Interstellare Materie und Sternentstehung

18. Januar, 2007

Laura Baudis, <u>Ibaudis@physik.rwth-aachen.de</u> Physikalisches Institut Ib, RWTH Aachen

Inhalt

- Bestandteile des interstellaren Mediums
- Kosmischer Staub, Extinktion; Dunkel und Molekülwolken
- Interstellares Gas
- Die 21 cm-Linie des neutralen Wasserstoffs
- HII-Regionen
- Heißes Gas
- Jeans-Kriterium und Sternentstehung

- Literatur:
- Carroll, Ostlie, Kapitel 12; Weigert, Wendker, Wisotzki, Kapitel 10; Unsöld, Baschek, Kapitel 10

Das Interstellare Medium: globale Eigenschaften

- der Raum zwischen den Sternen ist nicht leer
- etwa 15% der sichtbaren Masse einer Galaxie befindet sich im interstellaren Medium (ISM)
- Hauptbestandteile:

Gas in unterschiedlicher Form (~ 99% der Masse)

Staub (~ 1% der Masse)

• Auch relevant:

kosmische Strahlung galaktisches Magnetfeld

- Mittlere Dichte:
 - ~ 1 cm⁻³ Gas
 - ~ 1 km⁻³ Staub

Das Interstellare Medium: Bestandteile

constituents of ISM	where	temperature	how observed
in Milky Way		density	
atomic hydrogen	in disk, some in halo	50300 K	21cm radio line
HI	$\approx 90\%$ of mass, 50% of vol.	1100 cm ⁻³	UV absorption lines
molecular hydrogen	dark clouds in disk	3100 K	UV absorption lines
H_2	$\approx 10\%$ of mass, 1% of vol.	10^210^6 cm ⁻³	IR emission lines
other molecules	dark clouds in disk	3100 K	radio and
CO, HCN, H_2O		10^210^6 cm ⁻³	IR emission
ionized hydrogen	near hot stars,	500010000 K	optical and IR emission
HII	emission nebulae	10^210^4 cm ⁻³	lines, radio continuum
hot gas	everywhere	$10^{6}10^{7}$ K	X-ray emission
		0.01 cm ⁻³	
dust grains	mostly in disk	20100 K	reddening/absorption
	pprox 1% of mass	$size \approx 2000 \text{\AA}$	of starlight, IR emission
magnetic fields	everywhere	μ Gauss	polarization of stars,
			Zeeman effect,
			synchrotron radiation
cosmic rays	everywhere	energies up to	air showers
		$10^{20} eV$	

The total mass of the ISM in the Milky Way amounts to $\approx 15\%$ of the mass in stars, which is a typical value for spiral galaxies in general. Bender & Burkert

Interstellarer Staub

- Einzige mit bloßem Auge wahrnehmbare Komponente des ISM
- Obwohl nur 1% in Masse, hat einen stark sichtbaren Einfluss auf das Sternlicht
 - ⇒ Extinktion: Abschwächung des Sternlichts durch Streuung und Absorption
 - ⇒ Aufheizung des Staubs auf ~ 10 100 K, Re-Emission im Infraroten
- Verteilung: ~ wie das Wasserstoff, Ballung in Dunkelwolken
- Zusammensetzung: hauptsächlich Graphit (C) und Silikate (Si +O) (Beobachtung von dunklen Absorptionsbanden bei 9.7 μm und bei 18 μm im nahen IR)
- Entstehung: in Hüllen von Riesensternen

Die Milchstraße im optischen Spektraklbereich

• Sternlicht, starke Absorption durch Dunkelwolken ⇒ interstellarer Staub

Die Milchstraße im nahen Infrarot

• Sternlicht, jedoch kaum noch Dunkelwolken ⇒ Extinktion ist wellenlängenabhängig

Die Milchstraße im fernen Infrarot

• thermische Re-Emission des aufgeheizten Staubs

Interstellarer Staub und Extinktion

- Nahe der Milchstraßenebene: starke Abnahme der scheinbaren Sterndichte, sehr richtungsabhängig
- Extremfall: Dunkelwolken, keine Sterne im Zentralbereich zu sehen
- Der Entfernungsmodul wird modifiziert zu:

$$m - M = 5\log\frac{r}{10\,pc} + a_{\lambda}$$

- wobei die Änderung (in mag) \approx durch die **optische Tiefe** entlang
- der Sichtlinie gegeben ist:

$$\frac{\boldsymbol{I}_{\lambda}}{\boldsymbol{I}_{\lambda,0}} = \boldsymbol{e}^{-\tau_{\lambda}}$$

$$m_{\lambda} - m_{\lambda,0} = -2.5 \log_{10}(e^{-\tau_{\lambda}}) = (2.5 \log e) \cdot \tau_{\lambda} = 1.086 \tau_{\lambda}$$

 $\Rightarrow a_{\lambda} = 1.086\tau_{\lambda}$

Dunkelwolke B68, $d \approx 500$ ly (nach Edward E. Barnard, 1857-1923, welcher eine Liste von Dunkelwolken aufhestellt hat)

Interstellarer Staub und Extinktion

• Die optische Tiefe durch eine Wolke ist gegeben durch (falls σ_{λ} = konst. entlang der Sichtlinie):

$$\tau_{\lambda} = \int_{s} n(s)\sigma_{\lambda}ds = \sigma_{\lambda}\int_{s} n(s)ds = \sigma_{\lambda}N_{d}$$

• wobei:

- n(s) = Anzahldichte der Streuteilchen
- $\sigma_{\lambda} = Streuquerschnitt$

N_d = Säulendichte entlang der Sichtlinie s = Anzahl der Streu-Staubteilchen in einem dünnen Zylinder mit einem Querschnitt von 1 cm², der sich vom Beobachter bis zum Stern hin ausdehnt

- → wie erwartet: die Extinktion hängt von der Menge des Staubes, durch das das Licht hindurch muss, ab
- Annahme (nach G. von Mie, 1908): die Staubteilchen sind sphärisch, mit Radius a

⇒ der geometrische WQ ist $\sigma_g = \pi a^2$, und wir definieren einen dimensionslosen Extinktionskoeffizienten Q_λ (der von der Zusammensetzung des Staubteilchens abhängt):

$$Q_{\lambda} = \frac{\sigma_{\lambda}}{\sigma_g}$$

Interstellarer Staub und Extinktion

⇒ der Querschnitt für Extinktion ist

$$\sigma_{\lambda} = \boldsymbol{Q}_{\lambda} \cdot \pi \boldsymbol{a}^2 = (\boldsymbol{Q}_{\lambda,streu} + \boldsymbol{Q}_{\lambda,abs}) \cdot \pi \boldsymbol{a}^2$$

• Mie zeigte, dass:

wenn die Wellenlänge des Lichts \approx Größe des Staubkorns $\Rightarrow Q_{\lambda} \sim a/\lambda$ ($\sigma_{\lambda} \propto \lambda^{-1}$)

für $\lambda >> a \Rightarrow Q_{\lambda} \rightarrow 0$ (Wellen passieren ein kleineres Objekt unbeeinflusst)

für $\lambda \ll a \Rightarrow Q_{\lambda} \rightarrow konst.$ (geometrisch erwartet $Q_{\lambda} \rightarrow 1$, jedoch Beugung am Rand des Staubteilchens)

Wellenlängenabhängigkeit der Extinktion

Die Dunkelwolke B68 bei verschiedenen Wellenlängen

Rötung

- **Die Extinktion ist wellenlängenabhängig.** Da das rote Licht nicht so stark wie das blaue Licht gestreut wird, wird das Sternenlicht, das durch eine interstellare Wolke hindurchgeht nicht nur geschwächt, sondern auch gerötet
- Näherungsweise gilt: $a_{\lambda} \sim \lambda^{-1}$ (bis auf "UV bump" im ultravioletten Teil des Spektrums)

Rötung

• das Verhältnis zwischen visueller Extinktion av und Farbexzess EB-vist empirisch meist konstant:

$$\boldsymbol{R} = \frac{\boldsymbol{a}_V}{\boldsymbol{E}_{B-V}} \approx 3.2 \pm 0.2$$

- Wichtige Technik: Farbexzesse (zB E_{B-V} und E_{U-B}) sind einander proportional (a_λ~λ⁻¹)
 - ⇒ Verfärbung im Zweifarben-Diagramm folgt geradem,

wohldefiniertem Verfärbungsweg

$$\frac{E_{U-B}}{E_{B-V}} \approx 0.72$$

 \Rightarrow Hauptreihenstern mit bekanntem B-V und U-B:

⇒ Verschiebung entlang Verfärbungsweg auf Hauptreihe

ergibt Eigenfarben und Farbexzesse, über EB-v auch die Extinktion av

Extinktion

• Durchschnittliche Extinktion:

→ in der Milchstraßenebene außerhalb der Dunkelwolken

$$\frac{a_V}{s} \approx 1 \text{ mag kpc}^{-1} \qquad \text{s = Länge der Sichtlinie}$$

→ senkrecht zur Milchstraßenebene

$$a_V \approx 0.2 \text{ mag für s} \rightarrow \infty$$

• $a_v = 1$ mag entspricht einer Abschwächung um den Faktor $10^{0.4} \approx e$, dh es gilt ungefähr:

$$S(550nm) = S_0(550nm) \cdot e^{-\tau(550nm)} \text{ mit } \tau(550nm) \approx a_V$$

(Strahlungstransportgleichung für reine Absorption)

• Was ist die benötigte Staubmenge für av = 1 mag?

 \Rightarrow durchschnittliche Dichte:

$$\overline{\rho}_{Staub} \approx 10^{-23} \mathrm{kg} \mathrm{m}^{-3}$$

(in Dunkelwolken um viele Größenordnungen höher)

Thermische Emission des interstellaren Staubs

• Absorbierte Strahlung heizt Staubkörner auf

Galaxie

• Energie wird im IR wieder abgestrahlt => Dunkelwolken sind hell im IR-Bereich!

Centaurus A im IR

- Energiezufuhr ("Heizung") = Abgabe durch Strahlung ("Kühlung)
 - \Rightarrow Staub ist in etwa thermischem Gleichgewicht

Thermische Emission des interstellaren Staubs

- In guter Näherung: Staub von Temperatur T strahlt gemäß Planck-Kurve ("Schwarzer Körper")
- Typische Temperaturen in Dunkelwolken: 10 K 20 K
 - => nach Wienschem Verschiebungsgesetz: $\lambda_{max} = 150 \ \mu m 300 \ \mu m$
- In der Nähe eines heißen Sterns: **100 K 600 K** => λ_{max} = 5 µm 30 µm
- In HII-Regionen: 100 K
- Die IR-Strahlung ist dank geringer Extinktion gut beobachtbar, auch wenn sie tief aus Staubwolken kommt
- Die thermische Emission des Staubs wird/wurde von Satelliten gemessen (IRAS, ISO, Spitzer)

Reflektionsnebel

Konsequenz der Rötung von Licht: die blauen Anteile werden bevorzugt aus der Staubwolke in beliebige Richtungen herausgestreut => die Staubwolke erscheint blau wenn man nicht in Richtung des Sterns blickt

NGC 1333

- ~ 500 Reflektionsnebel bekannt
- Hubble: 1922 -> Reflektionsnebel sind größer, wenn der Stern, der ihn anleuchtet, größer ist

Dunkelwolken

- Wolken besonders großer Extinktion => konzentrierte, dichte Staubwolken (Hauptbestandteil jedoch molekulares Gas!)
- Messung der Extinktion: Wolf-Diagramm

Sternzählungen pro Helligkeitsintervall im Bereich der Wolke und in einem Vergleichsfeld -> jenseits einer Grenzhelligkeit fällt Sternzahl in der Wolke unter die im Kontrollfeld (lichtschwächere Sterne liegen hinter dem Nebel)

=> ihre Helligkeit wird um einen ablesbaren Betrag Δ m reduziert

Interstellarer Staub: Zusammensetzung

- Information aus Spektroskopie
- Kleine Partikeln aus Graphit und Silikat
- Graphitkörner wechselwirken stark mit Licht mit $\lambda \sim 217$ nm
 - => "Absorption-bump" im UB-Bereich
- Banden im IR bei 9.7 µm und 18 µm:
 ⇒ Silikate

• IR-Emissionsbanden bei $3.3 \ \mu m$, $7.7 \ \mu m$, $11.2 \ \mu m$

⇒ polyzyklische aromatische Kohlenwasserstoffe (PAHs) und 'buckyballs" (Strukturen zwischen Molekül und Staubpartikel)

• Das Streulicht von Staubpartikeln ist polarisiert => Staubpartikel sind nicht spärisch

Ursprung des Staubes und Staubbildung

- Wie kommen die Elemente von der Gas- in die Staubphase?
- Beobachtung: staubreichste astronomische Objekte sind Riesensterne in Spätphase der Entwicklung (AGB-Sterne). Diese sind nur im FIR- und Radio-Bereich detektierbar (a_V ≈ 50 - 100 mag)
- Entstehung: wahrscheinlich durch langsame Agglomeration in kühlen Hüllen von AGB-Sternen
- Bedingung f
 ür Existenz von Staubpartikel: T darf nicht gr
 ößer als die Sublimationstemperatur sein, sonst verdampfen die Staubteilchen
 - => kein Staub in der Nähe heißer Sterne und harter Strahlungsquellen
- Typische Maximaltemperaturen: ~ 1000 K (Silikate)
 ~ 2000 K (Graphit)

Interstellares Gas

- 99% der Masse des ISM, Dichte: n ~ 1 Atom cm⁻³ (r ~ 10⁻²¹ kg m⁻³)
- **Temperatur:** 10 K < T < 10⁷ K (abhängig von Balance zwischen Heiz- und Kühlprozesse)
- Zustand:

Molekular: T < 10 K, $n > 10^4 \text{ Atome cm}^{-3}$

Atomar: T ~ 100 - 1000 K, n ~ 1 Atom cm⁻³

Ionisiert: $T \sim 10^4$ K, $n \sim 10^2$ Atome cm⁻³

- Heiß: $T \sim 10^{6}$ K, n ~ 10^{-2} Atome cm⁻³
- Beobachtung: Absorptionslinien im optischen oder UV (zB Linien, die in Doppelsternen nicht dopplerverschoben sind) -> Na, Call, ..., stärkste Linie Ly alpha

Interstellares Gas

- Häufigkeit der schweren Elemente:
 →niedriger als im Sonnensystem
- Grund: schwere Elemente sind in Staubpartikel gebunden
- wird dies berücksichtigt
 - ⇒ typische Werte für die Häufigkeiten
 - ⇒ häufigste Elemente: H und He

A Name		Symbol	ISM	Solar	ISM/Solar
1	Hydrogen	н	1000000 1000000		1.00
2	Helium	He	85000	85000	1.00
3	Lithium	Li	0.000051	0.0015 ^a	0.034
4	Beryllium	Be	< 0.000070	0.000012	< 5.8
5	Boron	В	0.000074	0.0046 ^a	0.016
6	Carbon	С	74	370	0.20
7	Nitrogen	N	21	110	0.19
8	Oxygen	0	172	660	0.26
9	Fluorine	F		0.040	-
10	Neon	Ne	-	83	
11	Sodium	Na	0.22	1.7	0.13
12	Magnesium	Mg	1.05	35	0.030
13	Aluminium	Al	0.0013	2.5	0.00052
14	Silicon	Si	0.81	35	0.023
15	Phosphorus	P	0.021	0.27	0.079
16	Sulfur	S	8.2	16	0.51
17	Chlorine	Cl	0.099	0.45	0.22
18	Argon	Ar	0.86	4.5	0.19
19	Potassium	K	0.010	0.11	0.094
20	Calcium	Ca	0.00046	2.1	0.00022
21	Scandium	Sc	_	0.0017	_
22	Titanium	Ti	0.00018	0.055	0.0032
23	Vanadium	v	< 0.0032	0.013	< 0.25
24	Chromium	Cr	< 0.002	0.50	< 0.004
25	Manganese	Mn	0.014	0.26	0.055
26	Iron	Fe	0.28	25	0.011
27	Cobalt	Co	< 0.19	0.032	< 5.8
28	Nickel	Ni	0.0065	1.3	0.0050
29	Copper	Cu	0.00064	0.028	0.023
30	Zinc	Zn	0.014	0.026	0.53

Physikalische Beschreibung des interstellaren Gases

• Dichte: angegeben als Teilchenzahl

$$\boldsymbol{n} = \frac{\rho}{\overline{\mu}\boldsymbol{m}_H}$$

• Druck (ideales Gas, zB $n = 1 \text{ cm}^{-3}$, T = 10⁴ K: P \approx 10⁻¹³ N m⁻²)

$$\boldsymbol{P}=\boldsymbol{n}\cdot\boldsymbol{k}_{B}\cdot\boldsymbol{T}$$

• Schallgeschwindigkeit

$$\boldsymbol{c}_{s} \equiv \sqrt{\frac{dP}{d\rho}} \approx \sqrt{\frac{\boldsymbol{n} \cdot \boldsymbol{k}_{B} \cdot \boldsymbol{T}}{\boldsymbol{\mu} \cdot \boldsymbol{m}_{H} \cdot \boldsymbol{n}}} \approx 1 \text{ km s}^{-1} \cdot \sqrt{\frac{1}{\boldsymbol{\mu}} \cdot \frac{\boldsymbol{T}}{100\boldsymbol{K}}}$$

=> Materiebewegungen mit v \gtrsim 10 km s⁻¹: meist Überschallgeschwindigkeit im ISM!

Temperatur des ISM

 "Temperatur" im thermodynamischen Gleichgewicht -> eine Größe zur Beschreibung diverser statistischer Verteilungsfunktionen

Teilchengeschwindigkeiten: Maxwell-Boltzmann-Verteilung

Anregung atomarer Niveaus: Boltzmann-Verteilung

Ionisation: Saha-Gleichung

Strahlungsfeld: Planck-Formel

• ständiger Energieaustausch zwischen allen Komponenten erforderlich -> inelastische Stöße

=> nur bei hohen Dichten; in ISM Stöße so selten, dass auf jede Stoßanregung eines Atoms quasi sofort die Emission eines Photons folgt

=> Boltzmann-Formel für die Besetzungszahlen gilt nicht, fast alle Atome im Grundzustand

=> Atome werden ionisiert, wenn sie ein Photon mit hv > Ionisationspotential absorbieren

=> die Verteilung über Ionisationsstufen hängt vom Strahlungsfeld ab, nicht von den Stoßraten (Stoßionisation nur bei sehr hohen kinetischen Temperaturen, $\gtrsim 10^5$ K, oder bei sehr hohen Dichten relevant)

• Das interstellare Gas ist nicht im thermodynamischen Gleichgewicht

Temperatur des ISM

- Verschiedene Definitionen von "Temperatur" denkbar
- Kinetische Temperatur: wenn Austausch von E_{kin} zwischen Gasteilchen => kinetisches Gleichgewicht
 - \Rightarrow Maxwell-Boltzmann Verteilung, mittlere E_{kin} pro Teilchen:

$$\langle E_{kin} \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} k T_{kin}$$

- \rightarrow Definition für T_{kin}, wird auch als "Gastemperatur" bezeichnet
- Strahlungstemperatur: definierbar über die Strahlungsdichte, oder das Strahlungsspektrum; i.A. sehr unterschiedlich von T_{kin}
- **Staubtemperatur:** Absorptions- und Emissionsprozesse für Staub anders als für Gas → thermodynamisches Gleichgewicht erfüllt für einzelne Staubteilchen

Kräfte im ISM

- Welche Kräfte wirken auf die interstellare Materie?
- Gravitation: ISM-Eigengravitation meist vernachlässigbar

Ausnahme: kompakte, dichte Dunkelwolken → Sternentstehung

- Thermischer Gasdruck mit $P = n \cdot k_B \cdot T$
- Strahlungsdruck (auf Atome/Staub): da Verdünnung ∝ (R/r)² → relevant in der Nähe von Sternen
- Magnetfelder (auf geladene Teilchen), meistens schwach
- Stoßdruck aufgrund makroskopischer Bewegungen (zB Supernova-Explosionen, stellare Winde)

⇒ ISM oft nicht im Druckgleichgewicht!

 Für Gasphase mit T ≈ konst.: vertikale Schichtung in Ebene der Milchstraße durch Gleichgewicht von innerem Druck und Netto-Gravitation der galaktischen Scheibe. Resultierende Dichteverteilung für isothermes Gas (T ≈ T_{kin} = konst.)

$$\rho = \rho_0 \cdot e^{-(z/H)^2}$$
 H = Skalenhöhe, T-abhänging

• $H \approx 30-80$ pc für kühles Gas; heißeres Gas hat erheblich höhere Skalenhöhe!

⇒ überprüfbar durch Beobachtungen der Milchstraße bei geeigneten Wellenlängen

Diffuses neutrales Gas

- Starke Ly α UV-Absorption in Sternrichtungen \Rightarrow fast alle H-Atome im ISM sind im Grundzustand n=1. Balmer-Absorption (n=2, T ~ 10⁴K) ist unsichtbar.
- Die abgeleitete mittlere Dichte in 1 kpc um die Sonne: ~ 0.7 Atome cm⁻³; in direkter Umgebung der Sonne (10-30 pc): nur 0.02-0.1 Atome cm⁻³.
 - \Rightarrow Sonne befindet sich im Moment in "Local Bubble" niedriger Dichte \rightarrow heiße Blase im ISM, von SN verursacht (allg. hat galaktisches ISM schaumige Struktur)

Atomarer Waserstoff: HI

- Das neutrale Wasserstoff wird mit Hilfe der **21 cm-Linie** (Radio-Bereich, 1420.4 MHz) detektiert
- Die Linie wurde ~ 1944 vorhergesagt, und 1951 nachgewiesen; seitdem, wichtiges Werkzeug zur Kartierung des gesamten Himmels!
- Wie kommt sie zustande? Hyperfeinstruktur Übergang von H⁰ im Grundzustand zwischen parallelen und antiparallelen Spinzuständen:

Anregung des F=1 Niveaus: nur durch Stöße; danach: Emission und Abregung nach ~10⁷ Jahre

Die Milchstraße bei λ =21 cm

• das HI ist stark auf die galaktische Ebene konzentriert: überwiegend in Scheibe mit Dicke ~ 200 pc

• auch Anteil bei höheren galaktischen Breiten: einzelne Wolken werden beobachtet (Entfernung ist jedoch nicht einfach zu bestimmen)

Ionisiertes Gas

• Die Reaktion eines Photons mit hv > 13.6 eV mit neutralem H-Atom:

$$H^0 + \gamma \rightarrow p + e^{\gamma}$$

- In neutralem Gas: effiziente Absorption solcher Photonen
- Die mittlere freie Weglänge ist:

$$l_{13.6eV} \simeq \frac{0.05 \, pc}{n_{H^0}^{-3}}$$

• Nachfolgend: Rekombination

$$e^- + p \rightarrow H^0 + \gamma + \gamma + \dots$$

• meist kaskadenartin über n > 1-Zustände (Balmer-Serie,...)

HII-Regionen

- Optisch spektakulärer Teil des ISM: Gebiete ionisierten Wasserstoffs in der Nähe junger, massereicher Sterne (HII-Regionen: Gebiete aktiver Sternentstehung!)
- Notwendig: anregende Sterne, die stark im UV strahlen (λ <91 nm), Spektraltyp O oder frühes B

•	Für	Einzelstern	N ов =	Anzahl	der	Photonen/	′s mit	hv >	13.6 eV
---	-----	-------------	---------------	--------	-----	-----------	--------	------	---------

Spektraltyp	T _{eff} [K]	log(N _{OB}) [y /s]
06	40 000	49.23
07	35 000	48.84
BO	30 000	47.67

- HII-Regionen: dominiert von Emissionslinien
- Rot: durch Hα- (Balmer-Linie, Übergang n=3 nach n=2)
- Auch Linien anderer Atome: OII, OIII, NII
- HII-Regionen auch hell im IR: thermische Staubstrahlung

HII-Region M8

Strömgren-Sphären

- Die Größe einer HII-Region kann aus der Gleichgewichtsbedingung abgeschätzt werden
 - → Ionisationsrate = Rekombinationsrate (falls dies nicht gegeben ist, wächst die HII-Region!)
- Annahme: alle Photonen mit $\lambda < 91.2$ nm werden für die Ionisation verbraucht
 - ⇒ die Anzahl der Rekombinationen pro Einheitsvolumen und Sekunde:

$$n_{recomb} = \alpha \cdot n_e \cdot n_H$$
 n_e Elektronendichte
Rekombinationskoeffizient
(Wahrscheinlichket, dass

e⁻ und p ein H-Atom bilden)

- Bei einer charakteristischen Temperatur ~ 8000 K: α = 3.1 · 10⁻¹³ cm³ s⁻¹
- Für neutrales Gas: n_e = n_p; man setzt die Rekombinationrate × Volumen gleich der Anzahl der ionisierenden Photonen, die pro Sekunde emittiert werden (N_{OB}): N_{recomb}=αn_H²V = N_{OB}

$$\boldsymbol{R}_{S} = \left(\frac{3N_{OB}}{4\pi\alpha}\right)^{1/3} \boldsymbol{n}_{H}^{-2/3} \qquad \text{Strömgren Radius} \\ \boldsymbol{Beispiel:}$$

n_H= 5000 cm-3 => R_S = 0.3 pc für O6-Stern

HII-Regionen

- Dunkelwolken, HII-Regionen und junge Sternhaufen treten meistens gemeinsam auf
 - → verschiedene Stadien der Sternentstehung
- Dunkelwolke: der Staub schirmt die Gaswolke von der destruktiven UV-Strahlung ab
 - → die Wolke bleibt neutral
- Auf der Oberfläche der Staubkörner: aus HI kann sich H₂ bilden. Der Staub ist nötig, um die Atome zusammenzubringen und überschüssige Energie aufzunehmen ⇒ der Staubkorn wird aufgeheitzt und setzt das H₂ frei

30 Doradus-Nebel in der LMC Junger Sternhaufen, HII-Region (grün im Licht von OIII), Dunkelwolke, die im NIR durchsichtiger wird

Molekülwolken

- Im diffusen ISM: eventuell entstehende Moleküle werden sofort wieder durch die UV Photonen und durch Teilchen der kosmischen Strahlung gespalten
- Bei hohen Dichten (n≥10³ cm⁻³): Abschirmung → Molekülbildung; > 125 Moleküle im ISM beobachtet, von H₂, CO, ... bis HC₁₁N
- Beobachtung von Molekülen im ISM: Rotationsübergänge (Radio oder mm-Bereich),
 Vibrationsübergänge (IR-Bereich), elektronische Übergänge (optischen, UV-Bereich)

- Die nötigen Dichten und Temperaturen zur Anregung sind für verschiedene Moleküle und Übergänge verschieden ⇒ Sondierung der Struktur von Molekülwolken
- zB: CO benötigt n ~ 100 cm⁻³, HCN \rightarrow n ~ 10⁴ cm⁻³, CN UV-Strahlung, ...

Molekülwolken

- Wegen völliger Symmetrie: H₂-Molekül hat kein Dipolmoment
 - → Rotations- bzw. Schwingungsübergänge unterdrückt
- Ersatz: CO, nach H₂ das häufigste Molekül im ISM → mehrere Übergänge bei λ~ mm, daher gut beobachtbar

- Karte der Milchstraße bei λ = 1.3 mm (CO Spektrallinie)
- CO stark auf galaktischer Ebene konzentriert, stark fragmentiert, Verteilung ähnlich der Dunkelwolken
- Aus Breite der Emissionslinien $T_{kin} \lesssim 10 \; K$

ähnlich wie der kühle Staub in Dunkelwolken

• Gesamtmasse des H₂: $2 \times 10^9 M_{\odot}$

Nachweis von Molekülen in Dunkelwolken

Thermische Bilanz des ISM

- Heizung: durch Ionisation zB H+γ→p+e⁻: Überschuss von ΔE = hv-13.6 eV als kinetische Energie des Elektrons; Umverteilung durch Stöße, typische Energien ΔE ~ 1 eV
- Kühlung: durch stoßangeregte Strahlungsübergänge zB F=1 → F=0 Übergang von HI (21 cm-Linie)

Bei niedrigen Dichten: Strahlungsabregung wahrscheinlicher als Stoßabregung; $hv < 13.6 \text{ eV} \Rightarrow$ Photonen können ungehindert entkommen \Rightarrow kinetische Energie wird in Strahlung verwandelt und abgeführt

Weitere Kühlmechanismen:

Frei-frei Übergänge von Elektronen

Absorption von UV-Strahlung durch Staub, Abstrahlung im IR

• Kühleffizienz Λ hängt von der Temperatur, Metallizität, Dichte, ... ab

→ die Kühl-Zeitskala:

Thermische Bilanz des ISM: Kühlrate

• Die Koexistenz der verschiedenen Gasphasen ist das Ergebnis des Gleichgewichtes zwischen Kühl- und Heiz-Prozesse

=> Kühlung ist effizient für T≥10⁴K

Existenz eines Multi-Phasen Mediums erfordert, dass Energie durch das System fließt, zB durch Injektion von Energie durch eine SN-Explosion oder stellare Winde

Das heiße Gas von SN-Explosionen und stellare Winde füllt einen großem Teil des interstellaren Raums, das HI-gas und die Molekularwolken werden in filamentare, fraktale Strukturen komprimiert

Heißes Gas

• Gas von Temperaturen T≳ 10⁶ K: Kühlung ineffizient

- ⇒ Gas bleibt nach Aufheizung lange heiß, Nachweis im UV- und Röntgenlicht
- \Rightarrow Dichte sehr gering (~10⁻³ cm⁻³) (daher ineffiziente Kühlung)
- Das heiße Gas füllt die Milchstraße und bildet Halo (auch bei anderen Galaxien)

Ursprung des heißen Gases:

wahrscheinlich SN-Explosionen, die das Gas aufheizen

Thermische Röntgenstrahlung in NGC 4631 (Chandra)

Stabilität des ISM

- → mehrere charakteristische Phasen der interstellaren Materie: kühl und dicht ↔ heiß und dünn
- die verschiedenen Phasen existierem im stabilen Zustand nur falls Druck-Gleichgewicht herrscht
- da P = $nk_BT \Rightarrow n \cdot T \approx konst$

$\boldsymbol{n} \cdot \boldsymbol{T} \approx 10^3 - 10^4 \text{ K cm}^{-3}$

- die Ko-Existenz der verschiedenen Phasen ist das Ergebnis eines ~ Gleichgewichtes zwischen Heizund K
 ühlprozesse
- Typische Werte:

Phase	T [K]	n [Atom/cm ⁻³]
Molekülwolken	≲ 10	≳ 104
HI-Regionen	~100 - 1000	~ 1
HII-Regionen	~ 10 ⁴	~ 10 ²
Heißes Gas	~ 10 ⁶	~ 10 ⁻²

Stabilität des ISM

• mehrere Phasen nebeneinander, jedoch nicht stationär!

- ZB: nach Entstehen eines O-Sterns
 - \rightarrow Ionisation des umliegenden ISM
 - \rightarrow T steigt von 10² K \rightarrow 10⁴K
 - \rightarrow Teilchendichte: $n\approx n_e$ + $n_p\approx 2~n_H$
 - \Rightarrow Druckungleichgewicht \Rightarrow HII-Region expandiert!

Extremer: durch SN-Explosion angetriebenes Gas → Expansion mit v >> c_s! r

Frühphasen der Sternentstehung

- Protosterne bilden sich durch Kollaps von dichten Molekülwolken
- Welche Bedingungen müssen herrschen, damit diese kollabieren?
- Abschätzung: für ein gebundenes System gilt der Virialsatz

$$2 \cdot \boldsymbol{E}_{kin} = \left| \boldsymbol{E}_{pot} \right|$$

- $2E_K > |E_{pot}| => Gasdruck dominiert, Wolke expandiert$
- $2E_K < |E_{pot}| =>$ Gravitation dominiert, Wolke kollabiert
- Aus dem Virialsatz \Rightarrow

$$2N \cdot \frac{3}{2} k_{B}T = \frac{3}{5} \frac{GM^{2}}{R}$$

• mit Anzahl der Teilchen:

• Dichte:

$$N = \frac{M}{\mu \cdot m_{H}}$$
$$\rho = \frac{M}{\frac{4\pi}{4\pi}R^{3}}$$

М

Das Jean-Kriterium

• Einsetzten führt zur Jeans-Masse:

$$\boldsymbol{M}_{Jeans} = \left(\frac{5\boldsymbol{k}_{B}T}{\boldsymbol{G}\boldsymbol{\mu}\boldsymbol{m}_{H}}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2}$$

Kollaps für M > M_{Jeans}

drückt man die Masse durch den Radius aus => Jeans-Länge

$$\boldsymbol{R}_{Jeans} = \left(\frac{15kT}{4\pi G\mu m_{H}\rho}\right)^{1/2} \qquad \text{Kollaps}$$

Kollaps für R > R_{Jeans}

- Beispiele für interstellare Wolken:
- neutrale HI-Wolke, n~ 500 cm⁻³, T ~ 50 K: $M_{Jeans} = 1500 M_{\odot} \Rightarrow stabil$
- kalte Globule, n~ 10^6 cm⁻³, T ~ 10 K: M_{Jeans} = $1 M_{\odot} \Rightarrow$ instabil
- heißer Kern einer Riesenmolekülwolke, n~ 10^8 cm⁻³, T ~ 150 K: M_{Jeans} = 17 M $_{\odot}$ \Rightarrow instabil

Bildung von Protosternen

• erste Stadien des Kollaps:

- die Wolke kollabiert isotherm: solange das Gas optisch dünn bleibt, kann die Strahlung frei entweichen und die T steigt nicht
- Kollaps auf der freien Fall Zeitskala t_{ff} (ρ₀ = Anfangsdichte der Wolke)

$$t_{ff} = \left(\frac{3\pi}{32G\rho_0}\right)^{1/2}$$

- Da t_{ff} nicht vom Radius abhängt, kollabiert eine homogene Wolke überall gleich schnell (homolog). Gibt es eine ρ-Profil mit einer zentralen Kondensation, kollabiert das Wolkenzentrum schneller (dies geschieht wenn der Kollaps fortschreitet).
- t_{ff} für einen dichten Wolkenkern ~ 5000 Jahre => frühe Protosterne sind kurzlebig, und daher seltene Objekte!
- Es existieren Molekülwolken recht großer Masse, die nicht stabil sein sollten warum bilden sich nicht Sterne entsprechend großer Masse?
- Beobachtung: Bildung von Sternhaufen! Die Wolken fragmentieren während des Kollaps

Fragmentation

• Jeans-Kriterium: die kritische Masse fällt mit wachsender Dichte, solange der Protostern isotherm ist

⇒ kleine Anfangs-Inhomogenitäten, die dichter werden, kollabieren unabhängig voneinander und werden zu eigenständigen Protosternen

• Warum fragmentiert die Wolke nicht immer weiter?

⇒ wenn die Wolke nicht mehr durchsichtig für Strahlung ist, ist der Kollaps nicht mehr isotherm

 Anderes Extrem: adiabatischer Kollaps, ohne Wärmeaustausch mit der Umgebung => T steigt mit Dichte, und es resultiert:

$$M_{_{Jeans}} \propto
ho^{1/2}$$

⇒ Jean-Masse nimmt mit wachsender Dichte zu ⇒ minimale Masse für die Fragmente

- Abschätzung: minimale Masse ~ 0.5 M⊙
- Numerische Simulationen: Kollapsgeschwindigkeit, Rotation der Fragmente, Magnetfelder, Anfangsstruktur der Wolke, ...

Fragmentation einer turbulenten Gaswolke

• Simulation:

Kondensation in protostellare Kerne

Diese bilden sich mit Massen:

$$\boldsymbol{M} = \boldsymbol{M}_{Jeans} \approx 0.1 - 1 \boldsymbol{M}_{\odot}$$

Protosterne und Vor-Hauptreihen-Entwicklung

- Kollaps eines protostellaren Kerns in mehreren Schritten:
- am Anfang ist der Kollaps isotherm mit T = 10 K
- wenn eine Zentraldichte von 10¹¹ cm⁻³ erreicht ist, wird der Kern optisch dick, auch im IR. Die Kontraktion erfolgt nun quasi-stationär
- bei einer Dichte von etwa 10^{13} cm⁻³ und T ≈ 1000 K beginnt die Dissoziation des H₂ im Kern
 - ⇒ zweite Kollaps Phase, da der Kern sich wegen der Dissoziation abkühlt
- bei Dichten von 10²² cm⁻³ und T \approx 10⁴ K beginnt eine zweite quasi-stationäre Phase der Kern-Kontraktion
- der Kern hat jetzt einen Radius von $\approx 10 R_{\odot}$, aber eine Masse von nur $10^{-3} M_{\odot}$. Er ist umgeben von einer ausgedehnten, optisch dicken Hülle mit Radius $\approx 10^{6} R_{\odot}$
- Gas von der Hülle "regnet" auf den Kern mit v > c_s, bildet einen Akkretionsschock, der den Kern aufheizt
- Rotation führt zu einer Akkretionsscheibe um den Kern, nach \approx 10⁵ Jahre. Der Stern hat jetzt eine Masse von 1M $_{\odot}$.

Protosterne und Vor-Hauptreihen-Entwicklung

- Der Stern kontrahiert jetzt auf der Kelvin-Helmholtz Zeitskala und wandelt potentielle Energie in thermische Energie + Strahlung um.
 - ⇒ dieser Stadium: Vor-Hauptreihen-Stern
- die äußeren Lagen strahlen thermische Energie ab, es bildet sich einen steilen T-Gradienten und der Stern wird konvektiv
 - ⇒ der Stern bewegt sich zur Hayashi-Linie as T-Tauri Stern

T-Tauri Sterne sind noch von Restgas, in einer Scheibe,

umgeben

Bei T = 10^7 K und einer Dichte von 10^{26} cm⁻³ beginnt das nukleare Brennen

Molekülwolken und Sternbildung

Induzierte Sternbildung: in der Ionisationsfront bilden sich neue Sterne

Orion-Nebel

M42, Sternentstehungsregion etwa 1500 Ly von uns entfernt

