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Exercise 1: Higgs boson production via gluon fusion at NLO QCD

In this exercise we consider the Higgs boson production through gluon fusion. Since in the Standard

Model the Higgs boson does not couple directly to the gluons, its production in this channel is mediated

by triangular loops of heavy quarks (�gure 1), where the top quark gives the dominant contribution.

Figure 1: Feynman diagram contributing to gg → H at lowest order in QCD.

The calculation can be simpli�ed by assuming that the top quark mass is much larger than the Higgs

mass. In this e�ective theory the quark loop can be replaced by a ggH e�ective vertex (�gure 2).

Figure 2: Feynman diagram contributing to gg → H at lowest order in the e�ective theory.

The e�ective Lagrangian at tree level is given by:

Le� =
αS

12πv
HGa,µνGaµν , (1)

where Gaµν = ∂µA
a
ν − ∂νAaµ + gSf

abcAbµA
c
ν is the gluon �eld strength tensor.

In the following we will be working in the so-called conventional dimensional regularization (CDR)

scheme with d = 4 − 2ε dimensions. In this scheme the fermions and the gluones have 2 and 2 − 2ε

degrees of freedom respectively.

(a) Using the e�ective Lagrangian in equation (1) derive the ggH e�ective vertex and compute the

Higgs production cross section at LO in QCD. In the CDR scheme one �nds

σLO = σ0(ε)δ(1− z) , (2)

where

σ0(ε) =
α2
S

π

1

576v2

1

1− ε
, (3)

and z =
m2

H
s .



At NLO one should take into account two types of corrections: real and virtual. In the case of real

corrections, apart from the gluon initiated process, there are new channels opening up, namely the

qg → Hq and qq̄ → Hg.

(b) Compute the squared matrix element for the qq̄ → Hg process (�gure 3).

Figure 3: Feynman diagram contributing to the qq̄ → Hg process.

You should �nd that

|Mqq̄→Hg|2 =
4

81

α3
S

πv2
µ2ε t

2 + u2 − ε(t+ u)2

s
. (4)

(c) Show that in the center of mass frame the two particle phasespace measure dΦ2 can be written

in the following form,

dΦ2 =
1

8π

(
4π

m2
H

)ε 1

Γ(1− ε)
zε(1− z)1−2εy−ε(1− y)−εdy , (5)

where y = (1 + cos θ)/2, with θ being the scattering angle.

(d) Use equations (4) and (5) to compute the cross section in the qq̄ channel,

σqq̄ =
1

2s

∫
|Mqq̄→Hg|2dΦ2 . (6)

You should �nd

σqq̄ =
1

486π2

α3
S

v2
(1− z)3 +O(ε) . (7)

(e) Compute the squared matrix element for the qg → Hq process (�gure 4).

Figure 4: Feynman diagram contributing to the qgtoHq process.

You should �nd

|Mqg→Hq|2 = −
α3
S

54πv2

1

1− ε
µ2ε s

2 + t2 − ε(s+ t)2

u
. (8)

(f) Use equations (5) and (8) to compute the cross section in the qg channel. You should �nd,

σqg = (4π)εΓ(1+ε)

(
µ2

m2
H

)ε
αS
2π
zσ0(ε)

[
−1

ε
Pgq(z) + Pgq(z) ln

(1− z)2

z
+

4

3
z − 2

(1− z)2

z
+O(ε)

]
,

(9)

where Pgq is the Altarelli-Parisi quark-gluon splitting function and it is given by:

Pgq(z) =
4

3

z2 − 2z + 2

z
. (10)

Hint: note that the Mandelstam invariants can be written in the following way,

t = −s(1− z)y , u = −s(1− z)(1− y) . (11)



(g) In the gg channel the squared matrix element is given by

|Mgg→Hg|2 =
α3
S

πv2

1

24(1− ε)2
µ2ε

[
m8
H + s4 + t4 + u4

stu
(1− 2ε) +

ε

2

(m4
H + s2 + t2 + u2)2

stu

]
. (12)

Use equations (5) and (12) and perform the phasespace integration to �nd that the cross section

in this channel can be written as

σrealgg =
1

576π2

α3
S

v2
(1− z)−1−2εzε

(
4π

m2
H

)ε
Γ(1 + ε)µ2ε

(
1− π2ε2

3

)
(13)

×
{
−3

ε

(
1 + z4 + (1− z)4

)
− 11

2
(1− z)4 − 6(1− z + z2)2 − 6εf(z) +O(ε2)

}
,

where the function f(z) satis�es f(1) = 1.

(h) Use the expansion of (1− z)−1−2ε in ε,

(1− z)−1−2ε = − 1

2ε
δ(1− z) +

(
1

1− z

)
+

− 2ε

(
ln(1− z)

1− z

)
+

+O(ε2) (14)

to rewrite the cross section in equation (13) in the following form:

σrealgg = zσ0(ε)
αS
2π

(
µ2

m2
H

)ε
(4π)εΓ(1 + ε)

{[
6

ε2
+

4β0

ε
− 2π2

]
δ(1− z)− 2

ε
Pgg(z) (15)

− 11
(1− z)3

z
+ 12

1 + z4 + (1− z)4

z

(
ln(1− z)

1− z

)
+

− 12
(1− z)2(1 + z2) + z2

z(1− z)
ln z

}
,

where Pgg is the gluon-gluon splitting function and is given by

Pgg(z) = 6

[
1− z
z

+ z(1− z) +
z

(1− z)+

]
+ 2β0δ(1− z) , (16)

and β0 = (11Nc − 2nf )/12.

When computing the virtual corrections one should take into account that the ggH e�ective vertex

gets modi�ed due to the exchange of virtual gluons inside the top quark loop. At one-loop order the

e�ective Lagrangian is given by

Le� =
αS

12πv
HGa,µνGaµν

(
1 +

11

4

αS
π

)
. (17)

The squared matrix element for the virtual corrections (more speci�cally the interference between

one-loop and tree-level amplitudes) is given by

|Mvirt|2 =
αS
2π

(
4πµ2

m2
H

)ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
CA

(
− 2

ε2
+

11

3
+ π2 +O(ε)

)
|M0|

2
, (18)

where |M0|2 is the squared Born amplitude,

|M0|2 =
α2
S

576π2v2
m4
H

1

1− ε
. (19)

(i) Use equation (18) to compute the cross section for the virtual corrections. You should �nd

σvirt =
αS
2π
σ0(ε)CA

(
µ2

m2
H

)ε
(4π)εΓ(1 + ε)

{
−2

ε
+

11

3
+

4π2

3
+O(ε)

}
δ(1− z) . (20)



After combining real and virtual corrections for the gg channel, we are still left with both UV and IR

divergencies. The UV singularities are removed by renormalizing the strong coupling, which leads to

a renormalized virtual amplitude,

|Mvirt|2renorm = |Mvirt|2 −
1

ε

αS
π

2(4π)εΓ(1 + ε)β0

(
µ2

µ2
R

)ε
|M0|2 , (21)

and a corresponding renormalized cross section σrenormvirt . After combining σrealgg + σrenormvirt there is still a

remaining IR pole, which is associated to initial state collinear singularities and is removed using the

appropriate counterterm,

σctgg = zσ0(ε)
αS
2π

(
4πµ2

µ2
F

)ε
Γ(1 + ε)

2

ε
Pgg(z) . (22)

Here µR and µF are the renormalization and factorization scales, respectively.

(j) Show that the �nal result for the cross section in the gg channel, σ
(1)
gg = σrealgg + σrenormvirt + σctgg, is

given by

σ(1)
gg =

αS
π
zσ0

[(
11

2
+ π2 + 2β0 ln

µ2
R

µ2
F

)
δ(1− z) + 12

(
ln(1− z)

1− z

)
+

(23)

+ 6

(
1

1− z

)
+

ln
m2
H

µ2
F

+ P reg
gg (z) ln

(1− z)2m2
H

zµ2
F

− 6
ln z

1− z
− 11

2

(1− z)3

z

]
+O(ε) ,

where the regular part of the splitting function is given by

P reg
gg (z) = Pgg(z) = 6

[
1− z
z

+ z(1− z)− 1

]
. (24)


