”(extrapolating) a line to zero, which lies outside of the actual measuring interval,

one would only get a rough approximation at the most. It is superior to determine the slope and

calculate the value to be extrapolated.

7



2.2 Fitting lines, slope of a line

In our example, we presume that the velocity is constant and the function should represent a

straight line. We want to determine the velocity. From the equation above, one can identify the

velocity with the slope of the curve.

In order to extract the slope, one draws the straight line which matches best all data points including

their error bars. This line is used to draw the slope triangle such that one side of this rectangular

triangle runs parallel to the abscissa (x-axis) whereas the other one rises parallel to the ordinate

(y-axis). The slope triangle should be drawn as large as possible. From the side lengths of the

triangle one can determine the slope according to

slope =
side length along the ordinate

side length along the abscissa
→ v =

∆x

∆t
=

275 mm

188 s
= 1.46 mm/s.

Hereby, the side lengths refer to the corresponding axes (units!!!).

To estimate the error of the determined slope, one draws the flattest and steepest lines, which are

compatible with the data points, next to the best fit. The difference of the two extremal slopes

yields a good estimate for the error on the slope:

a±∆a where ∆a =
amax − amin

2
,

where a, amax and amin are the slopes of the best fit and the extremal lines.
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2.3 Linearization

Frequently, one has to face the problem that the measured points follow a non-linear but well-

defined curve. As an example consider the count rate of x-rays or radioactive radiation behind a

shielding as a function of layer thickness (see lab course Ab) or the absorption of light in a solvent

as a function of concentration or thickness. Note that in such cases either

1. one adapts the graphic representation (logarithmic or semi-logarithmic scaling) or
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2. one converts the quantity into a linear quantity by taking, e.g. the logarithm.

It is important to take the data processing into account when extracting the slopes of the graphs

in such a linearized representation, in particular, if (semi-) logarithmic paper is being used: one

has to bear in mind that the values used for the actual calculations have to be transformed in the

same way as the curve itself!

An example for two possible representations of a non-linear function are being shown in the following

figure. You will use both methods in the lab courses, in particular graphs on semi-logarithmic paper.
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