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Nanofluidic devices and electrostatic traps embedded therein have been shown
to allow for size and charge measurements of individual nanoscopic objects [1]. In
order to carry out actual measurements this way, the nanodevices have to be fully
characterized. While the geometry is given to great precision through fabrication,
the shear plane potential ζ remains an unknown parameter. Other present and fu-
ture applications of micro- and nanofluidic devices also depend on knowing ζ [2][3].
Here, we present a measurement of the ζ-potential of silica devices by measuring
the velocity of the electroosmotic flow induced by applying an external potential
to a solution-filled device. The flow velocity is measured by using fluorescence
microscopy to detect tracer particles inside the nanochannels. Image correlation
techniques are used to determine the velocity of these particles, and from the rela-
tion between the flow velocity and the applied electric field strength, the value of ζ
can be found. This method can principally be used to determine the ζ-potential of
nanodevices of different materials.
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1 Introduction
Micro- and nanofluidic devices can nowadays be fabricated with great geometrical
precision. This allows for a number of applications in the fields of physical chem-
istry, microbiology, life sciences and others. Examples of applications include the
study of voltage driven transport mechanisms (electroosmosis), capillary effects,
separation of ions and biomolecules, single molecule analysis and nanofluidic elec-
tronics [2]. All of these fields depend to some extent on an understanding of the
ζ-potential of the devices.

Two major methods exist for the measurement of ζ in a channel: measurement of
the electroosmotic mobility or measurement of the streaming potential. The former
is based on applying an external electric field to a nanochannel system and mea-
suring the induced electroosmotic flow, while in the latter one measures electrical
perturbations that result from double layer ions (cf. section 2) being transported by
pressure-driven flow [3]. Here, the ζ-potential will be determined by a measurement
of electroosmotic mobility.

We will start by looking at the physics of nanofluidic systems and derive the equa-
tions that allow the detemination of the ζ-potential. After that, we will discuss the
principle of image correlation and its implementation in the case at hand. Finally,
the experimental procedure is described and the results are presented, analyzed and
discussed.

2 Analysis
The nanofluidic system at hand consists of silica channels of heights between 100 nm
and 300 nm and significantly larger scales in the other dimensions. If filled with an
aqueous solution, the ionic distribution forms the so called electrical double layer
(EDL) (cf. figure 1). An external electric field is applied along the channels which
results in a plug-flow as the EDL-ions are dragged towards the respective electrode.
For a slightly charged particle, the movement is defined by two forces acting on it:
the electrostatic attraction/ repulsion in the field and the drag exerted on it by the
surrounding fluid molecules.

The physics required in describing this system is hydrodynamics of incompress-
ible fluids, the Debye-Hückel theory of electrolyte solutions and the formulation of
the electrical double layer. In this section we will analyze the problem of electroos-
motic flow in nanodevices very similarly to [4].

2.1 Electrical Double Layer Formulation
Hydrodynamics of incompressible fluids is governed by the Navier-Stokes equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ η∇2v + F . (1)

Where:
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Figure 1: The electrical double layer.

ρ : liquid density
v : fluid velocity
p : pressure field
η : liquid viscosity
F : other body forces

In the case of electroosmotic flow the only body force is F = ρe∇V with the
electric charge density ρe and the electric potential V . While the assumption of
incompressibility is well satisfied, we will also assume the viscosity to be constant,
which might not hold as well, due to the temperature dependence of the viscosity
and the fact that there might be a significant amount of Joule heating when applying
the external potential [5].

Since we are working in the strongly laminar regime, the left hand side terms of
equation 1 can be neglected. Also, the pressure gradient is zero and we assume no
relevant x and z dependence of v. Equation 1 can then be simplified to:

η
d2vx
dy2

= ρe · Ex , (2)

where Ex = −∇V is the electric field.
For ρe = 0, which would be the case in vacuum or if the ions were distributed

uniformly in the solution, this would reduce to the Laplace equation. A non-zero
charge density, however, results from the dissociation or adsorption of ions at the
wall of the nanochannel. In the case of silica glass surfaces, this is mainly due to
dissociation of terminal silanol groups [6]:

SiOH ⇌ SiO− + H+ . (3)
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The charge density drops off with increasing distance from the wall until it reaches
a constant value in the ionic bulk (figure (1)). The region of varying density is re-
ferred to as the electrical double layer.

The Poisson equation relates the charge density to the EDL potential ψ:

εrε0∆ψ = ρe . (4)

The distribution of ions of type i near the surface can be described by the Boltz-
mann distribution:

ni = n0i exp
(
−zieψ
kbT

)
(5)

with number density ni, valence zi, Temperature T and Boltzmann constant kb.
Here we have assumed that the only work done by bringing a ion of charge zie to a
point with electric field strength ψ is the electrical work done by the ion as a point
charge.

The total charge density is then given by the sum over the charge distributions
created by each type of ion:

ρe =
∑
i

zieni . (6)

Assuming a symmetrical two species solution (i = 1, 2; z1 = −z2 ≡ z;n01 =
n02 ≡ n0), this gives:

ρe = |z|en0
(

exp
(
−zeψ
kbT

)
− exp

(
zeψ

kbT

))
= 2|z|en0sinh

(
−zeψ
kbT

)
. (7)

This can be inserted back into the Poisson equation (4):

εrε0∆ψ − 2|z|en0sinh
(
−zeψ
kbT

)
= 0 (8)

which can be linearized in the second term to yield the so called Debye-Hückel
approximation:

∆ψ − κ2ψ = 0 ; κ =

√
2z2e2n0
εrε0kbT

(9)

with the inverse Debye length κ. The requirement for the linearization to be justified
is that the argument of the hyperbolic sine is smaller than unity:

zeψ

kbT
≪ 1 or zeψ ≪ kbT . (10)

In our case, it is safe to assume that the EDL-potential varies only perpendicular
to the channel surface ψ = ψ(y), thus the Laplace operator in equation 9 becomes
a second derivative with respect to y.

2.2 Channel Velocity
The function

ψ(y) = ζ
(
e−κy + e−κ(h−y)

)
= 2 ζ e−κh/2 cosh (κ(y − h/2)) (11)
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Figure 2: Plot of mean velocity vmean versus inverse Debye-length κ as in equation (15) for
4 different channel heights and electric field E = 1500V/m. The upper x-axis gives
selected values of ionic strengths corresponding to the respective values of κ.

solves equation (9) for a channel of parallel plates at distance h with shear plane
potential ζ. Combining this and (4) with (2) gives (

d2vx
dy2

= −εrε0
η
Exκ

2ψ (12)

and upon integrating twice and applying the no-slip boundary condition vx(0) = vx(h) = 0
and the symmetry argument that the maximum of the profile must be in the centre
of the channel dvx

dy

∣∣∣
h/2

= 0 :

vx(y) =
2εrε0Ex

η
ζe−κh/2

[
cosh (κh/2)− cosh

(
κ (h/2− y)

)]
. (13)

For the maximum velocity in the centre of the channel we find:

vmax =
2εrε0Ex

η
ζe−κh/2

[
cosh(κh/2)− 1

]
, (14)

and for the mean velocity along the channel:

vmean =
2εrε0Ex

η
ζe−κh/2

[
cosh(κh/2)− 2

κh
sinh(κh/2)

]
. (15)

These terms for the general fluid velocity do not necessarily describe the velocity
of a particle in the solution. Such a particle experiences a force by the electroos-
motic flow as well as an electrophoretic force according to its charge. Ideally, one
would thus use an electrically neutral particle as a tracer.

As shown by [4] and [7], in the Debye-Hückel approximation the double layer
potential ζ corresponds to the wall charge density:

σ = −ε0εrκζ . (16)
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Figure 3: Plot of mean velocity vmean versus channel height h as in equation (15) for 4 different
salt concentrations and electric field E = 1500V/m.

3 Image Correlation Code
In order to accurately determine the velocity of a particle from a tiff file a python
program based on the principle of image correlation is created. Another program
which simulates experimentally obtained tiff movies is written as well and it is
used to test the functionality of the image correlation code under different condi-
tions and to get a measure of the accuracy of said code. This knowledge is then
used to set the parameters of the experiment such that the resulting movies can be
analyzed properly. In the following section we will review the principle of image
correlation, show how this has been implemented in our case, look at the behaviour
of the code for differently parametrized simulated movies and discuss one of the
biggest difficulties when it comes to analyzing experimental data with the code: the
background.

3.1 Image Correlation
The cross-correlation of two functions f(t) and g(t) is defined by:

(f ⋆ g)(t) :=

∞∫
−∞

f∗(τ) g(τ + t)dτ . (17)

Here f∗ denotes the complex conjugate. This is used in signal processing to mea-
sure the similarity of the functions f and g subject to a translation t. Graphically
speaking, to get the cross-correlation one slides the first function over the other and
takes the integral of the product of the two at every point (cf. figure 4).

In image processing, where one usually deals with real functions of integers, the
cross-correlation can be discretized to:

(f ⋆ g)(n) =

∞∑
i=−∞

f(i) g(i+ n) . (18)
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Figure 4: Illustration of cross-correlation. The red signal slides over the blue one. The inte-
gral of the product of red and blue for each lag n is given by the black curve – the
cross-correlation.

A natural way of deciding whether two one dimensional images, i.e. arrays of
integers of lengthN , are similar to each other is to measure the sum of the square of
the differences between values in the two images. The smaller the square difference,
the more they should look alike.

Sum of square differences =
N∑
i=0

(f(i)− g(i))2

=

N∑
i=0

f2(i) +

N∑
i=0

g2(i)− 2

N∑
i=0

f(i) g(i) (19)

The first and the second term in (19) depend only on the first or second image re-
spectively. The third term, however, depends on both images. In order to minimize
the sum of square differences, one has to maximize this third term. If we translate
g by a number n ∈ 0,±1,±2, . . . ,±N (g(i) → g(i+ n)) we can identify this
term with the cross-correlation f ⋆ g. Thus, by calculating the cross-correlation of
two images one can not only get a measure for their similarity, but also find how
much the images are shifted from each other by finding the maximum of (f ⋆g)(n).

In other words, if we slide one image over the other, the integral of the product
will get large if the peaks and troughs of both images overlap.

Note that in the second term, after doing the substitution (g(i) → g(i+ n)) the
variable n + i may exceed the function’s domain. Thus, the term depends on how
this case is treated. The simplest method to deal with this is to pad with zeros,
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i.e. define g(i) = 0 for i < 0 or i > N . Another way would be to pad with the
respective values of g at the edges. Slightly more elaborately, one can also pad with
decreasing values, converging to zero. In the case at hand, zero padding is used as
the difference in the result is negligible here.

The principles explained in this section can easily be generalized for the two
dimensional case [8].

3.2 Implementation
The principle of image correlation is implemented through python’s built-in cor
relate() function provided by the numpy module. A tiff file of N × M
pixels and f frames gets collapsed into an N × f array by summing over each
row. In this set of f one dimensional images, every frame gets correlated with its
direct neighbour. The average is taken over the f − 1 correlation coefficient arrays.
Then, three approaches are made to find the peak of the cross-correlation. The most
naïve way is to just take the maximum. Since the distribution is discretized, one can
achieve a slightly more precise result by fitting a gaussian at the data and taking its
mean value µ for the maximum. While this works in ideal cases, background issues
and coincidental correlations tend to create additional peaks that may outwheigh
the relevant one. Thus, a more involved, semi-automatic way of identifying peaks
is applied (cf. section 5.2.1).

This procedure can be repeated with correlation coefficients obtained by corre-
lating each frame f with frame f + 2 or f + 3. This way, one gets up to three data
points to apply a linear fit on (including point (0, 0)) and obtain a better average for
the actual shift.

3.3 Code characterization
In order to measure the performance and accuracy of the image correlation code,
tiff files are simulated and run through it. These simulated videos contain a
certain number of particles moving at a certain velocity through a channel. They
implement Brownian motion in three spatial dimensions, background noise, con-
stant backgrounds and the microscope’s point-spread function for particles – all
adjustable and set to match the real experimental situation as closely as possible.

The main parameters the code is tested against are the number of particles nPr
that corresponds to the particle density, the noise to signal ratio nts1 and the par-
ticle velocity v. Two of these parameters are set to a value at which the code is
known to work well while the third is varied. All other parameters remain con-
stant. For each value of the varied parameter, 100 movies are generated and eval-
uated by the image correlation code. The mean difference between the resulting
velocity from the code and the actual velocity in the simulated movies is taken as
a measure for the code’s accuracy under these conditions. Functions are fitted at
the respective values and these functions are then used to calculate the uncertainty
stemming from the code in actual experiments. The values for the fixed parameters
are v = 25, npr = 60, nts = 0.5. Plots of the results can be found in figures 5,
6 and 7. A function is plotted to the respective data point (dashed lines in figures).
They are used to model the error of the code. Fitting parameters for these functions
can be found in the appendix (5.2).

1As opposed to the more conventional signal to noise ratio.
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The results mostly confirm what is intuitively clear:

• The code works indifferently from particle velocity v, as long as it does not
get too big. If the particles are moving so fast that they are only on screen for
two frames or less, one can no longer follow the path of one single particle.
This can be seen in figure 5 in the sudden drop around vin ≈ 50.

• If the background noise gets closer to or greater than the signal strength, the
correlation code has to compare random images with the same mean values
but no defined structures. This will lead to a correlation coefficients peak at
zero. Thus, the code output will be zero and the difference of output to v in
figure 6 approaches v quickly for nts > 0.7.

• If there are very few particles, the relative positions of the particles from each
other change a lot in every frame due to Brownian motion. In such a situation,
every lag at which two particles overlap creates a high correlation coefficient,
even if the particles do not actually correspond to each other. With more
particles, areas with high densities are less susceptible to moving faster or
more slowly than other such areas and thus, the distances between high density
areas stay the same which allows for less ambiguos correlation.
It has to be noted that the code stops working for too high densities, as this re-
sults in correlating almost white images with each other. Testing this properly,
however, proved too calculation expensive.

3.4 Background handling
For videos with a constant signal in the same spot, as it may occur if a particle gets
stuck or if any other structure in the background emits light, the code breaks down if
the background signal strength is similar to the one of the particles as this produces
an immense peak at zero. In this case, background subtraction becomes crucial.
The most intuitive way would be static background subtraction: take a frame with
no particles in it and subtract it from all the other frames. Such a frame turns out to
be hard to produce in experimental reality due to numerous reasons. One is left with
the possibility of subtracting the frame with the fewest particles in it which leads
to an improvement in most cases, but does not work universally. Additionally, the
background might change over time with bleaching effects or new particles getting
stuck in the region of interest.

An alternative is to avoid correlating images with many similarities by looking
at their differences instead: dynamic background subtraction. Subtracting one im-
age from the subsequent other will cancel all constant background disturbances and
produces an image that - in the ideal case - has the first image in positive values
and the second in the negative. Taking these positive and negative parts respec-
tively and correlating them comes very close to correlating everything that is not
constant background. It turns out that this method almost completely solves most
background issues. Only for low velocities, i.e. small differences between two sub-
sequent images, dynamic background subtraction cancels out too much of the actual
signal, so static subtraction is advised in these cases.

9



0 20 40 60 80 100

Particle velocity (px/frm)

−0.5

0.0

0.5

1.0

v r
es
/v

in

Figure 5: Ratio of simulated velocity vin and output ve-
locity vres as a function of the simulated ve-
locity v. The dashed line is a fit of f(x) =
(a0 + a1 · x) · heaviside(a2, x) + a3 + a4/x .

0.5 0.6 0.7 0.8 0.9
Noise to signal ratio nts

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

v r
es
/v

in

Figure 6: Ratio of simulated velocity vin and output
velocity vres as a function of the simulated
noise to signal ratio nts. The dashed line is
a fit of the heaviside approximation f(x) =
a0 + a1/(1 + exp(a2 · x+ a3)) .

0 20 40 60 80 100

Number of particles npr

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

v r
es
/v

in

Figure 7: Ratio of simulated velocity vin and output
velocity vres as a function of the simulated
number of particles npt. The dashed line is a
fit of the function f(x) = a0 + a1/x .

10



4 Experiment

As shown in section 2, the zeta potential ζ is linked to the electroosmotic flow
velocity v through equations (13), (14) and (15). This allows us to experimentally
determine the zeta potential of silica devices by measuring the flow velocity inside
their channels while controlling all parameters, namely the inverse Debye length κ,
the channel height h and the external electric fieldE = V/d with electrode distance
d and applied voltage V . Channel height and electric field are easy to control and
hold constant. κ depends on the ionic concentration and the temperature (cf. eq (9))
which introduces some difficulties (see section 4.4).

A device can be loaded with a certain solution of known salt concentration by
putting droplets of said solution on either side of it such that the channels get
flooded. A water repellant marker is used to prevent the solution from flowing
to the other side on any way other than through the channels. An electric field can
then be generated by putting electrodes in the droplets on both sides and applying a
potential difference between them.

In order to observe and measure the electroosmotic flow velocity, tracer particles
are used. These particles are dragged along with the flow and travel through the
channels. They can be observed using fluorescent microscopy. Videos from these
observations can then be analyzed (cf. section 3) to determine the flow velocity.

4.1 Setup
As mentioned above, fluorescent microscopy is used to image the device and the
tracer particles. For that reason, a microscope is designed and built using customary
optical elements. The microscope features two lasers of different wavelengths to be
used for excitation. For the experiment at hand, only one wavelength is necessary,
though.

A schematic representation of the setup can be found in figure 8. The laser beams
are adjusted for height and horizontal angle using silver alignment mirrors, before
they are sent through two lenses for collimation (L1, L2). Collimation creates par-
allel light and allows us to increase the spot size of the beams. While the former is
not really important in the case at hand, the latter is useful as we want to illuminate
a great area of the probe. Optical density filters (OD) can be used to control the
intensity of the incoming light. The two beams are brought together using a 50 : 50
beamsplitter (BS) and another set of alignment mirrors to guarantee that the paths
coincide. A lens (L3) is positioned in the back focal plane of the objective, such
that the incident light leaves the objective parallel and thus illuminates an area of
the probe, rather than being focused on one spot. A longpass dichroic mirror (D) is
used to reflect the incident light into the objective and unwanted reflections thereof
back towards the source and away from the detector. Meanwhile, the emitted light
from the probe, which is above the dichroic’s cutoff wavelength, gets transmitted
and projected onto the detector with a last set of mirrors. In front of the camera
tube, a longpass filter (F ) is installed to get rid of excitation light that may have
passed the dichroic mirror. Finally, a widefield lens (L4) is used to focus the image
onto the camera’s chip.
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Figure 8: Simplified scheme of the microscope. Not all mirrors (M)
that were used in reality are depicted here. See text for
further explanation.

Figure 9: Scheme of a nanofluidic device.

4.2 Experimental Practice
The data aquisition is principally carried out as explained above. The tracer particles
used are fluorescent beads of about 28 nm diameter (confer appendix for details).
Solutions of these in deionized water are mixed with a known amount of sodium
chloride solution to reach the desired ionic concentration. Conductivity measure-
ments are carried out to confirm the concentration. It is verified that the conductivity
of the thus prepared solution in stock remains constant over the timespan of the ex-
periment (see also section 4.4).

Once the device has been loaded an external voltage is applied starting from 1 V
and increasing in steps of 1 V. Hereby, each voltage is applied in both directions
in order to avoid the build up of internal capacities and inductivities. The voltage
is only applied for as short a time as needed to capture a movie (ca. 30 s) and the
system is given approximately 5 minutes of no voltage after each measurement in
order to relax.

Summing up, all experimental parameters are held constant – as far as possible,
see section 4.4 – and only the applied voltage, and thus the electric field, is varied.

12



Figure 10: A typical frame from a movie with ideal particle density (cf. section 5.1).

4.3 Results and evaluation
The values of v in pixel per frame and V in volt are transformed to v in µm/s using

vµm/s = vpx/frm · frametime
pixelsize

and
E = −V/d .

The method of least squares is used to fit lines to these data points, where the
points are weighted with the inverse of their uncertainties (as found by the evalu-
ations in section 3). Plots of this can be found in figures (11), (12) & (13). With
smaller channel height the measurements break down for voltages above 10 V as the
beads tend to stick to each other and the walls more and more and the flow velocities
– if even observable – do not seem to be correlated to the applied voltage anymore.
Similar seemingly chaotic behaviour can be observed for higher ionic strengths.

From these fits, the values of the slopes v/E are extracted. The uncertainty on
these values is found using a Monte-Carlo approach: The errors on the data are
taken as a σ-interval for Gaussian distributions centered around the data values.
1000 sets of data are simulated this way and a line is fitted to each of these sets. The
uncertainty on the original fit’s slope is then taken to be the standard deviation of
the slopes of the simulated data fits.

These three values of v/E are plotted against h and the function

v

E

(
h
)
=

2εrε0
η

e−κh/2 ·
(

cosh(κh/2)− 2

κh
sinh(κh/2)

)
· ζ (20)

where the only free parameter is the EDL potential ζ is fitted to them (cf. section
2). This is plotted in figure (14). Since an estimation of the uncertainty based on the
Monte-Carlo method explained above would be quite effortful as through κ there
are uncertainties on the fitting function (eq. 20) itself, Gaussian error propagation
is used to find the error on ζ (see section 5).

Numerical values of quantities discussed in this section can be found in tables 1
and 2. The acquired values for the velocities as well as error propagation calcula-
tions can be found in the appendix (5).
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Figure 11: Measured particle velocity v versus electric
field strength E and linear fit to the data for
h=210 nm± 5 nm.
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Figure 12: Measured particle velocity v versus electric
field strength E and linear fit to the data for
h=160 nm± 5 nm.
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Figure 13: Measured particle velocity v versus electric
field strength E and linear fit to the data for
h=130 nm± 5 nm.
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Table 1: Constants used in the calculations. The respective errors on these
are negligible compared to statistical and sytematic errors of the ex-
periment.

Name Symbol Value Unit
Dielectric constant ε0 8.854187817×10−12 F/m
Relative permittivity of water a εr 79.2 -
Dynamic viscosity of water b η 9.71×10−4 Pa s
Boltzmann constant kb 1.3806488×10−23 J/K
Elementary charge e 1.602176565×10−19 C
Avogadro number NA 6.02214129×1023 1/mol
Molar mass of NaCl mm 58.44 g/mol
Density of NaCl ρNaCl 2165 g/cm3

Conversion factor for NaCl K 0.47 -
Valency of NaCl z 1 -
a At T = 296K, according to [9].
b At T = 296K, according to [10].

Table 2: Measured parameters with uncertainties.
Name Symbol Value Error Unit
Pixelsize pixelsize 122 1 µm/pixel
Exposure + Lagtime frametime 0.102 0.001 frames/second
Temperature T 296 1 K
Conductivity C 15 2 µS/cm
Salt concentrationa c 261 30 µmol/l
Inverse Debye length κ 53.1 3.5 µm−1

Electrode distance d 6.01 0.05 mm
Channel height h 130, 160 & 210 5 nm
Applied external voltage V 1 to 15 b 0.01 V
a Calculated from conductivity C.
b For h=130 nm V ranges from 1V to 10V.

The result for the double layer potential is:

ζ = (45 ± 9)mV . (21)

With equation (16 this gives the value for the wall charge density:

σ = (−1.7 ± 0.4)mC/m2 = (−1.1 ± 0.2) × 105 e/µm2 (22)

4.4 Discussion
While the resulting value for ζ lies within the expected range compared to estima-
tions based on calculations ([7]) and the data fits the proposed theory well, there are
significant sources of uncertainties that shall be addressed in this section.
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4.4.1 Debye-Hückel Approximation

The product e ·ζ – using the result 21 – amounts to about 1.8×kbT . This means the
requirement 10 for the linearization of 8 is not fulfilled. Thus, the model used for
determining ζ cannot be strictly justified. As can be seen in figure 15, the relative
error when performing the linearization of the sinh function in this range is around
100%. Roughly estimated, this amounts to an additional uncertainty on the final
result for ζ of about 5mV.
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Figure 15: Comparison of sinh(x) with the identity function. The dotted line indicates the value
of eζ/kbT .

4.4.2 Inverse Debye Length κ

The value of the parameter κ comes with many possible error sources. To determine
its value one has to know the ionic concentration and the temperature (equation 9).

Temperature. Other than κ, the viscosity η and the relative permettivity of wa-
ter εr also depend on the temperature. [5] discusses the effects of joule heating due
to the applied voltage on the temperature and velocity distribution of microfluidic
systems. These effects appear to be relatively small for the problem at hand. Addi-
tionally, the fact that a voltage is never applied for a long timescale certainly helps
to minimize possible effects of joule heating. It should be pointed out, however,
that no explicit measurement of the temperature inside the device during the experi-
ment has been conducted, so the possibility of these effects influencing the outcome
cannot be discarded completely.

Concentration. While one can have relatively good control over the ionic strength
of the used solution by carefully preparing a buffer of NaCl, these efforts end up in
vain because of the following reasons: Once the solution is applied to a nanoflu-
idic device, the conductivity increases as part of the Na+- ions adhere to the silicon
groups of the wall. In order to keep this effect relatively small one could prepare a
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buffer of much higher concentration than what the sodium-silica interaction adds.
It turns out, however, that as soon as we go to these concentrations, the experiment
cannot be conducted anymore as the nanobeads do not enter the channels under
these circumstances – probably due to some chemical effect. Thus, the ionic con-
centration has to be determined indirectly through measurements of the conductivity
of the solution. This leads to a new set of problems. Conductivity measurements
usually require larger volumes than were used in the experiment. The recommended
volume for the used conductivity metre amounts to 200 µl while the droplets in
a typical experiment are of about 20 µl to 30 µl volume. The conductivity metre
has been tested repeatedly for whether the results of a measurement with sufficient
amounts of solution correspond to those with small volumes. It seems that the me-
tre creates reproducable results within small errors even on these low volumes, so
acquiring the conductivity of the solution before and after an experiment is possible
this way.

To get the ionic concentration from the conductivity the simple relation

c =
ρ

mm
·K · C (23)

is used, where c is the ionic concentration, ρ the density of the dissolved substance,
mm its molar mass, K a substance specific conversion factor and C the measured
conductivity. This relation specifically holds for solutions of one ionic species.
In the case at hand, we treat the solution as consisting purely of NaCl in water,
neglecting possible contributions from the beads or surface groups of the silicon
chip that might dissolve. But even for that case, the empiric conversion factorK lies
within a range of 0.47 to 0.50, introducing an uncertainty to the problem. In order to
determine the appropriate value of K, the data from [11] is used and extrapolated.

The change in the final result for different values of C is shown in figure 14. As
can also be seen from the analysis, the result is more stable to deviations to and at
higher conductivities, rather than at low values of C.

In addition to the large uncertainty on the value of κ, the fact that the ζ-potential
itself depends on the ionic strength and the pH of the used solution [3] has been ne-
glected completely. So the resulting value of ζ is in fact just valid for the particular
set of parameters used in this experiment. It would be desirable to carry out more
measurements with varying ionic strength and pH in order to find ζ for a range of
situations.

4.4.3 Nanobeads

The behaviour of the fluorescent beads used in the experiments is often far from
ideal. In the course of experimentation, cases where the beads would not enter
the device properly or not at all would occasionally come up, even if all apparent
parameters would be identical to a successful situation. In the cases where the
device could be loaded, sometimes significant differences in particle concentrations
could be observed in different channels. This might be due to structural defects or
variations in some channels. Another unexpected observation is the fact that the
behaviour of the system is asymmetric with respect to the direction of the electric
field. Reasonable measurements were often possible for one direction of the field:
particles would flow according to the analysis and as soon as one turns the field
off some backflow would occur before the system stabilized again. For the other
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direction of the field, sometimes no flow occured at all, sometimes the velocity did
not depend on the field strength. An explanation for this might be that even though
much care had be put into conducting the experiment symmetrically, some internal
capacities built up. There may also be chemical effects that play a role in this.

A major problem is the fact that the beads themselves carry a slight negative
charge and are thus pulled towards the positive pole, against the overall EOF. This
charge is not known precisely, so the severeness of this effect is hard to estimate.
Attempts of quantizing the strength of this electrophoretic drag by comparing the
measurements to an identical situation with uncharged quantum dots failed, as no
useable data with quantum dots could be acquired.

One can see that there are a number of not well understood effects that reduce the
reproducability of the whole experiment. It has to be pointed out that none of these
effects have been accounted for in the evaluation.
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5 Appendix

5.1 Methods
The imaging setup consists mainly of Thorlabs photonics tools. A 473 nm and a
532 nm laser source of powers 100mW and 50mW respectively are used for the
illumination. The powers can be adjusted using optical density filters. The camera
used is the EMCCD detector Andor Luca-R [12]. Life technologies’ Fluospheres R⃝
Carboxylate-Modified Microspheres (F8784) are used as tracer particles. This batch
has a diametre of 28 nm± 4 nm. It turns out that a dilution of 1/1000 from stock
produces a reasonable particle density. For tests with quantum dots, Life technolo-
gies’ catalog number (Q21511MP) is used.

5.2 Data and Code
The tiff files used in the evaluation as well as the program codes can be found at
http://www.physik.uzh.ch/~kekram/Bachelor%20Thesis/. The
resulting velocities for these files, which are plotted in figures 11, 12 and 13, are
presented in table 3. Table 4 holds the values of the fitting parameters for the func-
tions of section 3.3.

Table 3: Evaluated values of the velocity.

h=210 nm h=160 nm h=130 nm
Voltage Velocity Voltage Velocity Voltage Velocity

(V) (px/frm) (V) (px/frm) (V) (px/frm)

1 8 2 13 1 -a

2 9 4 17 2 -a

3 12 6 10 3 6
4 15 8 30 4 10
5 23 10 39 5 14
6 24 12 44 6 22
7 32 14 46 7 26
8 35 8 29
9 33 9 34
10 38 10 23
11 37
12 46
13 45
14 50
15 59

a Code unable to produce result
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Table 4: Fitting parameters fo the functions in the code performance analysis
as given in figures 5, 6 and 7.

a0 a1 a2 a3 a4

Velocity v :
−1.33 −7.45e−4 5.20e1 1.00 −2.27e−1

Noise to signal ratio nts :
9.95e−1 −9.85e−1 2.60 3.97e1

Number of particles nprt :
1.03 −2.40

5.2.1 findpeaks.py

The detection of peaks in the correlation spectrum is carried out by the script
findpeaks.py , the source code of which can be found under the link given
above. The principle of the method is to detect peaks of a given function by taking
its derivative and detecting zero-crossings. If the zero-crossing has negative slope,
one can identify a maximum. In the implementation the derivative is approximated
by the finite difference method and the result is smoothed to minimize noise. If a
zero-crossing with the right slope is detected, a Gaussian is fitted to points around
it in the original function and its mean is returned as the position of the maximum.
This method is very successful in detecting peaks over a noisy background but also
very sensitive to the various parameters (peak width, amplitude and slope thresh-
olds, degree of smoothing), thus the dub semi-automatic.

5.3 Error calculation
Gaussian error propagation is used to determine the error on ζ. The uncertainty on
a function f(x1, x2, . . . , xN ) with errors σi on xi is given by the variance formula:

σ2f =

N∑
i=1

(
∂f

∂xi

)2

· σ2i . (24)

With χ = κh/2 and σχ = 1/2 ·
√

(σκh)2 + (σhκ)2 one finds:

σζ =
η

2εrε0
eχ ·

(
cosh(χ)− 1

χ
sinh(χ)

)−1

·√√√√(
σv/E

)2
+

{
σχ

v

E
·

[
1−

(
cosh(χ)− 1

χ
sinh(χ)

)−1

·
(

sinh(χ)
(
1 +

1

χ

)
− 1

χ2
cosh(χ)

)]}2

.

(25)

To actually calculate this, one first needs the error on κ which is given by:

σκ =

√
2z2e2

ε0εrkb

(
σ2n0

4Tn0
+
σ2Tn0
4T 3

)
. (26)

With the error on the ionic number concentration:
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σn0 = NA
ρNaCl

σm

√
σ2CK

2 + σ2KC
2 , (27)

where σK = 0.01 and all other values are listed in tables 1 and 2.
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