

Highlights from the LHCb experiment

Pheno 2020, May 4 – 6, 2020 Katharina Müller on behalf of the LHCb collaboration Physik Institut, University of Zurich

forward arm spectrometer for precision measurements ($2 < \eta < 5$)

- good vertex and impact parameter resolution ($\sigma(IP)$ = 15 ±29/p_T µm)
- excellent momentum resolution $(\sigma(m_{_{\rm B}}) \sim 25 \text{ MeV/c}^2 \text{ for 2-body decays})$
- excellent particle ID (μ ID 97% for ($\pi \rightarrow \mu$) misID of 1-3%)
- stable running conditions stable trigger constant µ
- trigger on small $\textbf{p}_{\scriptscriptstyle T}$ and low mass objects
- real time analysis alignment and calibration fully automated

PHENO 2020, May 4 - 6, 2020

LHCb has recorded about 9 fb⁻¹ of pp collisions 1 fb⁻¹ @ 7 TeV 2 fb⁻¹ @ 8 TeV - Run 1 6 fb⁻¹ @ 13 TeV - Run 2

plus various datasets of proton-lead, lead-lead collisions as well as fixed target datasets: pNe, pHe, pAr, PbAr

LHCb – a multipurpose detector in the forward region

- Indirect searches for New Physics at the multi-TeV scale decays of beauty and charm hadron CP violation
- Understanding the details of QCD Heavy flavour production, pentaquark states, double heavy states, top physics, jets ...
- Quark gluon plasma, cold nuclear effects in heavy ion collisions Heavy flavour production in p-Pb collisions, fixed target collisions

- Observation of CP violation in charm [Phys. Rev. Lett. 122 (2019) 211803]
- A_{Γ} in $D^0 \rightarrow K^+K^-$, π + π^- [Phys. Rev. D101 (2020) 012005]
- Oscillations of charm mesons [Phys. Rev. Lett 122 (2019) 231802]
- Searches for 25 rare and forbidden decays of D^+ and D^+_{s} mesons [LHCb-PAPER-2020-007]

- CPV in Kaons and B mesons is well established both are down type quarks
- charm hadrons contain an up-type quark
- SM predicts it to be at 10⁻³ 10⁻⁴ level
- LHCb is a charm factory, with billions of charm decays produced

LHCP Observation of CP violation in charm

charm decays allow CP violation to be probed in the up-sector \rightarrow complementary to studies in K and B systems

expected to be very small in the SM (10⁻³ - 10⁻⁴ level), but theory predictions are not very precise (large long distance effects) time dependent CP asymmetries

$$A_{CP}(f;t) = \frac{\Gamma(D^{0}(t) \rightarrow f) - \Gamma(\overline{D^{0}}(t) \rightarrow f)}{\Gamma(D^{0}(t) \rightarrow f) + \Gamma(\overline{D^{0}}(t) \rightarrow f)}$$

sensitive to

- direct CP-violation (a_{CP}^{dir})
- indirect CP-violation (a_{CP}^{indir}) (CP-violation in mixing or in the interference between mixing and decay)

LHCD Observation of CP violation in charm

full Run 2 data 5.9 fb⁻¹ count how many D⁰ and anti-D⁰ decay into $\pi^+\pi^-$ and K⁺K⁻ should be equal if matter = antimatter

we measure raw asymmetry:

initial flavour of D meson tagged by

charge of $\boldsymbol{\pi}$ in prompt decays

$$A^{Raw}(f) = \frac{N(D^{0} \rightarrow f) - N(\bar{D^{0}} \rightarrow f)}{N(D^{0} \rightarrow f) + N(\bar{D^{0}} \rightarrow f)}$$

PHENO 2020, May 4 - 6, 2020

Check Observation of CP violation in charm

$$A^{Raw}(f) \simeq A^{CP}(f) + A^{Det}(f) + A^{Det}(\pi, \mu) + A^{Pr}(D^*, B)$$

A^{CP}: CP asymmetry

 $A^{det}(f)$ and $A^{det}(\pi,\mu)$: D⁰ detection asymmetry, $A^{pr}(D^*,B)$: D*,B production asymmetry detector and production asymmetries difficult to control at the level of $10^{-3} - 10^{-4}$!

→ difference in raw asymmetries: many systematic uncertainties cancel at first order

$$\Delta A^{CP} = A^{Raw} (K^{-}K^{+}) - A^{Raw} (\pi^{-}\pi^{+}) = A^{CP} (K^{-}K^{+}) - A^{CP} (\pi^{-}\pi^{+})$$

Check Observation of CP violation in charm

Run 2 result:

 $\Delta A_{CP} = (-18.2 \pm 3.2 \text{ (stat)} \pm 0.9 \text{ (syst)})10^{-4} \pi$ -tag

 $\Delta A_{CP} = (-9 \pm 8 \text{ (stat)} \pm 5 \text{ (syst)})10^{-4} \mu$ -tag

compatible with previous LHCb result and world average

combination with Run 1 result

 $\Delta A_{CP} = (-15.4 \pm 2.9)10^{-4}$

 \rightarrow 5.3 σ difference from 0

→ roughly compatible with SM predictions

using LHCb input on indirect CP violation: $\Delta a_{CP}^{dir} = (-15.7 \pm 2.9) \times 10^{-4}$

Katharina Müller

 \rightarrow new window opened to investigate matter-antimatter asymmetry

LHCD THCD Measurement of CPV parameter A_{Γ} in $D^0 \rightarrow K^+K^-$, $\pi + \pi^-$

 $A_{\!_{\Gamma}}$ probes CPV in mixing and interference

 $A_{CP}(f,t) \approx A_{CP}^{decay} - A_{\Gamma}(f) \frac{\langle t \rangle_f}{\tau_D^0}$

SM predictions: $\approx 3 \times 10^{-5}$ [arXiv:1812.07638] A_r required input to measure direct CPV Δa_{CP} in decay from ΔA_{CP}

→ measure time dependent CP asymmetry in D⁰ → $\pi^+\pi^-$ and K⁺K⁻ decays:

 $A_{\Gamma}(K^{+}K^{-}) = (-4.3 \pm 3.6 \pm 0.5) 10^{-4} A_{\Gamma}(\pi^{+}\pi^{-}) = (2.2 \pm 7.0 \pm 0.8) 10^{-4}$

combined with previous LHCb result

 $A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) 10^{-4}$

no indication for CPV in mixing or interference

analysis based on 2 fb⁻¹ Run 2 data, statistically limited, still 4 fb⁻¹ to be analysed \rightarrow need Upgrade II to reach sensitivity of SM

CHCP Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi^- \pi^+$

neutral flavoured mesons can oscillate between their particle and antiparticle states

 \rightarrow the physical mass eigenstates are linear combinations of the weak eigenstates

 $|D_{1,2}
angle\equiv p|D^0
angle\pm q|\overline{D}{}^0
angle$ with masses m, and m, and decay width

with masses m_1 and m_2 and decay widths $\Gamma_1 + \Gamma_2$

mixing parameters $x_{CP} \equiv (m_1 - m_2)c^2/\Gamma$ and $y_{CP} \equiv (\Gamma_1 - \Gamma_2)/\Gamma$ ($\Gamma = (\Gamma_1 + \Gamma_2)/2$) x_{CP} determines the oscillation rate

 $x_{\rm CP}$ is very small for charm mesons but can be enhanced by the presence of new particles beyond the SM

LHCb Run 1, decay: $D^0 \rightarrow K_s^{\ 0}\pi^{\ }\pi^{\ }$ yields: prompt 1.3M, secondary 1M candidates

LHCD Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi^- \pi^+$

model independent approach (bin-flip method) [arXiv:1811.01032]

allowing for CPV mixing or interference

→ most precise determination of CP averaged normalized mass difference $x=(m_1-m_2)c^2/\Gamma$ by a single experiment

 $X_{CP} = [2.7 \pm 1.6 \pm 0.4] \times 10^{-3}$ $y_{CP} = [7.4 \pm 3.6 \pm 1.1] \times 10^{-3}$

if CP symmetry in mixing and interference is conserved: $x_{_{\rm CP}}$ = x, $y_{_{\rm CP}}$ = y

new world average provides first evidence of mass difference between the neutral charm mesons:

$$X_{CP} = (3.9^{+1.1}_{-1.2}) \times 10^{-3}$$

LHCD Searches for 25 rare and forbidden decays of D^+ and D^+_{s} mesons

[LHCb-PAPER-2020-007]

New!

- four rare charm decays $D^+ \rightarrow \pi^+ \ell^+ \ell^-$ and $D_s^+ \rightarrow K^+ \ell^+ \ell^-$ ($\ell = e, \mu$)
 - $c \rightarrow u\ell\ell$ and weak annihilation diagrams, dominated by light resonances (η , ρ , ω , ϕ)
- four weak-annihilation decays $D^+ \to \, K^+ \ell^+ \ell^-$ and $D_s^{\ +} \to \pi^+ \ell^+ \ell^-$
- eight $D_{(s)}^{+} \rightarrow h^+ \ell^+ \ell^- '$ LFV modes (h = π , K)
- nine $D_{(s)}^{+} \rightarrow h^{-}\ell^{+}\ell^{+}$ and $D_{(s)}^{+} \rightarrow h^{-}\ell^{+}\ell^{+}$ ' LNV modes

Normalised and calibrated with $D_{(s)}^{+} \rightarrow \pi^{+}\phi$, all channels well described by background-only

PHENO 2020, May 4 - 6, 2020

LHCD Searches for 25 rare and forbidden decays of D⁺ and D⁺_s mesons

[LHCb-PAPER-2020-007]

expected median, with $\pm 1\sigma$, $\pm 2\sigma$ intervals

prev. world's best limit (BaBar / CLEO/ LHCb)

x observed limit

New!

All the limits (@90% CL) are shown in the backup \rightarrow 23 best limits 2017-18 dataset yet to be analysed

 $D_s^+ \rightarrow \pi^- \mu^+ \mu^+ D^+ \rightarrow \pi^- \mu^+ \mu^+ -$ × $D_{s}^{s} \to \pi^{+} \mu^{+} \mu^{-} - D_{s}^{+} \to K^{-} \mu^{+} \mu^{+} - D_{s}^{+}$ $D^+ \rightarrow \pi^+ \mu^+ \mu^ D^+ \rightarrow K^+ \mu^+ \mu^ D_s^+ \rightarrow K^+ \mu^+ \mu^- D_s^+ \rightarrow \pi^- \mu^+ e^+ D^+ \rightarrow \pi^- \mu^+ e^+ D_s^+ \rightarrow \pi^+ e^+ \mu^- D^+ \rightarrow \pi^+ e^+ \mu^ D_s^+ \rightarrow \pi^+ \mu^+ e^- D^+ \rightarrow \pi^+ \mu^+ e^ D_s^+ \to K^- \mu^+ e^+ D^+ \rightarrow K^+ e^+ \mu^ D^+_{\circ} \rightarrow K^+ e^+ \mu^- D_s^+ \rightarrow K^+ \mu^+ e^ D^+ \rightarrow K^+ \mu^+ e^-$ × $D_s^+ \rightarrow \pi^- e^+ e^+ D^+ \rightarrow \pi^- e^+ e^+ D^+_s \rightarrow \pi^+ e^+ e^ \begin{array}{c} D^+ \to \pi^+ e^+ e^- \\ D^+ \to K^+ e^+ e^- \end{array} \quad \text{LHCb Preliminary} \end{array}$ $\begin{array}{c} D_s^+ \to K^- e^+ e^+ - \\ D_s^+ \to K^+ e^+ e^- - \end{array}$ LHCb Preliminary 10^{-7} 10^{-8} 10^{-7} 10^{-8} 10^{-5} 10^{-6} 10^{-5} 10^{-6} 2016 limit at 90% confidence 2016 limit at 90% confidence

- B_s mixing phase Φ_s [Phys. Lett. B797 (2019) 134789, Eur. Phys. J. C 79 (2019) 706]
- New measurement of R(K) [Phys. Rev. Lett. 122 (2019) 191801] and R(pK) [arXiv:1912.08139]
- Angular analysis of rare decay $B^0 \rightarrow K^{*0}[K^+\pi^-]\mu^+\mu^-$ [http://arxiv.org/pdf/2003.04831]
- Search for Lepton flavour violating decays [Phys. Rev. Lett. 123 (2019) 211801, Phys. Rev. Lett.123 (2019) 241802, arXiv:2003.04352]

PHENO 2020, May 4 - 6, 2020

LHC

Katharina Müller

 $\phi_s^{c\bar{c}s}$ [rad]

S B_s mixing phase Φ_s from B_s → J/ψ KK and B_s → J/ψππ

[Phys. Lett. B797 (2019) 134789] [Eur. Phys. J. C 79 (2019) 706]

 ϕ_{dec}

 ϕ_{dec}

measure the phase difference between the two processes SM prediction $\Phi_s = -36.8^{+9.6}_{-6.8}$ mrad (CKM Fitter) highly sensitive to NP contributions

LHCb uses two channels: $B_s \rightarrow J/\psi$ KK and $B_s \rightarrow J/\psi \pi \pi$

high yield, clean signature → very high precision measurements

flavour tagging from decay of other b hadron in the event analysis part of Run 2 (2 fb⁻¹)

combined with Run 1 $\Phi_s = (-41 \pm 25) \text{ mrad}$ (still 4 fb⁻¹ not analysed)

HFLAV combination: $\Phi_s = (-55 \pm 21) \text{ mrad}$

 $\overline{\mathsf{B}^0_{\mathsf{s}}}$

 $\phi_{\sf mb}$

LHCD Rare decays as a test for new physics

excellent probe to look at new physics in rare decays as new heavy particles can enter at loop and/or tree level

FCNC decays $b \rightarrow s\ell\ell$ transitions forbidden at tree-level in the SM $\rightarrow BR \ 10^{-7} - 10^{-6}$ coherent set of discrepancies wrt the SM

LHCD Test of lepton universality: R(K) and R(K*)

theoretically clean

Run 1 result: results for R(K) and R(K*)

new measurement re-analysing Run 1 data and adding ~2 fb⁻¹ of Run 2 data measure R as a double ratio to reduce systematic effects due to differences between electrons and muons

$$R(K) = \frac{BR(B \rightarrow K \mu \mu)}{BR(B \rightarrow K J / \psi(\rightarrow \mu \mu))} \frac{BR(B \rightarrow K J / \psi(\rightarrow e e))}{BR(B \rightarrow K e e)}$$

but electrons are difficult to measure at LHCb: trigger, Bremsstrahlung ...

LHCD New measurement of R(K)

PHENO 2020, May 4 - 6, 2020

$$R(K) = 0.846^{+0.060}_{-0.054} (\text{stat})^{+0.016}_{-0.014} (\text{syst})$$

- 2.5 σ away from the SM prediction
- → better precision central value closer to the SM
- → need more data: inclusion of 2017+2018 data will double the statistics

[arXiv:1912.08139] first test of LU with b baryons: $\Lambda_{b} \rightarrow pK\ell\ell$

 $R(pK) = 0.86^{+0.14}_{-0.11} \pm 0.05$

compatible with unity within one $\boldsymbol{\sigma}$

other measurements in preparation update of R(K*), other decay channels

Measure $B \rightarrow K^*\mu\mu$ decay rate as a function of q^2 and three helicity angles $(\Phi, \theta_{\kappa}, \theta_{\mu})$

 \rightarrow large set of variables with reduced theory uncertainties

Angular analysis of rare decay $B^0 \rightarrow K^{*0}[K^+\pi^-]\mu^+\mu^-$

$$\frac{\mathrm{d}^4\bar{\Gamma}[B^0\to K^{*0}\mu^+\mu^-]}{\mathrm{d}q^2\,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi}\sum_i \bar{I}_i(q^2)f_i(\vec{\Omega})$$

I_i: angular coefficients f_i: angular functions

Construct optimized angular variables where form factors cancel at first order $\rightarrow P_5$ '

Observe tension with SM predictions by 3.4 σ

Limited understanding of the effects of long-distance non-perturbative QCD effects (charm-loops)

LHCh

LHCD Angular analysis of rare decay B⁰ \rightarrow K^{*0}[K⁺ π ⁻] μ ⁺ μ ⁻

updated measurement of P_5 , with Run 1 + 2016 data

- $4 < q^2 < 6 \text{ GeV}^2$ $\rightarrow 2.5 \sigma$ above the SM
- $6 < q^{2} < 8 \text{ GeV}^{2}$ $\rightarrow 2.9 \sigma$ above the SM

slightly reduced local tension in P_5 ' the exact significance of the discrepancy depends on the nuisance parameters chosen and q² bins fitted

since previous analysis: theory uncertainties associated with form factors have decreased Parameterisation of sub-leading correctior is now more conservative

update with full Run 2 ongoing

purposes only and contains no systematic uncertainties or bias and coverage corrections

à

LHCD CHCD Search for lepton flavour violating decay $B^0_{(s)} \rightarrow \tau \mu$

[Phys. Rev. Lett. 123 (2019) 211801]

Mode	Limit	90% CL	$95\%~{ m CL}$	
$B^0_s \to \tau^\pm \mu^\mp$	Observed	3.4×10^{-5}	4.2×10^{-5}	first limits
	Expected	3.9×10^{-5}	4.7×10^{-5}	
$B^0\!\to\tau^\pm\mu^\mp$	Observed	1.2×10^{-5}	1.4×10^{-5}	best limits
	Expected	1.6×10^{-5}	1.9×10^{-5}	

LHCD CHCD Search for lepton flavour violating decay $B^+ \rightarrow K^+\mu^\pm e^\mp$

NP models including leptoquarks, extended gauge boson models or CP violation in the neutrino sector predict branching fractions $10^{-8} - 10^{-10}$

search in full Run 1 dataset, no signal observed

- Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+ K^-$ [arXiv:2003.13649]
- Excited Ω_{h}^{-} states [Phys. Rev. Lett. 124 (2020) 082002]
- Observation of new pentaquark states [Phys. Rev. Lett. 122 (2019) 222001]

Check Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+ K^-$

[arXiv:2003.13649]

LHCD First observation of excited Ω_{b}^{-} states

[Phys. Rev. Lett. 124 (2020) 082002]

full Run 1+ Run 2 dataset

pure sample of $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+}\pi^{-}$ ($\Xi_{c}^{+} \rightarrow pK^{-}\pi^{+}$), combine Ξ_{b}^{0} with a kaon

 \rightarrow four narrow states interpreted as excited states of Ω_{h}^{-}

PHENO 2020, May 4 - 6, 2020

Check Observation of new pentaquark states

first pentaquarks observed by LHCb four years ago using $\Lambda_{_{\! b}}\, \rightarrow\, J/\psi Kp$

large theoretical interest in understanding the nature of the new states

tightly bound vs loosely bound molecular states

Check Observation of new pentaquark states

Update with full Run 2 statistics, 246'000 candidates

- \rightarrow new peak at P_c(4312)⁺(7.3 σ)
- → broad $P_c(4450)^+$ resolved as two narrow states (5.4 σ): $P_c(4440)^+$ and $P_c(4457)^+$

minimal quark content duucc

narrow and close to $\Sigma_c^+D^0$ and $\Sigma_c^+D^{*0}$ ([duc][uc]) mass threshold

 $\rightarrow\,$ extremely important result to shed light on the nature of these exotic states

• charm production in fixed target collisions [PRL 122 (2019) 132002]

Charm production in fixed target collisions

Unique opportunity for measurements in fixed target mode

first measurement of charm production (J/ ψ and D°) in pAr @110.4 GeV and pHe @86.6 GeV

 \rightarrow sensitive to large Bjorken-x, up to x=0.37 for D^o

 D^0 good agreement in rapidity shapes \rightarrow no evidence for significant contribution of valence-like intrinsic charm at high x

PHENO 2020, May 4 - 6, 2020

LHCb upgrade – upgrade I

Going on right now! remove the hardware trigger \rightarrow all detectors read out at 30 MHz

 $\rightarrow\,$ this will be a new detector at LHCb

PHENO 2020, May 4 - 6, 2020

LHCP And looking further – upgrade II

- Aim to collect > 300 fb⁻¹ at L = 2×10^{34} , x10 with respect to Upgrade I
- Consolidate in LS3, major upgrade in LS4
- Expression of Interest issued in 2017, feasibility study [CERN-ACC-NOTE-2018-0038]
- Physics case document released [CERN-LHCC-2018-027]
- Green light from LHCC to proceed to TDRs (expected ~late 2020)

Physics Case

LHCb Upgrade II

Opportunities in flavour physics, and beyond, in the HL-LHC era

for an

Conclusion and outlook

Plenty of interesting results still coming from LHCb Run1-2 LHCb upgrade opens the door to many improvements in precision, so interesting times are ahead!

LHCb has a bright future

- Tensions on lepton flavour universality will be clear in a few years
- Sensitivity to NP in many interesting channels, more will open with upgraded detector
- Precision measurements of SM parameters
- Heavy Ion and fixed target physics programme has much to add

e Magnet RiCH2 Magnet RiCH2 RICH

ECAL HCAL

SPD/PS

See also parallel talks:

- Titus Mombacher : Search for rare B decays with the LHCb experiment (Tue, 14:15)
- Aravindhan Venkateswaran: First measurements of isospin amplitudes in Λ_{b} and Ξ_{b} decays (Tue, 14:30)

Backup

LHCD Searches for 25 rare and forbidden decays of D⁺ and D⁺_s mesons

[LHCb-PAPER-2020-007]

improvement relative to the world's best limits prior to this work

	Branching fraction upper limit [10 ⁻⁹]				Improvement	
Decay	D^+		D_s^+		Improvement	
	90 % CL	$95\%~{\rm CL}$	90% CL	$95\%~{\rm CL}$	D^+	D_s^+
$D^+_{(s)} \rightarrow \pi^+ \mu^+ \mu^-$	67	74	180	210	1.1	2.3
$D^{+}_{(s)} \rightarrow \pi^{-}\mu^{+}\mu^{+}$	14	16	86	96	1.6	1.4
$D^{(-)}_{(s)} \rightarrow K^+ \mu^+ \mu^-$	54	61	140	160	79.0	150.0
$D_{(s)}^{(-)} \rightarrow K^- \mu^+ \mu^+$	-	-	26	30	-	500.0
$D^{+}_{(s)} \rightarrow \pi^+ e^+ \mu^-$	210	230	1100	1200	14.0	11.0
$D^{+'}_{(s)} \rightarrow \pi^+ \mu^+ e^-$	220	220	940	1100	16.0	21.0
$D^{+'}_{(s)} \rightarrow \pi^- \mu^+ e^+$	130	150	630	710	16.0	13.0
$D^{+'}_{(s)} \rightarrow K^+ e^+ \mu^-$	75	83	790	880	16.0	18.0
$D^{+'}_{(s)} \rightarrow K^+ \mu^+ e^-$	100	110	560	640	28.0	17.0
$D^{(+)}_{(s)} \rightarrow K^- \mu^+ e^+$	-	-	260	320	-	23.0
$D^{(+)}_{(s)} \rightarrow \pi^+ e^+ e^-$	1600	1800	5500	6400	0.7	2.3
$D^{(+)}_{(s)} \rightarrow \pi^- e^+ e^+$	530	600	1400	1600	2.1	3.0
$D_{(s)}^{+} \rightarrow K^+ e^+ e^-$	850	1000	4900	5500	1.2	0.8
$D_{(s)}^{\downarrow} \rightarrow K^- e^+ e^+$	-	-	770	840	-	6.7

LHCP Measurement of CP violation in $B_s \rightarrow \Phi\Phi$

[JHEP 12 (2019) 155]

enhanced sensitivity to NP since decay is dominated by $b \rightarrow sss$ penguin loop

SM prediction |Φ_s^{sss}|< 20 mrad [arXiv:0810.0249 Phys.Rev.D80:114026,2009]

time dependent angular analysis, Run 1 + 2 fb⁻¹Run 2

 Φ_{s}^{sss} = -73 ± 115 ± 27 mrad

 $|\lambda| = -0.99 \pm 0.05 \pm 0.01$

W

LHCD Doubly charmed baryons

ground states: Ξ_{cc}^{++} (ccu), Ξ_{cc}^{++} (ccd) and Ω_{cc}^{++} (ccs) only Ξ_{cc}^{++} discovered so far, search ongoing for Ξ_{cc}^{++} and Ω_{cc}^{+++}

first observed by LHCb in decay:

 $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ and $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}$ [Phys. Rev. Lett. 121 162002 (2018)]

 $M(\Xi_{cc}^{++}) = 3621.55 \pm 0.23(stat) \pm 0.30 (syst) MeV/c^{2}$

LHCD Doubly charmed baryons

ground states: Ξ_{cc}^{++} (ccu), Ξ_{cc}^{++} (ccd) and Ω_{cc}^{++} (ccs) only Ξ_{cc}^{++} discovered so far, search ongoing for Ξ_{cc}^{++} and Ω_{cc}^{+++}

first observed by LHCb in decay: $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ and $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}$ [Phys. Rev. Lett. 121 162002 (2018)]

weakly decaying: $\tau(\Xi_{cc}^{++})= 0.256+0.024 - 0.022(stat) \pm 0.014(syst) \text{ ps}$ [PRL 121 (2018) 052002] no signal found for: $\Xi_{cc}^{++} \rightarrow D^+(\rightarrow K^-\pi^+\pi^+) \text{ pK}^-\pi^+$ [JHEP 10 (2019) 124]

new analysis @ 13 TeV:

• production cross-section times the BF of $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$ relative to the prompt Λ_{c}^{+} production cross-section:

 $(2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$ (4 < p_T < 15 GeV/c and 2.0 < y < 4.5)

precise mass measurement

Doubly charmed baryons

[JHEP 02 (2020) 049]

PHENO 2020, May 4 - 6, 2020

LHCb

LHC b-hadron production in proton-lead collisions

Production of B^0 , B^+ and Λ_h in proton-lead cm enery 8.16 TeV with exclusive decay modes

- \rightarrow first measurement of beauty hadron production at p_{τ} < mass of the hadrons in the forward region
- \rightarrow input for fits of the nuclear PDFs

 \rightarrow fragmentation models in nuclear environment

20

 $b \rightarrow s\ell\ell$ decay rates systematically below the SM predictions

PHENO 2020, May 4 - 6, 2020

Test of lepton flavour universality

test of LFU in various B decays with leptons in the final state

Charged current (Semileptonic decays) tree-level decays $b \rightarrow c\ell v$ BR of of few %, precise prediction in SM

 $R(D^{(*)}) = \frac{BR(B \to D^{(*)} \tau \bar{v}_{\tau})}{BR(B \to D^{(*)} \mu \bar{v}_{\mu})} = 0.252 \pm 0.003(SM)$

Neutral currents (Rare decays)

 $b \rightarrow s\ell\ell$

forbidden at tree-level in the SM

 \rightarrow FCNC only at loop level \rightarrow BR 10⁻⁷ ÷ 10⁻⁶

theoretically clean

$$R(K^{(*)}) = \frac{BR(B \to K^{(*)} \mu \mu)}{BR(B \to K^{(*)} e e)} = 1 \pm \underbrace{O(10^{-3})}_{\text{neglect lepton mass}} \pm \underbrace{O(10^{-2})}_{\text{QED}}$$

EPJ C76 (2016) 8, 440

 $X_{c1}(3872)/\psi(2S)$ ratio versus multiplicity measured at $\sqrt{s} = 8$ TeV helps to understand the nature of the exotic state

Multiplicity dependence of $X_{c1}(3872) / \psi(2S)$

 $\rightarrow\,$ no significant variation is observed

for the non-prompt component

→ hint of a relative suppression for prompt component

consistent with the interpretation of the $\chi_{c1}(3872)$ as a weakly bound state such as a D⁰D^{*0} hadronic molecule

baseline for a future analysis in proton-lead collisions

LHC

measure R as a double ratio to reduce systematic effects due to differences between electrons and muons

$$R(K) = \frac{BR(B \rightarrow K \mu \mu)}{BR(B \rightarrow K J / \psi(\rightarrow \mu \mu))} \frac{BR(B \rightarrow K J / \psi(\rightarrow e e))}{BR(B \rightarrow K e e)}$$

but electrons are difficult to measure at LHCb: trigger, Bremsstrahlung ...

PHENO 2020, May 4 – 6, 2020

LHCD Combination of γ measurements

LHCb: new measurement in $B^0 \rightarrow DK^{*0}$ (D $\rightarrow K\pi$, KK, $\pi\pi$) [arXiv:1906.08350]

tension (2 σ) between B⁺ and B_s⁰ results

tension (2 σ) between direct measurements and indirect constraints from UT

Check Observation of CP violation in charm

LHCP New combination of γ measurements

[LHCb-CONF-2018-002]

LHCD Oscillations of charm mesons in $D^0 \rightarrow K_s^0 \pi^- \pi^+$

Model independent approach (bin-flip method) Data is binned in Dalitz coordinates binning scheme: approximately constant strong-phase differences

measure the yield ratio R_{bi}^{\pm} between -b and b in bins of decay time

Phys. Rev. D99 (2019) 012007, arXiv:1811.01032l