Modelling and tuning in top quark physics

Marek Schönherr

CERN

TOP2018 – 17 Sep 2018
Monte-Carlo usage

Monte-Carlo Event Generators generally used in two different ways

Theory prediction
- parameters in perturbative regime dictated by first principles or theory bias
- non-perturbative parameters determined universally in well-defined limited set of observables (same as PDFs)

Data modelling
- all available parameters tuned to best reproduce measured data of specific process
- resulting distribution not predictive, but very useful to determine acceptances, efficiencies, etc.

Both valid use cases, but need to be aware which one one is using
Tuning strategies

• MCs build by factorising collisions into different stages with characteristic energy regimes
 ⇒ hard scattering, parton evolution, proton frag., multiple interactions, hadronisation, hadron decays

• this factorisation also means, each stage independent of the details of the others
 - eg. hadronisation only dependent on colours, flavours & momenta of parton ensemble at a relative separation \(t_{IR} \gtrsim \Lambda_{QCD} \)

• each stage is tuned as much individually as possible
 - hadron decay parameters fitted to decay data from \(b-/c \)-factories, etc.
 - hadronisation tuned to \(e^+e^- \) data at various energies (\(b \)-fac., SLD, LEP)
 - multiple interactions, beam remnants, etc. tuned to hadron collider data
General purpose Monte-Carlo Event Generators

<table>
<thead>
<tr>
<th></th>
<th>HERWIG 7</th>
<th>PYTHIA 8</th>
<th>SHERPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>q-Shower</td>
<td>Default Parton Shower</td>
<td>CSSHOWER</td>
</tr>
<tr>
<td></td>
<td>Dipole Shower</td>
<td>DIRE</td>
<td>DIRE</td>
</tr>
<tr>
<td>MI</td>
<td>soft gluon model & hard scat. model (JIMMY-based)</td>
<td>sophisticated interleaved model</td>
<td>old PYTHIA-style non-interleaved</td>
</tr>
<tr>
<td>Had</td>
<td>Cluster Interface to Lund String</td>
<td>Lund String</td>
<td>Cluster* Interface to Lund String</td>
</tr>
<tr>
<td>MB</td>
<td>MinBias</td>
<td>MinBias</td>
<td>–</td>
</tr>
</tbody>
</table>
Tuning strategies

well documented Skands, Carrazza, Rojo in arXiv:1404.5630

Generally use χ^2 minimisation with

$$
\chi^2(\vec{x}) = \frac{1}{N} \sum_{i \in O} w_i \frac{(MC_i(\vec{x}) - Data_i)^2}{\sigma_{i,\text{Data}}^2}
$$

with parameter set \vec{x} and weights w_i to determine the relative importance of observable/bin on tune.

Very much automated using PROFESSOR.

Buckley et.al. arXiv:0907.2973

Constrained by run-time of the generator.
Thus, most observables tuned at LOPS (incl. ME corrections).
In SHERPA, some observables at MEPS (LO multijet merging with low jet multiplicity).

Tune must be restricted to observables that are reliably described through LOPS.
Tuning strategies

Influence on top quark observables

Conclusions

Tuning FSR and hadronisation parameters

General strategy

1. tune light quark parameters
2. tune b-quark parameters
3. tune c-quark parameters

 (c-meson abundances receive large contribs from b rates)
4. retune light quark parameters in light of new b/c params

models generally inadaquate

→ balance observables

Data from SLD, LEP, JADE, TASSO, b-fac., etc. used

Colour-reconnection generally not needed in e^+e^-
Tuning strategies

Influence on top quark observables

Conclusions

Tuning FSR and hadronisation parameters

General strategy

1. tune light quark parameters
2. tune \(b \)-quark parameters
3. tune \(c \)-quark parameters
 (\(c \)-meson abundances receive large contribs from \(b \) rates)
4. retune light quark parameters in light of new \(b/c \) params

models generally inadaquate
→ balance observables

Data from SLD, LEP, JADE, TASSO, \(b \)-fac., etc. used
Colour-reconnection generally not needed in \(e^+e^- \)
Tuning strategies

Influence on top quark observables

Conclusions

Tuning FSR and hadronisation parameters

General strategy

1. tune light quark parameters
2. tune b-quark parameters
3. tune c-quark parameters
 (c-meson abundances receive large contribs from b rates)
4. retune light quark parameters
 in light of new b/c params

models generally inadaquate
→ balance observables

Data from SLD, LEP, JADE, TASSO, b-fac., etc. used

Colour-reconnection generally not needed in e^+e^-
Tuning strategies
Influence on top quark observables
Conclusions

Tuning FSR and hadronisation parameters

General strategy

1. tune light quark parameters
2. tune b-quark parameters
3. tune c-quark parameters
 (c-meson abundances receive large contribs from b rates)
4. retune light quark parameters
 in light of new b/c params
models generally inadequate
→ balance observables

Data from SLD, LEP, JADE, TASSO, b-fac., etc. used
Colour-reconnection generally not needed in e^+e^-
Tuning FSR and hadronisation parameters

General strategy

1. tune light quark parameters
2. tune b-quark parameters
3. tune c-quark parameters (c-meson abundances receive large contribs from b rates)
4. retune light quark parameters in light of new b/c params

models generally inadaquate
\rightarrow balance observables

Data from SLD, LEP, JADE, TASSO, b-fac., etc. used

Colour-reconnection generally not needed in e^+e^-
Tuning FSR and hadronisation parameters

General strategy

1. tune light quark parameters
2. tune b-quark parameters
3. tune c-quark parameters
 (c-meson abundances receive large contribs from b rates)
4. retune light quark parameters
 in light of new b/c params
models generally inadaquate
→ balance observables

Data from SLD, LEP, JADE, TASSO, b-fac., etc. used
Colour-reconnection generally not needed in $e^+ e^-$
Tuning underlying event, beam remnants, etc.

General strategy

1. Tune intrinsic transverse momentum to the first few bins in $p_T^{\ell^+\ell^-}$ distribution in DY.
2. Tune UE, beam remnants and colour reconnection using underlying event observables.

Use data from UA5, Tevatron & LHC at various collider energies.

UE in leading jet and DY.

No tune by generator authors currently uses top data.

Some observables receive sizable contributions from multijet final states ➞ only include in tune if modelled properly.
Tuning underlying event, beam remnants, etc.

General strategy

1. Tune intrinsic transverse momentum to first few bins in $p_T^{\ell^+\ell^-}$ distribution in DY
2. Tune UE, beam remnants and colour reconnection using underlying event observables

Use data from UA5, Tevatron & LHC at various collider energies

UE in leading jet and DY.

No tune by generator authors currently uses top data.

Some observables receive sizable contribs from multijet final states
⇒ only include in tune if modelled properly
Tuning underlying event, beam remnants, etc.

General strategy

1. **tune intrinsic transverse momentum** to first few bins in $p_T^{\ell^+\ell^-}$ distribution in DY
2. **tune UE, beam remnants and colour reconnection using underlying event observables**

Use data from UA5, Tevatron & LHC at various collider energies

UE in leading jet and DY.

No tune by generator authors currently uses top data.

Some observables receive sizable contribs from multijet final states

⇒ only include in tune if modelled properly
Tuning underlying event, beam remnants, etc.

General strategy

1. tune intrinsic transverse momentum to first few bins in $p_T^{\ell^+\ell^-}$ distribution in DY
2. tune UE, beam remnants and colour reconnection using underlying event observables

Use data from UA5, Tevatron & LHC at various collider energies

UE in leading jet and DY.

No tune by generator authors currently uses top data.

Some observables receive sizable contribs from multijet final states
⇒ only include in tune if modelled properly
Tuning underlying event, beam remnants, etc.

General strategy

1. tune intrinsic transverse momentum to first few bins in $p_T^{\ell^+\ell^-}$ distribution in DY
2. tune UE, beam remnants and colour reconnection using underlying event observables

Use data from UA5, Tevatron & LHC at various collider energies

UE in leading jet and DY.

No tune by generator authors currently uses top data.

Some observables receive sizable contribs from multijet final states
⇒ only include in tune if modelled properly
Tuning underlying event, beam remnants, etc.

General strategy

1. tune intrinsic transverse momentum to first few bins in $p_T^{\ell^+\ell^-}$ distribution in DY
2. tune UE, beam remnants and colour reconnection using underlying event observables

Use data from UA5, Tevatron & LHC at various collider energies

UE in leading jet and DY.

No tune by generator authors currently uses top data.

Some observables receive sizable contribs from multijet final states

⇒ only include in tune if modelled properly
Tuning underlying event, beam remnants, etc.

General strategy

1. Tune intrinsic transverse momentum to first few bins in $p_T^{\ell^+\ell^-}$ distribution in DY
2. Tune UE, beam remnants and colour reconnection using underlying event observables

Use data from UA5, Tevatron & LHC at various collider energies

UE in leading jet and DY. No tune by generator authors currently uses top data.

Some observables receive sizable contribs from multijet final states

⇒ only include in tune if modelled properly
Tuning underlying event, beam remnants, etc.

General strategy

1. Tune intrinsic transverse momentum to first few bins in $p_T^{\ell^+\ell^-}$ distribution in DY
2. Tune UE, beam remnants and colour reconnection using underlying event observables

Use data from UA5, Tevatron & LHC at various collider energies

UE in leading jet and DY.

No tune by generator authors currently uses top data.

Some observables receive sizable contribs from multijet final states

⇒ only include in tune if modelled properly
Better modelling trumps tuning

Dichotomy of MC gens
- all models are incomplete, most implementations incomplete
- yet address everything as universally as possible
- example: hadron decays
 > 100 hadrons
 > 2000 decay channels
 internal hadron decay packages have to address all of them to a reasonable accuracy

Not everything that can be fixed by tuning should be fixed by tuning.
Uncertainties

Tune uncertainties
Tune performed by minimising

\[\chi^2(\vec{x}) = \frac{1}{N} \sum_{i \in O} w_b \frac{(MC_i(\vec{x}) - Data_i)^2}{\sigma_{i,Data}^2} \]

Define Eigentunes as set of eigenvectors in \(\chi^2 \) potential, normalised to some predefined \(\Delta \chi^2 \) (same as PDF)

Model uncertainties:
Systematic model variation, similar to what is done in the Perugia tunes
Uncertainties

Tune uncertainties
Tune performed by minimising

$$\chi^2(\vec{x}) = \frac{1}{N} \sum_{i \in \mathcal{O}} w_b \frac{(MC_i(\vec{x}) - Data_i)^2}{\sigma_{i,Data}^2}$$

Define **Eigentunes** as set of eigenvectors in χ^2 potential, normalised to some predefined $\Delta \chi^2$ (same as PDF)

Large parameter space, possible reduction for specific observables

Model uncertainties:
Systematic model variation, similar to what is done in the Perugia tunes
Uncertainties

Tune uncertainties
Tune performed by minimising

\[\chi^2(\vec{x}) = \frac{1}{N} \sum_{i \in \mathcal{O}} w_b \frac{(MC_i(\vec{x}) - Data_i)^2}{\sigma_{i,Data}^2} \]

Define **Eigentunes** as set of eigenvectors in \(\chi^2 \) potential, normalised to some predefined \(\Delta \chi^2 \) (same as PDF)

Large parameter space, possible reduction for specific observables

Model uncertainties:
Systematic model variation, similar to what is done in the Perugia tunes
Combination of LO tunes with state-of-the-art calculations

Care must be taken when using combining (N)NLO partonic calculations with LO tuned MC.

Example:

- (N)NLO calculation require (N)NLO PDF.
- Consistency of logarithmic resummation requires continuous evolution of α_s and PDF across scales, ie. tools. In practice: same PDF in ME and PS.
- UE models require LO PDF for probabilistic interpretation
- Proton sum rules require consistency of PDF across primary and multiple interaction. In practice: same PDF in UE and PS.

\Rightarrow compromise, depending on relevance.

All perturbative parameters ($\mu_R, \mu_F, t_{\text{start}}^{\text{shower}}, h_{\text{damp}},$ etc.) should be put to the theoretically preferred value and then varied by a conventional amount to arrive at an uncertainty.
Influence on top quark observables

Top quark processes are unique, in that they
- always b-quarks involved
- almost always gluons involved
⇒ both not as constrained as light quarks

What to do?
- include top quark processes in tuning?
 − lose predictivity for all observables tuned to
 + optimal reproduction of data
- find proxies where to constrain models for g and b related parameters better!
- under way: $\Delta R(B, B)$ measurement for $t\bar{t}b\bar{b}$ observables
 gluon jet data at LEP and LHC to constrain
 gluon jet fragmentation
 etc.
General top quark observables

General top quark observables not driven by secondary b-quark production or precise details of non-perturbative effects. These are well described by the current models with the current tunes.
Example: Single-top and $t\bar{t}$

$pp \rightarrow t\bar{t}$ @ 8 TeV

$pp \rightarrow t\bar{t}$ + jets

MC@NLO $pp \rightarrow tj$

$pp \rightarrow t\bar{t} + 0, 1j@NLO + 2, 3, 4@LO$

incl. approx. EW corrections

Marek Schönherr

Modelling and tuning in top quark physics

13/15
Conclusions

- It is important to clearly distinguish the (at least) two types of Monte-Carlo Event Generator usage: Theory prediction vs. data reproduction.
- Tunes by generator authors currently do not involve top quark data. MC calculations with these tunes can be treated as predictions for all top quark observables.
- Mismodelling not necessarily related to need for more tuning. Always investigate impact of better theory input.
- All perturbative parameters ($\mu_R, \mu_F, t_{\text{start}}^{\text{shower}}, h_{\text{damp}},$ etc.) should be put to the theoretically preferred value and then varied by a conventional amount to arrive at an uncertainty.
Thank you for your attention!