

PARTICLE PHYSICS IN LIQUID XENON DETECTORS

LAURA BAUDIS UNIVERSITÄT ZÜRICH

MASSIVE NEUTRINOS WORKSHOP HERAEUS SEMINAR, PHYSIKZENTRUM BAD HONNEF JULY 11, 2019

SOME KEY OPEN QUESTIONS IN PARTICLE PHYSICS

- The nature of dark matter
- Baryogenesis
- The strong CP problem
- The fermion mass spectrum and mixing
- The cosmological constant
- ••••
- Some of these can be addressed with liquid xenon detectors operated deep underground
- Demonstrated excellent sensitivities and scalability to large target masses

See also arXiv:1707.04591

DARK MATTER CANDIDATES

HOW TO SEE IN THE DARK?

DARK MATTER PARTICLE INTERACTIONS

see R. Essig et al, 2018, and others

6

SCATTERING OFF ELECTRONS

All the kinetic energy (e.g., 50 eV for a 100 MeV particle, v~10⁻³c) can be transferred to the material

In general: ionisation, excitation, molecular dissociation

For a bound e^{-} with E_B , a DM mass of

1 keV

 $m_{\chi} \ge 250 \,\mathrm{keV} \times \mathrm{E_B}/1 \,\mathrm{eV}$

can be probed

Rouven Essig, KITP 2018

Recently: many new techniques to search for much lighter (sub-GeV) particles see also "Cosmic visions", 1707.04591

WHAT TO EXPECT IN AN EARTH-BOUND DETECTOR?

$$\frac{dR}{dE_R} = N_N \frac{\rho_0}{m_W} \int_{\sqrt{(m_N E_{th})/(2\mu^2)}}^{v_{max}} \frac{dv f(v)v}{dE_R} \frac{d\sigma}{dE_R}$$

Detector physics N_N, E_{th}

Particle/nuclear physics $m_W, d\sigma/dE_R$

Astrophysics $ho_0, f(v)$

SHM	Local DM density	$ ho_0$	$0.3 {\rm GeV}{\rm cm}^{-3}$
	Circular rotation	v_0	220 km s^{-1}
	speed		
	Escape speed	v_{esc}	544 km s ^{-1}
	Velocity distribution	$f_{R}(\mathbf{v})$	Eq. (1)
SHM ⁺⁺	Local DM density	ρ_0	$0.55 \pm 0.17 \text{ GeV cm}^{-3}$
	Circular rotation speed	v_0	$233\pm3~\mathrm{kms^{-1}}$
	Escape speed	v_{esc}	528^{+24}_{-25}
	Sausage anisotropy	β	0.9 ± 0.05
	Sausage fraction	η	0.2 ± 0.1
	Velocity distribution	$f(\mathbf{v})$	Eq. (3)

Evans, O'Hare, McCabe, PRD99, 2019

Spin-independent (SI) nuclear recoil spectrum

LB, Physics of the Dark Universe 2012

A. Schwenk, J. Menendez et al

LOW-MASS DARK MATTER

- Once the mass of the dark matter particle is much smaller than the nuclear mass, the transfer of kinetic energy becomes very inefficient
- Thus, exploit dark matter electron scattering R. Essig, J. Mardon, T. Volansky, PRD85, 2012

DM-nucleus scattering

+ electronic recoil

Fig. shown by Silvia Scorza, PPC2018, Zurich

(SOME) OPEN QUESTIONS IN NEUTRINO PHYSICS

- What is the absolute mass of neutrinos?
- Are neutrinos their own antiparticles?
- These can be addressed with an extremely rare nuclear decay process: the neutrinoless double beta decay

THE NEUTRINOLESS DOUBLE BETA DECAY

 $0\nu\beta\beta$

- Can only occur if neutrinos have mass and if they are their own anti-particles
- Expected signature: sharp peak at the Q-value of the decay

 $T_{1/2}^{0\nu\beta\beta} > 10^{24} \,\mathrm{y}$

Sum energy of the two electrons

MAIN CHARACTERISTICS

- Nuclear recoils: keV-energies
- Featureless recoil spectrum
- Very low event rates: < 0.1/ (kg x year)

- Q-value: MeV-scale
- Peak at the Q-value
- Very low event rates: <0.1/ (kg x year)

MAIN EXPERIMENTAL REQUIREMENTS

- Low energy thresholds
- Large detector masses
- **Ultra-low backgrounds**
- **Excellent signals versus** background discrimination

- **Excellent energy resolution**
- Large detector masses
- Ultra-low backgrounds
- Excellent signals versus background discrimination

 $R \propto N \frac{\rho_0}{m_{\gamma}} \sigma_{\chi N} \langle v \rangle$

 $T_{1/2}^{0\nu} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{B \cdot \Lambda E}}$

BACKGROUNDS

- In the ideal case: below the expected signal
 - Muons & associated showers; cosmogenic activation of detector materials
 - Natural (²²⁸U, ²³²Th, ⁴⁰K), anthropogenic (⁸⁵Kr, ¹³⁷Cs) and other (⁶⁰Co, ⁴²Ar, etc) radioactivity: γ , e^- , n, α
 - Ultimately: neutrinos (+ $2\nu\beta\beta$ -decays, depending on the energy resolution) see talk by Teresa Marrodan

BACKGROUNDS

- Muons & associated showers; cosmogenic activation of detector materials
- Natural (²²⁸U, ²³²Th, ⁴⁰K), anthropogenic (⁸⁵Kr, ¹³⁷Cs) and other (⁶⁰Co, ⁴²Ar, etc) radioactivity: γ , e^- , n, α
- Ultimately: neutrinos (+ $2\nu\beta\beta$ -decays, depending on the energy resolution) see talk by Teresa Marrodan

AVOID EXPOSURE TO COSMIC RAYS

- Spallation reactions can produce longlived isotopes
- Activate and compare with predictions (Activia, Cosmo, etc)

MATERIAL SCREENING AND SELECTION

- Ultra-low background,
 HPGe detectors
- Mass spectroscopy
- Rn emanation facilities

Gator HPGe detector at LNGS

L. Baudis et al., JINST 6, 2011

A KRYPTON DISTILLATION COLUMN

- Commercial Xe: 1 ppm 10 ppb ^{nat}Kr
- ⁸⁵Kr: T_{1/2} = 10.8 y, Q-value = 687 keV; ⁸⁵Kr/^{nat}Kr 2 x10⁻¹¹ mol/mol
- Dark matter Xe detector sensitivity demands < 0.1 ppt ^{nat}Kr
- Solution: 5.5 m distillation column, 6.5 kg/h output; factor > 6.4. x 10⁵ separation down to < 48 ppq (= 10⁻¹⁵ mol/mol)

Evolution of Kr/Xe [ppt, mol/mol] level during online distillation

XENON collaboration, EPJ-C 77 (2017) 5

For Rn removal: XENON collaboration, EPJ-C 77 (2017) 6

ENERGY RESOLUTION

- Anti-correlation between light (S1) and charge (S2)
- Energy scale uses linear combination of S1 and S2
- Photon gain: g1 (pe/photon), electron gain: g2 (pe/ electron)

$$E = (n_{ph} + n_e) \cdot W = \left(\frac{S_1}{g_1} + \frac{S_2}{g_2}\right) \cdot W$$

W-value = 13.7 eV

Example for XENON1T:

0.8% relative energy resolution (σ /E) around 2.5 MeV

EXPERIMENTAL STATUS: OVERVIEW

- No evidence for dark matter particles
- Probing scattering cross sections (on nucleons) of a few x 10⁻⁴⁷ cm²

 $\sigma_{\rm SI} < 4.1 \times 10^{-47} {\rm cm}^2$ at $30 \, {\rm GeV/c^2}$

- No evidence for the neutrino less double beta decay
- Probing half-lives up to 1.2 x 10²⁶ yr

 $m_{\beta\beta} < 0.11 - 0.26 \,\mathrm{eV} \,(90\% \mathrm{C.L.})$

LIQUEFIED XENON

- Single and two-phase Xe detectors
- Time projection chambers:
 - 3D position resolution via light (S1) & charge (S2) -> fiducialisation
 - S2/S1 ->particle ID
 - Single versus multiple interactions

XMASS

XENON1T

LUX

PandaX-II

Example: 2-phase Xe TPC

CEvNS0.0122.0Cosmogenic n< 0.01</th>< 2.0</th>EXAMPLE XENON1T: NUCLEAR RECOIL BACKGROUNDS

ER component

EVENTS IN THE WIMP REGION-OF-INTEREST

R[cm] ER Surface Neutron AC WIMP 10 20 30 40 8000 g 6.0 **KeVNR** 4000 2000 cS2_b [PE] 1000 400 200 0 3 1500 10 20 30 50 60 70 500 1000 40 cS1 [PE] R^2 [cm²]

1-σ and 2-σ percentile of 200 GeV WIMP component

Surface component

WIMP SEARCHES

30 GeV WIMP, $\sigma = 1 \times 10^{-45} \text{ cm}^2$

XENON collaboration, PRL 122, 2019

 $\sigma_{\rm SI} < 4.1 \times 10^{-47} {\rm cm}^2$ at $30 \, {\rm GeV/c^2}$

DOUBLE ELECTRON CAPTURE

- 124 Xe + 2e⁻ \rightarrow 124 Te + 2 ν_e
- ▶ ¹²⁴Xe in ^{nat}Xe: 0.095%
- 1 t ^{nat}Xe \approx 1 kg ¹²⁴Xe
- Total observed energy: 64.33 keV (2 x K-shell binding energy; Q-value = 2.86 MeV)
- Blind analysis: (56-72) keV region masked
- Number of signal events: (126±29), expected background from ¹²⁵I: (9±7) events (at 67.5 keV)

XENON collaboration, Nature 568, April 25, 2019

NEUTRINOLESS DOUBLE BETA DECAY OF 136-XE

► EXO-200: BI $\approx 2 \ge 10^{-3} \text{ kg}^{-1}\text{y}^{-1} \text{ keV}^{-1}$, 234.1 kg y ¹³⁶Xe exposure, $\sigma/\text{E} = 1.15\%$, $T_{1/2} > 3.5 \ge 10^{25} \text{ y}$ (90% CL)

NEUTRINOLESS DOUBLE BETA DECAY OF 136-XE

- ► EXO-200: BI $\approx 2 \times 10^{-3} \text{ kg}^{-1}\text{y}^{-1} \text{ keV}^{-1}$, 234.1 kg y ¹³⁶Xe exposure, $\sigma/\text{E} = 1.15\%$, $T_{1/2} > 3.5 \times 10^{25} \text{ y}$ (90% CL)
- PandaX-II: BI ≈ 0.16 kg⁻¹y⁻¹ keV⁻¹, 242 kg y (22.2 kg y ¹³⁶Xe) exposure, $\sigma/E = 4.2\%$; T_{1/2} > 2.4 x 10²³ y (90% CL)
- > XENON1T: analysis in progress, $\sigma/E \approx 0.8\%$

XENON1T energy spectrum matching up to 3 MeV, preliminary

AXIONS, AXION-LIKE PARTICLES AND DARK PHOTONS

Absorption via axio-electric effect; peak at particle mass

THE FUTURE: MULTI-TON DETECTORS

REQUIREMENTS FOR MULTI-TON, NEXT-GENERATION EXPERIMENTS

- Materials (cryostat, photosensors, TPC, etc): strong self-shielding by dense LXe
- ²²²Rn in LXe: 0.1 μBq/kg -> via cryogenic distillation column & material selection

⁸**B**

hep

1750

2000

- ^{nat}Kr in LXe (contains 2 x 10⁻¹¹ ⁸⁵Kr): 0.1 ppt -> already achieved
- ¹³⁶Xe double beta decay -> search for $0v\beta\beta$ -decay
- Solar neutrinos (pp, ⁷Be): will dominate -> but interesting physics channel

10²⁹

Fig. 1: Left: Sketch of the DARWIN geometry together with a view of the Geant4 TPC. Right: Spatial distribution DARWN- BAvolume. The background events inside the instrumented xenon volume. The line indicates the contour of the fiducial

half-life estimate at 90% C.L: Detailed Geant4 simulations of ER $T_{1/2}^{0\nu} = \ln 2 \frac{\epsilon \alpha N_A}{1.64 M_{xe}} \frac{\sqrt{Mt}}{\sqrt{B\Delta E}}$ (1)

next figure of merit [4], which corresponds to the actual	Background source	$Events/(t \cdot y)$
half-life estimate at 90% C.L:	Detector Materials	7.1×10^{-2}
ieant4 simulations of ER k	Cavern background	^{34×10-4} _{62×40} seline design)
$T^{0\nu} = \ln 2 \frac{\epsilon \alpha N_A}{\sqrt{Mt}} \tag{1}$	222 Ra in LXe	1.1×10^{-2}
$\Gamma_{1/2} = \text{III} 2 1.64 M_{xe} \sqrt{B\Delta E} \tag{1}$	${}^{8}\mathrm{B} \left(\nu - e \text{ scattering}\right)$	1.4×10^{-2}
being ϵ the detection efficiency of the two electrons α	¹³⁶ Xe in LXe	1.0×10^{-4}

2 toy scence the abundance of 1^{36} Xe in natural xenon, N_A the Avocial mass

gadro number, M_{Xe} the molar mass number of xenon, M the fiducial mass, t the measuring time, B the background index and ΔE the energy resolution at $Q_{\beta\beta}$. The value 1.64 is the number of standard deviations common and ing to a 000% CI

Table 1: Expected background counts in the $0\nu\beta\beta$ ROI (2435-2481 keV) by origin in a fiducial volume of 6 tons.

t 8 8

Following equation 2 we compare the $0\nu\beta\beta$ sensitivity for DARWIN with other experiments in figure 2.

$$T_{1/2}^{0\nu} = \ln 2 \frac{\epsilon f_{\text{ROI}} \alpha N_A}{1.64 M_{Xe}} \frac{\sqrt{Mt}}{\sqrt{B\Delta E}}, \qquad (2) \qquad \left(\frac{z+z_0}{Z_{max}}\right)^t + \left(\frac{r}{R_{max}}\right)^t < 1 \qquad \frac{\text{FV}[t] \quad z_0 \text{ [mm]} \quad Z_{\text{max}} \text{ [mm]}}{6 \quad 98 \quad 630 \quad 750} \\ 12 \quad 98 \quad 922 \quad 870 \quad (2) \quad$$

DARWIN: BACKGROUND FROM MATERIALS

- Detailed Geant4 simulations of ER backgrounds (in baseline design)
- > 2 toy scenarios: 12 t and 6 ton fiducial mass

2 x 10⁻³ events in ROI/(t y keV)

DARWIN: INTRINSIC BACKGROUNDS

Intrinsic backgrounds: ¹³⁷Xe, ²²²Rn, ⁸B

7 x 10⁻³ events in ROI/(t y keV)

• ¹³⁷Xe: β -decay with Q=4173 keV, T_{1/2}=3.82 min (via n-capture on ¹³⁶Xe)

ROI: Q-value ± FWHM/2 = (2435-2481) keV

DARWIN: SENSITIVITY (PRELIMINARY)

- Figure-of-merit and FC approach
- Fiducial volume not optimised + more detailed ${}^{1270}_{1/2} = 9 \frac{6}{1.64} \frac{M_{AV}}{M_{Xe}} \sqrt{\frac{Mt}{B\Delta E}}$ photonsensors

DARWIN R&D EXAMPLES

- Detector, Xe target, background mitigation, photosensors, etc
- Two large-scale demonstrators (z & x-y) supported by ERC grants
- Stay tuned: 5@DarwinObserv

Test e⁻ drift over 2.6 m (purification high-voltage)

European Research Council Established by the European Commission

Test electrodes and homogeneity of extraction field

DARWIN R&D EXAMPLES

Photosensors: test SiPM arrays as PMT replacements

40000

35000

E 30000

25000 pottog 20000

15000

10000

5000 -

52

First Xe-TPC with SiPM in top array; characterisation with ³⁷Ar source ongoing

 $\begin{array}{c|c} & 20 \\ 10^1 & \boxed{10} \\ 10^0 & -10 \\ -20 \end{array}$

300

350

Characterisation with ^{83m}Kr source

30

S2-S1 anti-correlation for the 32.1 keV line

200

S1 total [PE]

250

150

100

x-y position reconstruction

Upgrade of Xurich-II (LB et al., EPJ- C 78, 2018)

European Research Council

Established by the European Commission

NEUTRINO BACKGROUNDS FOR DM SEARCHES

- Low mass region: limit at ~ 0.1- 10 kg year (target dependent)
- High mass region: limit at ~ 10 ktonne year
- But: annual modulation, directionality, momentum dependance, inelastic DM-nucleus scatters, etc

CONCLUSIONS

- Experiments using liquefied Xe: excellent sensitivities in particle/astroparticle physics
- Due to very low expected event rates, we need:
 - Large detector masses, ultra-low backgrounds (material radio-assay & Rn reduction remain crucial)
 - Very good energy resolutions, low energy thresholds
- In general: dark matter detectors are optimised at keV energy scales, double beta decay detectors at MeV-scale energies
 - Can we do both? Ideally, large detectors with sensitivity to search for a variety of signals in particles physics (neutrinos, 0vββ, axion/ALPs, dark photons, WIMPs, etc)
- Eventually limited by neutrino interactions (but also new physics opportunities!)

THE END

DARWIN R&D

DARWIN TIMESCALE

RADON BUDGET IN XENON1T

THE DOUBLE BETA DECAY

- Predicted by Maria-Goeppert Mayer in 1935
- The SM decay, with 2 neutrinos, was observed in 13 nuclei
- ► T_{1/2} > 10¹⁸ y; ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U

