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Abstract 

 

Although there already have been many studies on Superconducting Nanowire Single Photon Detectors 

(SNSPD), much is still to be investigated to further improve their applicability in detecting photons with 

high precision and to enhance their performance properties, such as the dark count rate. In order to 

lower the rate of such false counts without incident photons, their origins and dependencies need to be 

understood. In this thesis a model is evaluated, that describes the dark count rates’ dependence on 

perpendicularly applied magnetic fields for meander-shaped SNSPDs, especially when the dependence 

does not show the expected symmetry in regard to the sign of the magnetic field.  Measurements with 

three differently shaped SNSPDs have been performed. We found that while a magnetic field in one 

direction causes the dark count rates to increase, a magnetic field in the opposite direction is able to 

decrease it. This could be well explained by the model on trial. 
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1 Introduction 

 

The demand for devices with the ability to detect single photons with high efficiency and high temporal 

resolution is shared by a variety of technical areas such as astronomy, space-to-ground 

communications, time-of-flight ranging and bioluminescence. Especially optical quantum information 

(QI) applications such as quantum key distribution (where quantum objects like photons play a key role) 

are expected to make great progress in the next decades. Therefor a lot of research is put in the 

improvement of single-photon detectors.  The requirements concerning these devices include a better 

signal-to-noise ratio, high detection efficiency, adequate spectral range and the ability to resolve the 

number of photons reaching the detector simultaneously [1]. 

A promising type of single-photon detectors, featuring single-photon sensitivity from visible to mid-

infrared wavelengths, low dark counts, short recovery times and excellent timing resolution, is based 

on photon-absorption by a thin superconducting strip. Such a device – named superconducting 

nanowire single photon detector (SNSPD) – is the centrepiece of my thesis.  

The work I am going to present can be looked on as the continuation of the studies published by Engel 

et al. in 2012 [2]. They investigated the count rates of a meander-shaped SNSPD made of tantalum 

nitride and found a somewhat surprising asymmetric dependency of the dark count1 rate on the applied 

magnetic field. The model they used to describe the dark count rate’s dependence on magnetic fields 

was then adapted taking into account the suggested explanation for this asymmetry, which evolves 

around the inequality of the meander-shape’s turns (see sec. 2.4). 

The purposes of the experiments as part of this thesis are firstly, to ascertain, if the asymmetric 

dependence of the dark count rate on the magnetic field can be reproduced with other SNSPD-devices; 

and secondly, we evaluate Engel’s [2] approach to explain this. The evaluation will be based on the dark 

count rate measurements of differently shaped SNSPDs made of niobium nitride (NbN). We vary the 

strength of an applied magnetic field, the bias current and the temperature to investigate their 

influences on the dark count rate.  

After a brief introduction of some basics of superconductivity (sec. 2.1), the functional principle of an 

SNSPD will be explained (sec. 2.2). It will be followed by the description of the findings of previous 

research that lead to the development of [2]’s dark-count-rate-formula on trial. The experimental setup 

to measure the dark count rate dependencies of our SNSPDs will be described in section 3. Eventually, 

our findings will be presented in section 4. 

 

 

 

 

 

 

 

                                                           
1 See section 2.3 
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2 Superconducting Nanowire Single Photon Detectors (SNSPDs) 

 

2.1 Superconducting characteristics 

To begin with, a few basics of superconductivity will be briefly presented without going into detail. The 

purpose is to introduce some of the recurring superconductor-related expressions used in the 

subsequent description of an SNSPD’s functional principle and our devices’ characteristics. 

 

2.1.1 Cooper pairs 

An electric conduction with no resistance can exist in certain materials due to the pairing of a number 

of electrons into Cooper pairs, named after Leon Neil Cooper who first described this phenomenon in 

1956 [3]. The Cooper pairs interact with the ion-lattice (phonons) of the material in a way that lets them 

flow through it without resistance. 

 

2.1.2 Coherence length 

In 1950, V. L. Ginzburg and L. D. Landau have published a successful theory to describe superconductivity 

[4]. This so-called Ginzburg-Landau theory produced a relevant characteristic length of a 

superconductor, the superconducting coherence length 𝜉. There are many different formulations of 

how this length can be understood. The simplest one is that it is the distance between two electrons of 

a Cooper pair [5][6]. It is also described as the largest non-superconducting distance a Cooper pair can 

tunnel through and represents the smallest length over which the density of Cooper pairs can vary [6]. 

The coherence length 𝜉 is a relevant quantity when it comes to superconducting single photon 

detectors, for example because some of the detector’s characteristics will depend on the ratio of its 

dimensions to the coherence length. 

 

2.1.3 Type-I and type-II superconductors 

Superconductors are separated into two categories: type-I and type-II superconductors. Type-I 

superconductors show the Meissner-Ochsenfeld effect – the expulsion of magnetic fields – as long as 

the field is weak enough. The magnetic field penetrates the surface of a superconductor in this 

Meissner-state only to a depth of the order of the penetration depth 𝜆.  

When the field strength exceeds the material-dependent critical value 𝐻𝑐, the superconductivity is 

destroyed and the normally conductive state sets in.  

Our detector material (NbN) is a type-II superconductor that doesn’t go straight into the normal state 

when exposed to a lower critical field 𝐻𝑐1 but only at a higher field 𝐻𝑐2. In between those critical fields 

the material is still superconducting but the magnetic field is not expelled completely anymore. Vortices 

of supercurrents appear in the material parallel to the surface. Within their cores, which have a size of 

the order of the superconducting coherence length 𝜉, the material is in its normal state and can be 

penetrated by the magnetic field. The magnetic flux Φ through such a vortex is quantized. It’s as large 
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as the so-called superconducting magnetic flux quantum Φ0 =
ℎ

2𝑒
≈ 2.07 ∙ 10−15 Wb [7][8], where ℎ is 

the Planck constant and 𝑒 is the electron charge. 

The density of vortices in a superconductor increases the closer the magnetic field gets to the critical 

value 𝐻𝑐2. 

Fig. 1 shows a sketch of vortices in a type-II superconductor, Fig. 2 two images of vortices in 

superconducting strips. 

 

 

 

 

 

 

 

 

2.1.4 Pearl length or effective penetration depth 

The Pearl length Λ describes the dimension of the magnetic field distribution around the core of a vortex 

of supercurrent in a thin type-II superconducting film. It is defined by Λ = 2𝜆2/𝑑 , where 𝜆 is the London 

penetration depth and 𝑑 is the thickness of the film. It is also called the effective penetration depth. 

 

2.1.5 Transition from superconducting to normal state 

The superconductive state of a material can be destroyed in various ways, but all of them result in 

supplying the electrons in the Cooper pairs with enough energy to break their bond. For example, this 

can be achieved by 

a) rising the temperature over a critical value, 

b) increasing the current density in a superconductor to a critical value, or 

c) exposing the superconductor to a strong enough magnetic field. 

 

  

Fig. 1, [26]: Illustration of vortices in a 
type-II superconductor that is exposed 
to a magnetic field > 𝐻𝑐1. 

Fig. 2, [9]: Images taken of superconducting strips, where 
vortices are visible as dark spots and areas that expel the 
magnetic field appear white. 
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2.2 Functional principle of an SNSPD 

As its name reveals, a superconducting nanowire single photon detector (SNSPD) is a device to detect 

single photons based on a superconducting strip with a width of the order of nanometres (a nanowire). 

The superconducting wire is fabricated onto an insulating substrate and is then integrated into a circuit. 

In order to be able to detect a photon, a bias current has to flow through the wire. How the absorption 

of a photon leads to a measurable signal is described by Bulaevskii et al. [10] “in a somewhat 

oversimplified picture presented in the literature” and illustrated in Fig. 3: When a photon is absorbed 

by the superconducting strip of the detector, it creates a hot spot that leads to the area becoming 

normally conductive. Consequently, the supercurrent in the strip will be forced to flow through the 

remaining superconducting area around the hot spot. There, the current density will be increased to a 

critical value, whereby this area is transformed to the normal state too. That way a normally conductive 

belt is created across the strip. Its resistance produces a measurable voltage pulse (Fig. 4), by what the 

incident photon is counted. Afterwards the normal belt will cool down again and the wire will return to 

its superconducting state, ready to detect another incident photon. 

 

 

 

 

 

 

 

 

 

  

Fig. 3, [11]: Diagram of the detection principle of a SNSPD. (i) A bias current runs through the superconducting strip. (ii) The 
absorption of an incident photon leads to a hot spot. (iii) The current is forced to flow around the normally conducting hot 
spot, whereby the increased current density next to the hot spot causes the area to become normally conductive too. (iv) A 
belt-like region across the strip is transformed into the normal state  → (v) A  measurable voltage pulse is created due to the 
resistance of the normally conductive part of the strip. (vi) The heat dissipates in the material and the whole strip becomes 
superconducting again (i). 

Fig. 4: Several voltage pulses of an SNSPD recorded by an oscilloscope.  
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2.2.1 Material choice: NbN 

Superconductors are suitable to detect photons with wavelengths in the infrared, visible and even soft 

x-ray region [12] because of their energy gap – the energy required to excite electrons from the bound 

state (Cooper pairs) to the normal state - in the meV-range [13]. 

SNSPDs can be made out of various superconducting materials such as tantalum nitride (TaN), 

amorphous tungsten silicide (WSi), magnesium diboride (MgB2) [14], niobium titanium nitride (NbTiN) 

[11] and the commonly used niobium nitrid (NbN). Other materials like molybdenum silicide (MoSi), 

molybdenum germanium (MoGe) and tungsten rhenium (WRe) are also in investigation for the use in 

SNSPDs [15]. 

The detectors examined in this thesis are made of NbN, as the first SNSPDs have been [11]. NbN-

detectors are suitable to detect photons in the infrared and visible region. The feature making NbN the 

material of first choice is its very short thermalization time [16]. 

 

2.3 Dark Counts 

In [17] Bulaevskii et al. wrote that three processes might cause voltage pulses that lead to counts in 

SNSPDs: 

a) Enough Cooper pairs are broken apart by the energy of an absorbed photon to create a normal-

state belt across the entire width of the strip (direct photon count),  

b) A thermally induced single-vortex is formed and moves across the strip. If the bias current is 

high enough, the released energy by the vortex crossing is sufficient to transform a belt-like 

region across the strip width into the normal state. Hereby a so-called dark count is triggered, 

as there is no photon involved. 

c) A “vortex-assisted single-photon count” happens by a combination of a) and b).  When a single 

incident photon does not have enough energy to create a normal-state belt, it can still provoke 

a single-vortex crossing “which provides the rest of the energy needed to create the normal-

state belt”. 

Within the scope of this thesis, the second process (dark count) is of most interest. 

 

2.3.1 Vortex crossing 

In a superconducting strip with thickness 𝑑 on the order of the coherence length 𝜉 and a larger width 

𝑤 much smaller than the Pearl length Λ, thus 𝑑 ≈ 𝜉 ≪ 𝑤 ≪ Λ, the main cause of dark counts is the 

formation of vortices that generate heat by crossing the strip orthogonally to the bias current due to 

the Lorentz force [10] (Fig. 5,6).  

There exists an energy barrier for a vortex to enter a superconducting strip. It depends on the strip’s 

bias current and the magnetic field it is exposed to. 

For a strip width 𝑤 < 4.4 𝜉 [18,19] it is possible for vortices to enter the strip solely because of the 

magnetic field generated by the bias current.  
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2.3.2 Critical current 

Clem et al. [20] showed that the highest current density in a strip with meander-shape is located in the 

sharp 180°-turns where current crowding takes place at the inner edge (Fig. 7). Consequently the critical 

current of such a structure is decreased as compared to that of only a straight strip, and the entry of 

vortices into the strip is most probable to happen in the 180°-turns. Engel et al. [2] estimated that the 

probability for vortex crossings are ~105 times higher near the turns as compared to the straight parts 

of the strips. Therefore, in order to describe the magnetic field depending dark count rate of our 

SNSPDs, we will focus on the contribution of the 180°-turns. 

 

2.3.3 Magnetic field dependence 

In [17] it was shown that the vortex-crossing rate is enhanced by a magnetic field in combination with a 

bias current. At currents close to the critical current, the effect of the magnetic field is said to be 

equivalent to increasing the bias current by a factor (1 +
𝐻

𝐻∗), where 𝐻∗ is a device-dependent field 

scale (see Eq. (2)). 

Fig. 6, [10]: Illustration of a vortex 
crossing a superconducting strip of 
an SNSPD, creating a hot belt. 

Fig. 5: Sketch of a vortex in the superconducting strip of 
an SNSPD. 

Fig. 7, [21]: Current distribution in a rectangular 180°-turn. 
The current density is larger at the inner edges. 

Fig. 8, [21]: Current distribution in a rectangular 180°-turn 
under the influence of a magnetic field perpendicular to the 
current.  



11 
 

The influence of a perpendicularly applied magnetic field on the current density in 180°-turns was 

examined by Clem et al. [21], Fig. 8. They found that screen currents in the strip caused by the magnetic 

field can increase or also decrease the current density near the inner edge of the turnaround, depending 

on the orientation of the field and the bias current (Fig. 10). If an applied magnetic field for example 

reduces the current density in a left turn of the strip, it will conversely enhance it in a right turn, as is 

sketched in Fig. 9.  

 

 

 

 

 

 

According to [17] the field dependent critical current of a SNSPD like ours can be described by Eq. (1), 

if the magnetic field 𝐻 is sufficiently smaller than 𝐻∗, which is the case in our experiments. 

𝐼𝑐(𝐻) = 𝐼𝑐0 (1 −
𝐻

𝐻∗
), 

𝐻∗ ≈
2𝑤

𝜋𝑒𝜉
𝐻0,      𝐻0 =

Φ0

2𝜇0𝑤2
, 

Here 𝐼𝑐0 is the critical current in zero field and 𝑒 is Euler’s number; 𝑤 is the strip width, 𝜉 the coherence 

length, Φ0 the magnetic flux quantum and 𝜇0 is the magnetic constant.  

As was mentioned before, 𝐼𝑐(𝐻) will either be increased or decreased at the inner edge of a turn, 

depending on the current direction and the orientation of the magnetic field. In case of increasing the 

critical current, equation (1) should have a plus sign:  

𝐼𝑐(𝐻) = 𝐼𝑐0 (1 +
𝐻

𝐻∗
) 

This can also be achieved by appointing a negative sign to the scale factor 𝐻∗. 

 

2.3.4 Dark count rate 

Engel et al. [2] agreed with Clem et al. [21] in that the field dependent critical current is the current for 

which the energy barrier for vortex entry vanishes, thus enabling a vortex to transition an area of the 

strip into the normal state by what a dark count is triggered. They described the dark count rate 𝑅𝐷𝐶’s 

dependence on the current by 

𝑅𝐷𝐶 ≈ 𝑅0 ∙ exp (
𝐼𝑏

𝐼
), 

Fig. 9: Illustration of the current density being increased 
by a perpendicular magnetic field at one turn and 
decreased at a turn bent in the other direction. 

(1) 

(2) 

(3) 

(4) 

Fig. 10, [21]: Measurement results of a 180°-turn’s critical 
current depending on a perpendicularly applied magnetic 
field. 
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with 𝑅0 being a proportionality factor and 𝐼𝑏 the bias current in the strip. 𝐼 is a current scale proportional 

to the experimental critical current 𝐼𝑐, which we will express by 𝛾𝐼𝑐, with 𝛾 being a dimensionless scale 

factor.  

To describe the dark count rate generated at a single 180°-turn of the meander structure, Engel et al. 

[2] inserted Eq. (1) into Eq. (4). This yields 

𝑅𝐷𝐶
1 ≈ 𝑅0 ∙ exp (

𝐼𝑏

𝛾𝐼𝑐0 ∙ (1 −
𝐻
𝐻∗)

). 

By this formula, the dark count rate of a turn would be increased by a positive magnetic field and 

decreased by a negative magnetic field. 

If a positive magnetic field leads to an increased dark count rate in the meander-turns of one direction, 

it should decrease the dark count rate generated by the turns in the other direction.  

To describe the dark count rate 𝑅𝐷𝐶
𝑀  produced by a meander-shaped superconducting strip with a 

number of 𝑁∪ turns bent in one direction (e.g. left turns) and 𝑁∩ turns bent in the opposite direction 

(e.g. right turns), we summarize the contributions of the two types of turns as follows.  

 

𝑅𝐷𝐶
𝑀 (𝐻) = 𝑁∪ ∙ 𝑅𝐷𝐶

1 (𝐻) + 𝑁∩ ∙ 𝑅𝐷𝐶
1 (−𝐻) 

 

If the meander consists of an equal number of left and right turns (𝑁∪ = 𝑁∩), the dark count rate 𝑅𝐷𝐶
𝑀  

should be symmetric regarding the sign of the magnetic field 𝐻. This was confirmed by the results of 

Lusche et al. [18]2 

 

2.4  Model for an asymmetric dependency of the dark count rate on the 

magnetic field 

Engel et al. [2] studied the dependence of both the photon and dark count rate of a TaN-meander SNSPD 

on a magnetic field perpendicular to the meander plane. Although the detecting area consisted of a 

meander structure with an equal number of 180° turns in both directions, an asymmetry of the dark 

count rate as a function of magnetic field was found (Fig. 11). They suggested that this asymmetry could 

be caused by irregularities of the detector material, namely turns with impurities or small damages, 

where the current density would be increased. If the turns of one orientation were on the whole more 

flawed than the opposite turns, the effect of the magnetic field lowering the critical current and thus 

enhancing the rate of vortices crossing the strip would be greater there for the corresponding magnetic 

field direction. Instead of acknowledging several impurities in various turns, Engel proposed to 

summarize them all in one turn and to treat all the other turns as equal. For that purpose Eq. (6) was 

adapted to 

𝑅𝐷𝐶
𝑀 (𝐻) = (𝑁∪ − 1) ∙ 𝑅𝐷𝐶

1 (𝐻) + 𝑅𝐷𝐶
β (𝐻) + 𝑁∩ ∙ 𝑅𝐷𝐶

1 (−𝐻), 

where 𝑅𝐷𝐶
𝛽

 denotes the dark count rate generated in the “bad” turn. It can be expressed by 

                                                           
2 They applied magnetic fields up to 100 mT though, what is ten times as strong as the applied magnetic fields in 
[2]. It is not visible in the plots how the dark count rates depend in detail on magnetic fields in the range −10 mT <
𝐵 < 10 mT. 

(5) 

(6) 

(7) 
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𝑅𝐷𝐶
𝛽

= 𝑅0 ∙ exp (
𝐼𝑏

𝛽 ∙ 𝛾𝐼𝑐 (1 −
𝐻
𝐻∗)

), 

with 0 < 𝛽 < 1 being the factor that implements the reduced critical current in that one turn. This 

model function (Eq. (7)) was suitable to describe the asymmetric dark count rate data [2] measured. 

We will evaluated how it fits our NbN-SNSPDs’ dark count rate measurements.  

 

2.4.1 Dead time correction 

The dead time 𝜏 of a detector is the duration of time after a detection during which the detector is not 

able to detect anew because it has not yet returned to its initial ‘triggerable’ state. If this dead time was 

longer than the time passing between two events theoretically causing dark counts, the measured dark 

count rate would be lower than the rate of those events. To take this into account the measured dark 

count rate can be modified as described by Willink [22]:  

𝐶𝑅 =
𝐶𝑅𝑚

1 − 𝐶𝑅𝑚 ∙ 𝜏
 

Here 𝐶𝑅 is supposed to be the actual count rate and 𝐶𝑅𝑚 is the measured (observed) count rate. The 

dead time 𝜏 of our standard meander detector was estimated by using the outcome of a measurement 

with an interfering signal that is shown in Fig. 12. The shortest time interval between two successive 

triggers of the meander-detector was determined to be ∆𝑡 ≈ 2.5 μs, although the frequency of the 

signal reaching the threshold voltage was of the order of 70 GHz. To identify this time interval with the 

detector’s dead time could be a mistake, as not every peak of the signal reaches the trigger threshold 

and other NbN-SNSPDs are reported to have dead times of the order of only 10 ns [1]. However, as the 

evaluation of our measured dark count rate data in section 4.3.2 shows, the dead-time correction with 

the value 𝜏 = 2.5 μs seems not to be overestimated. In fact, none of our measurements yielded a dark 

count rate higher than 4 ∙ 105 s−1, what a least does not contradict the estimated dead time.  

 

(9) 

Fig. 11, [2]: Asymmetry of dark count rate vs. magnetic field measured with a TaN-
SNSPD.  

(8) 
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Fig. 12: Interfering signal (probably due to a faulty amplifier) triggering the oscilloscope recording; used to 
estimate the dead time of the SNSPD. 
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3 Experimental Setup 

 

3.1 Devices 

We want to investigate the dark count rates of three differently shaped SNSPDs made of niobium nitride 

(NbN). As we are assuming that sharp bends of a superconducting strip are the dominant region to 

generate dark counts, the three shapes differ in the number of turns. The first detector is standardly 

shaped like a meander with an equal number of left and right turns (Fig. 13). The second detector is 

meander-shaped too, but with a total of only five turns (Fig. 16). The third detector is no meander but 

a single bridge, therefor has no turns but only a straight strip (Fig. 19). 

Characteristics of the three devices are listed in Table 1.  

 2M 1M5 1B 

 Meander detector 
with 28 turns and 30 
straight strips 

Meander detector 
with 5 turns and 6 
straight strips 

Single bridge detector 
with one straight strip 

Thickness 𝑑 [nm] 4 4 4 

Width 𝑤 [nm] 79.4 84.91 76.75 

Total conductor length 
𝑙 [μm] 

146.4 41.3 8 

    
Critical temperature 
𝑇𝑐  [K] 13.155 13.262 12.715 

Critical magnetic field 
𝐵𝑐2(0)  (extrapol.) [T] 23.26 23.17 21.93 

    
Coherence Length 
𝜉(0) [nm] 4.47 4.48 4.61 

Effective penetration 
depth Λ [μm]  48.74 69.23 (unknown) 

Table 1: Characteristics of the SNSPDs used in our experiments. 

According to [13], the coherence length was derived from the critical magnetic flux density 𝐵𝑐2 at zero 

temperature, which was determined by extrapolation of 𝐵𝑐2(𝑇)-data provided by measurements with 

a PPMS®3 device (Fig. 15, 18, 21).  

𝜉2(0) = √2 ∙
ϕ0

2𝜋 ∙ 𝐵𝑐2(0)
. 

 

                                                           
3 PPMS®: Physical Property Measurement System 

(10) 
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Standard meander 

detector 2M 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 a): 
Image of the standard meander 
SNSPD with 28 turns and 30 
straight strips. 

Fig. 13 b):  
Close-up of the standard meander SNSPD. The strip 

width is 79.4 nm. Imperfections of the strip edges 
are visible. 

Fig. 14: Resistance vs. temperature of meander-SNSPDs, 
measured by Karlsruhe Institute of Technology. We chose 
to perform our experiments with sample 2. 

Fig. 15: Critical magnetic flux density vs. critical temperature, 
measured with a PPMS. The red line is a linear fit to extrapolate 
𝐵𝑐(0). 
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Five-turns meander detector 1M5 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 16 a): Image of the five-turn 
meander SNSPD with five turns and six 
straight strips. 

 

 

 

 

Fig. 16 b):  
Close-up of the 5-turns meander SNSPD. 
The strip width is 84.91 nm. 

Fig. 17: Resistance vs. temperature of 5-turns SNSPDs, 
measured by Karlsruhe Institute of Technology. We chose to 
perform our experiments with sample 3. 

Fig. 18: Critical magnetic flux density vs. critical temperature, 
measured with a PPMS. The red line is a linear fit to 
extrapolate 𝐵𝑐(0). 
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Single bridge detector 1B 

 

 

 

 

 

 

  

Fig. 19 a): 
Upper part of the single bridge detector. 
The current runs only through the 
middle strip. 

Fig. 19 b): 
Close-up of the single-bridge detector. The strip width is 

76.75 nm. 

Fig. 20: Resistance vs. temperature of single-bridge SNSPDs, 
measured by Karlsruhe Institute of Technology. We chose 
to perform our experiments with sample 1. 

Fig. 21: Critical magnetic flux density vs. critical temperature, 
measured with a PPMS. The red line is a linear fit to extrapolate 
𝐵𝑐(0). 
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3.1.1 Device preparation 

The devices were manufactured by the Institute for Micro- and Nanoelectronic Systems of the Karlsruhe 

Institute of Technology. The thin NbN-films were fabricated by direct current magnetron sputtering on 

substrates of R-plane cut sapphire [23]. The films were then formed into their shape by reactive ion-

etching after electron-beam- and photo-lithography (more details in [12]). The outcome were small 

square plates with edge lengths of a few millimetres carrying the superconducting structures. Those 

SNSPD-chips were then attached to a sample holder made of copper (only one at a time), where they 

were connected to a printed circuit board by wire bonding (see section 3.4). 

 

3.2  Cooling 

To reach the superconducting state of our detectors, they have to be cooled down below ≈ 11-12 K 

(see Fig. 14, 17, 20).  Therefore they are placed in a vacuum chamber inside a 3He- cryostat of Janis 

Research Company (Fig. 22), where even temperatures < 1 K can be reached. The cryostat consists of 

an large inner vessel filled with liquid helium (4He, ~ 4 K) and, separated by vacuum, an outer vessel 

filled with liquid nitrogen (~ 77 K). A rotary vane pump and a turbopump produce the vacuum. When 

the cryostat is filled with liquid helium, the vacuum reaches around 10-8 mbar.  

The temperature of the detector is adjusted manually with a needle valve that regulates the flow of the 

liquid helium into the 1 K-pot (Fig. 22). Temperatures below 4 K can be achieved by causing the helium 

to evaporate due to the reduced pressure generated by a rotary vane pump and thus to cool the pot 

because of latent heat. 

Very low temperatures can be achieved using the interaction of charcoal (its temperature is controlled 

by a heater or helium gas) and the 3He in a container mounted on the top of the cryostat. Condensed 
3He drips through a steel tube that is thermally connected to the 1-K-pot into the 3He-pot placed right 

above the sample holder where the detector is attached. By letting the 3He evaporate in the 3He-pot, 

detector temperatures as low as 0.5 K can be reached. For more details see [24]. 

In our experiments, we measured at three different temperatures: 6 K, 4 K and 2 K. Those temperatures 

could be stabilized up to ~10 hours. 

Inside the cryostat, several sensors were placed to monitor the temperatures and the filling level of the 

liquid helium, which had to be refilled on every day of measuring. The liquid nitrogen vessel had to be 

filled about once per week. 
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Fig. 22 a), [24]: Sketch of 3He-Cryostat used to cool the SNSPDs down to 2 K, 4 K and 6 K. 

 

 

 

 

 

 

3.3 Magnetic field 

The magnetic field the detector is to be exposed to is generated by a mobile electromagnet with iron 

core placed outside of the cryostat as close to the detector as possible. A Hall effect sensor is placed in 

close proximity to the detector to measure the magnetic flux density perpendicular to the meander 

plane. The voltage applied to the electromagnet is provided by a Keithley Source Meter that is controlled 

by a LabVIEW-software developed by A. Engel. The current through the electromagnet’s coil is varied 

between 0 and ± 1.2 A, generating magnetic flux densities up to around ±10 mT at the detector’s 

location. 

Fig. 22 b):  
Photograph of the part of the cryostat 
where the detector on the sample holder is 
placed beneath the 3He-pot. 

See also Fig. 23. 
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3.4 Electronics 

Fig. 23 shows the electronics in the 

immediate vicinity of the SNSPD-

chip, including a Cernox thermo-

meter. The SNSPD is connected to a 

circuit that leads a voltage pulse 

arising in its superconducting wire 

over an SMA connector to a mini 

coaxial cable (‘detector signal port’). 

In Fig. 24 the complete electronic 

set-up is shown. The voltage signal 

of the SNSPD is amplified twice, 

once inside the cryostat and once 

outside at room temperature, 

where the signal is lead through 

another coaxial cable, passes two 

attenuators (to damp potential reflections) and then reaches an oscilloscope. The oscilloscope is 

programmed to record any voltage signals exceeding a certain threshold including the corresponding 

time information. 

The voltage to induce the bias current through the SNSPD’s wire is supplied by a Keithley Source Meter 

2410 and is brought to the detector with a coaxial cable. Two low-pass filters are used to reduce 

electronic noise. 

Both the Keithley Source Meter generating the bias current and the oscilloscope itself are controlled by 

a computer using a LabVIEW software of A. Engel, where the settings of a measurement series can be 

specified.  

Fig. 23, [12]: Image of the electronics on the sample holder, where the SNSPD 
(‘clamped detector’) is placed. 

Fig. 24, slightly adapted from [12]: Electronic setup to measure the voltage pulses generated by the 
SNSPD with an oscilloscope. 
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3.5 Measurements 

3.5.1 Current-voltage-characteristics 

To determine the critical current of the detectors at different temperatures and magnetic fields, the 

current-voltage-characteristics are measured as follows. With measurements of the detector-currents 

induced by different applied voltages, the scale of the voltage causing the superconducting nanowire to 

transform into the normal state can be determined. More precise measurements where the voltage in 

the critical range is altered by 0.05 mV are then executed. The voltage is increased from zero to a value 

certainly above the critical value and decreased back to zero, both for positive and negative sign. The 

induced currents are measured and saved in a file. All of this, including the Keithley Source Meter 

supplying the voltage and the one measuring the current, is operated and read out over a LabVIEW-

program prepared by A. Engel. 

Each single measurement is repeated fifty times in a row with unaltered settings. The same 

measurements are then repeated for different magnetic fields (from 0 to ≈ ±10 mT) and again at 

different temperatures (6 K, 4 K and 2 K). 

 

3.5.2 Dark count rate 

The dark count rate is measured by counting the events of the voltage of the detector circuit being lifted 

over a certain threshold by becoming normally conductive. The oscilloscope saves all voltage signals 

surpassing the set trigger level until 10’000 such events are counted or a defined amount of time (30 

seconds) has passed. 

Every time the detector becomes normally conductive a time stamp of the event is recorded by the 

oscilloscope. The count rate is then calculated as the number of events divided through the time 

duration from first to last event.  

To determine the dark count rate’s dependence on the bias current and the magnetic field 

perpendicular to the detector’s plane, the dark count rate is measured for a set of bias currents 

repeatedly at various coil currents. The bias currents 𝐼𝑏 are chosen close to the critical current of the 

detector at zero magnetic field, 𝐼𝑐0. 

Each measurement at a certain bias current and coil current is repeated a number of times and the 

mean of the count rate is saved in an output file that contains a table of information (bias current, 

number of measurements, temperature, magnetic flux density, resistance, count rate, measurement 

errors, e.g.). The number of single measurements cannot be chosen too high for a set of measurements, 

because its overall duration is limited by the liquid helium that does not last longer than approximately 

10 hours. It is favourable to measure a whole set at one go and without  hours-long pauses, because we 

found that a measurement with the same settings as a previous one, but performed some days later, 

could produce results with a small offset to the former ones. The number of measurements was usually 

set to 𝑛 = 10 or 𝑛 = 7. 

To ensure that a magnetic field parallel to the 

detector plane, respectively parallel to the current 

running through the detector’s nanowire, would not 

create an effect on the dark count rate, a few 

measurements are performed with the electro-

magnet placed sideways (see Fig. 25) . Fig. 25: Sketch of the electromagnet’s orientation in 
regard to the SNSPD. 
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4 Evaluation and Results 

 

4.1 Current-voltage-characteristics 

For each detector we measured the current-voltage-characteristics at three different temperatures 

𝑇1 = 6 K, 𝑇2 = 4 K and 𝑇3 = 2 K. The applied voltage was increased from zero to an either positive or 

negative value, so that the corresponding current in the detector-circuit would first increase with the 

voltage and then drop down as the detector was transitioned into its normal resistive/conducting state. 

The voltage was then decreased to zero again. This was repeated for various magnetic fields applied 

perpendicular to the detector plane, with magnetic flux densities 𝐵 = 𝜇0𝐻 up to ±10 mT. In Fig. 26-28 

the results for the measurements with no applied magnetic field are shown. Each measurement was 

run fifty times. 

 

  

Fig. 26: I-V-characteristics of the meander-SNSPD measured at 
different temperatures and zero field. 

Fig. 27: I-V-characteristics of the 5-turns-meander-SNSPD 
measured at different temperatures and zero field. 

Fig. 28: I-V-characteristics of the bridge-SNSPD measured at 
different temperatures and zero field. 
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4.2 Dependence of the critical current on the applied magnetic field 

Fig. 29-34 show each detector’s determined critical currents 𝐼𝑐 depending on the applied magnetic field. 

The critical currents were identified by finding the highest absolute value reached by the current in each 

run and then determining the mean value. The error bars show the error of the mean calculated with 

Δ�̅� =
𝑠

√𝑛
, where 𝑠 is the standard deviation and 𝑛 = 50 the number of measurements. 

In the same plots  the theoretical critical current dependence on the magnetic field according to Eq. (1) 

is shown. The red lines show 𝐼𝑐(𝐵) using the calculated value for 𝐵∗ = 𝜇0𝐻∗ (Eq. (2)), whereas the 

green lines show 𝐼𝑐(𝐵) calculated with the 𝐵∗ yielded by fitting the dark count rate data (see section 

4.3). 

The determined critical currents at zero field for the different detectors, temperatures and current 

directions are shown in Table 2: Experimentally determined positive and negative critical currents at zero 

field for the three different SNSPDs and at different temperatures.Table 2. 

 

 Critical Current 𝑰𝒄(𝟎) in 𝛍𝐀 

 Meander 2M 5-Meander 1M5 Bridge 1B 

𝑇 𝐼𝑏 > 0 𝐼𝑏 < 0 𝐼𝑏 > 0 𝐼𝑏 < 0 𝐼𝑏 > 0 𝐼𝑏 < 0 

6 K 27.59 (± 0.01) −27.59 (± 0.01) 20.71 (± 0.01) −20.56 (± 0.02) 9.17 (± 0.07) −9.17 (± 0.02) 

4 K 33.474 (± 0.04) −33.27 (± 0.01) 26.31 (± 0.01) −26.41 (± 0.02) 12.54 (± 0.005) 
−12.490 (± 
0.001) 

2 K 37.49 (± 0.06) −37.49 (± 0.04) 29.79 (± 0.03) −29.85 (± 0.03) 14.53 (± 0.02) −14.49 (± 0.03) 

Table 2: Experimentally determined positive and negative critical currents at zero field for the three different SNSPDs and at 
different temperatures. 

 

4.2.1 Standard meander detector 

 

 

 

 

 

 

 

 

 

 

                                                           
4 Determined by extrapolation 

Fig. 29: Experimentally determined positive (left) and negative (right) critical currents against magnetic field at 6 K; standard 
meander SNSPD. The red line is the theoretical 𝐼𝑐(𝐻) (Eq. (1)) with the theoretical 𝐻∗, the green line is 𝐼𝑐(𝐻) using the 𝐻∗ 
determined as output-parameter of the fitting process in section 4.3. 
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4.2.2 Five-turns-detector 

 

 

  

Fig. 30: Experimentally determined positive (left) and negative (right) critical currents against magnetic field at 4 K; standard 
meander SNSPD. The red line is the theoretical 𝐼𝑐(𝐻) (Eq. (1)) with the theoretical 𝐻∗, the green line is 𝐼𝑐(𝐻) using the 𝐻∗ 
determined as output-parameter of the fitting process in section 4.3. 

 

Fig. 31: Experimentally determined positive (left) and negative (right) critical currents against magnetic field at 6 K; 5-turns 
meander SNSPD. The red line is the theoretical 𝐼𝑐(𝐻) (Eq. (1)) with the theoretical 𝐻∗, the green line is 𝐼𝑐(𝐻) using the 𝐻∗ 
determined as output-parameter of the fitting process in section 4.3. 

Fig. 32: Experimentally determined positive (left) and negative (right) critical currents against magnetic field at 4 K; 5-turns 
meander SNSPD. The red line is the theoretical 𝐼𝑐(𝐻) (Eq. (1)) with the theoretical 𝐻∗, the green line is 𝐼𝑐(𝐻) using the 𝐻∗ 
determined as output-parameter of the fitting process in section 4.3 
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4.2.3 Single-bridge-detector 

 

 

  

Fig. 33: Experimentally determined positive (left) and negative (right) critical currents against magnetic field at 6 K; single bridge 
SNSPD. The red line is the theoretical 𝐼𝑐(𝐻) (Eq. (1)) with the theoretical 𝐻∗, the green line is 𝐼𝑐(𝐻) using the 𝐻∗ determined 
as output-parameter of the fitting process in section 4.3. The data does not match the linear function 𝐼𝑐(𝐻). The positive 𝐼𝑐(0) 
at 6K was measured twice with different results, as can be seen in the plot on the left. 

Fig. 34: Experimentally determined positive (left) and negative (right) critical currents against magnetic field at 4 K; single 
bridge SNSPD. The red line is the theoretical 𝐼𝑐(𝐻) (Eq. (1)) with the theoretical 𝐻∗, the green line is 𝐼𝑐(𝐻) using the 𝐻∗ 
determined as output-parameter of the fitting process in section 4.3. The data does not match the linear function 𝐼𝑐(𝐻). 
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4.3 Dependence of the dark count rate on the applied magnetic field 

Each detector’s dark count rate determined by the measurements described in section 3.5.2 and slightly 

modified by the dead time correction (sec. 2.4.1) are plotted against the applied magnetic field in Fig. 

35-43. As with Engel’s results of similar measurements with a TaN-detector [2], the asymmetry 

regarding positive and negative magnetic field is apparent.  

To find out how good this asymmetry of the dark count rate could be described by the model presented 

in section 2.4, the data was fitted with the model function (Eq. (7)), but replacing 
𝐻

𝐻∗  with 
𝐵

𝐵∗ =
𝜇0𝐻

𝜇0𝐻∗. 

The start values of the function’s parameters were chosen in the following way.  

Meander detectors:  

𝑅𝐷𝐶
𝑀 = 𝑅0 ∙ ((𝑁 − 1) ∙ exp (

𝐼𝑏

𝛾𝐼𝑐0 ∙ (1 −
𝐵
𝐵∗)

) + exp (
𝐼𝑏

𝛽 ∙ 𝛾𝐼𝑐0 ∙ (1 −
𝐵
𝐵∗)

) + 𝑁 …

∙ exp (
𝐼𝑏

𝛾𝐼𝑐0 ∙ (1 +
𝐵
𝐵∗)

)) 

Bridge detector: 

𝑅𝐷𝐶
𝐵 = 𝑅0 ∙ exp (

𝐼𝑏

𝛾𝐼𝑐0 ∙ (1 −
𝐵
𝐵∗)

) 

Fix parameters: 

- 𝑁 is the number of the meander’s turns in one direction (e.g. right turns). It is either 𝑁 = 14 

for the standard meander detector (2M), or 𝑁 = 2 for the meander with only five turns (1M5). 

- The critical current at zero field is determined as described in section 3.5.1. 

Fitting parameters: 

- The magnetic field scale 𝐵∗ = 𝜇0𝐻∗ was calculated with Eq. (2) in section 2.3.3. The result is 

used as the start value for the fitting. Depending on the direction of the bias current, it has to 

have either a positive or a negative sign.  

 

- The start values for 𝛾 and 𝑅0 can be found with the formula of the dark count rate in zero field:  

𝑅𝐷𝐶(𝐻 = 0) = 𝑅0 ∙ exp (
𝐼𝑏

𝛾 ∙ 𝐼𝑐0
) 

⇒ ln(𝑅𝐷𝐶) = ln(𝑅0) +
𝐼𝑏

𝛾 ∙ 𝐼𝑐0
 

 

The natural log function of the dark count rate at zero field is a linear equation with the bias 

current 𝐼𝑏 as the independent variable. Fitting5 with a straight line yields ln(𝑅0) and 
1

𝛾𝐼𝑐0
, 

whereby 𝛾 can be identified since 𝐼𝑐0 is known.  

 

                                                           
5 Using matlab’s polyfit-function 

(11) 

(12) 

(13) 

(14) 
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- The start value for “asymmetry-parameter” 𝛽 was chosen to be 𝛽 = 0.95 by trying out what 

values close to 1 would lead to an adequately shaped graph of the function.  

As the values for 𝑅0 are very small (of the order of 10-20 to 10-70), the evaluation of the dark count rate 

data with function (11) or (12) was done by fitting with the natural logarithm of both, thus fitting 

ln(𝑑𝑎𝑡𝑎(𝐼𝑏 , 𝐵))  with ln (𝑅𝐷𝐶
𝑀 (𝐼𝑏, 𝐵)) = ln(𝑅0) + ln (… ). 

The fitting was done using the least square method in Matlab’s surface fitting tool including the data of 

measurements with a single detector at a single temperature and bias current direction, but for all 

various bias currents at once. The results are shown in Fig. 35-43. Table 3 lists the parameters’ start 

values and fitted values. Since the formula for 𝑅𝐷𝐶
𝑀  is extremely sensitive on the parameter 𝛾, it is given 

with many decimal places. 

The data for measurements at 𝑇 = 2 K have not been fitted, because the dark count rates are so low 

they are not convenient to be evaluated. 

 

 𝑇 𝐼𝑏𝑖𝑎𝑠 
𝐵∗ [mT] 𝛾 [1] 𝛽 [1] ln(𝑅0) [ln(s-1 )] 
start fit start fit start fit start fit 

Standard 
Meander 
2M 

6 K 
𝐼𝑏 > 0 

± 682 

977.5 0.0082 0.00809 

0.95 

0.9789 -119.7 -120.1 

𝐼𝑏 < 0 -905.7 0.0077 0.00799 0.9797 -122.5 -121.3 

4 K 
𝐼𝑏 > 0 759.4 0.00557 0.00635 0.9533 -173.8 -160.2 

𝐼𝑏 < 0 -786.1 0.0066 0.00704 0.9528 -149.4 -146.1 

           

5-turn-
Meander 
1M5 

6 K 
𝐼𝑏 > 0 

± 636 

763.1 0.0131 0.0135 

0.95 

0.9590 -62.9 -63.7 

𝐼𝑏 < 0 -822.4 0.0121 0.0125 0.9533 -69.3 -71.0 

4 K 
𝐼𝑏 > 0 700.0 0.0095 0.0115 0.8222 -92.5 -93.1 

𝐼𝑏 < 0 
-680.3/  
-702.2 

0.0094 
0.0116/ 
0.0124 

0.8627/ 
0.8043 

-93.0 
-87.4/  
-88.7 

           

Bridge  

6 K 
𝐼𝑏 > 0 

± 685 

1340 0.0159 0.01663 

 

 -49.8 -47.4 

𝐼𝑏 < 0 -2331 0.0073 0.00757  -127.4 -122.7 

4 K 
𝐼𝑏 > 0 1230 0.0111 0.01083  -79.95 -82.0 

𝐼𝑏 < 0 -1213 0.0110 0.01080  -80.69 -82.59 
Table 3: Start values to fit the measured data with functions (11) and (12), and the fitting’s output values. 

 

The output-values for the scale factor 𝐵∗ are all larger than the theoretical value, especially for the 

bridge detector, where it is almost twice as much. Moreover, it is always smaller at the lower 

temperature. This deviation from the theoretical value (Eq. (2)) could arise from only calculating on the 

superconducting coherence length at zero temperature, 𝜉(0), and not 𝜉(6 K) or 𝜉(4 K), which would 

be smaller, thus 𝐵∗ larger.  
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4.3.1 Standard meander detector (2M) 

 

Fig. 41: 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The measured dark count rates of the standard meander detector reach a few hundred counts for bias 

currents at ≈ 98% of the critical current at 6 K, but are smaller at 4 K by about a factor hundred. At the 

lower bias currents of ≈ 96-97 %, the count rates at 4 K are so low the deviation from one measurement 

to another can become relatively high. At both temperatures, a clear asymmetry regarding the sign of 

the applied magnetic field is apparent. It is even more pronounced at 4 K, where for a magnetic field 

with the same sign as the bias current, the dark count rate is lower than that at zero magnetic field and 

the lowest dark count rates are measured for the strongest magnetic field in the corresponding 

direction. 

The effect of the magnetic field seems to be greater at the lower temperature (4 K), where the 

difference between the lowest and highest dark count rate at a single bias current is around a factor of 

ten. At a given temperature, the dark count rates are more asymmetric for bias currents closer to the 

Fig. 35: Dark count rate against magnetic field at 6 K for positive (left) and negative (right) bias currents. The lines are fits with 
function Eq. (11). 

Fig. 36: Dark count rate against magnetic field at 4 K for positive (left) and negative (right) bias currents. The lines are fits with 
function Eq. (11). 
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critical current or at higher count rates, respectively. This cannot be satisfied by our model function, as 

one can see in the plots. 

Fig. 37 shows both the dark count rates for positive and negative bias currents in the same plots, but 

with the data for negative bias currents (circles) plotted against −𝐵 instead of 𝐵. It is visible that, at  

6 K, reversing both current and field direction leads to practically the same dark count rates. However, 

at 4 K there is a small offset. 

In summary, on the standard meander detector, the effect of the magnetic field is greater at lower 

temperatures and at higher normalized bias currents 𝐼𝑏/𝐼𝑐. However, when comparing the results at 6 

K with those at 4 K, the extent of the asymmetry is not similar for similar count rates. 

 

4.3.2 Five-turns meander detector (1M5) 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 37: 

Fig. 37: Comparison of the dark count rates at positive and negative bias currents, (left) at 6 K and (right) at 4 K. The x-
axis is reversed for the negative data (circles). 

Fig. 38: Dark count rate against magnetic field at 6 K for positive (left) and negative (right) bias currents. The lines are fits with 
function Eq. (11). 
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At 4 K, the measurements at a negative bias 

current have been done twice. In Fig. 40 the 

results for measurements are shown, where 

the dark count rate was determined for only 

two bias currents, but with every 

measurement repeated twenty-five times 

instead of the usual ten. The bias current 

values were chosen on the basis of being 

close to the critical current, but still allowing 

stable measurements; meaning that the 

detector would not be transformed to the 

normal state and then stay there until the bias 

current would be turned off6. The results for 

the usual measurements with various bias 

currents and ten repetitions are shown in  

Fig. 39 (right). There seems to be something 

odd about them, since the dark count rates 

are decreasing a little close to zero field, and 

the count rates do not quite match those at positive bias currents (see Fig. 41). 

Overall, the dark count rates of the five-turns-detector show an asymmetry regarding to the magnetic 

field, too. Assuming that the turns are the dominant areas to cause dark counts, this could be expected, 

since there is an odd number of turns, therefor one more bend to either the right or left. 

What can be surprising, is, that the dark count rate here is by a factor thousand or more higher than 

that of the standard meander detector with twenty-eight turns, 93.5 % of the strip-width and a total 

                                                           
6 This happened quite often for bias currents very close to the critical current and the magnetic field doing its bit. 
In Fig. 39 one can see that no data could be measured for the highest bias currents and some fields strengths, 
because the detector would not relax to the superconducting state. 

Fig. 40: Dark count rate against magnetic field at 4 K for negative  
bias currents, mean of 25 measurements. The lines are fits with 
function Eq. (11). 

Fig. 39: Dark count rate against magnetic field at 4 K for positive (left) and negative (right) bias currents. The lines are fits with 
function Eq. (11). 
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wire length that is about three and a half times longer. The five-turns-detector does have a critical 

magnetic field smaller by ca. 90 mT though (see Table 1).  

 

 

 

 

 

 

 

 

 

 

 

Furthermore, when comparing the dark count rates at different bias currents in one plot, their 

behaviour appears not to be the same as for the standard meander detector. Here, the ratio  
𝑅𝐷𝐶(−10 mT)

𝑅𝐷𝐶(+10 mT)
, that corresponds to the extent of asymmetry, is larger for lower bias currents. Contrary to 

the 2M-detector results, the dark count rates are not increasing again at higher magnetic fields. If there 

is a minimum dark count rate at a certain field, it does not lie in-between [-10 mT, 10 mT]. It would be 

interesting to be able to measure at higher, respectively lower magnetic fields to see if the dark count 

rate would rise again after decreasing. 

Apart from all that, the results of the dark count rates’ dependency on the magnetic field are the same 

here as for the standard meander detector. 

 

4.3.3 Single bridge detector (1B) 

Fig. 41: Comparison of the dark count rates at positive and negative bias currents, (left) at 6 K and (right) at 4 K. The x-axis is 
reversed for the negative data (circles). 

Fig. 42: Dark count rate against magnetic field at 6 K for positive (left) and negative (right) bias currents. The lines are fits with 
function Eq. (12). 
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Interestingly, even our single-bridge detector consisting of only a straight strip without any bends does 

not yield a symmetric dark count rate dependency on the magnetic field, even less than the standard 

meander detector at 6 K. The determined dark count rates at 6 K are not the same for positive and 

negative bias currents (see Fig. 44), but at 4 K, they coincide. This could have to do with measuring at  

6 K and negative bias currents several days after measuring with the positive bias currents. In contrast, 

the data at 4 K and negative bias currents was measured the day after measuring with positive bias 

currents.  

A possible explanation for the asymmetry of the dark count rates of the bridge detector could be, 

analogous to the meander-detectors, that one edge of the straight strip exhibits more imperfections 

than the other, causing the critical current to decrease when the wire-current is caused to crowd at this 

edge by the magnetic field, and vice versa. 

 

Fig. 43: Dark count rate against magnetic field at 4 K for positive (left) and negative (right) bias currents. The lines are fits with 
function Eq. (12). 

Fig. 44: Comparison of the dark count rates at positive and negative bias currents, (left) at 6 K and (right) at 4 K. The x-axis 
is reversed for the negative data (circles). The absolute values of the negative bias currents on the left are the same as the 
positive ones. It is not clear why the count rates are so much higher for positive bias currents. 
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4.3.4 Effect of dead-time-correction 

Fig. 45 shows the effect of the dead-time-correction described in section 2.4.1 by the example of the 

dark count rates of the 1M5-detector measured at 4 K. As one can see in the diagram, the dead-time-

correction with dead time 𝜏 ≈ 2.5 μs starts to make a difference only at high count rates of about 

twenty-thousand counts per second. The dead-time-correction could even be greater at those high 

count rates to fit the model function (fit line) better.  

 

 

 

  

Fig. 45: Dark count rate measured (dots) and after dead-time correction (circles), Eq. (9). 
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4.3.5 Dependence of the dark count rate on a parallel magnetic field 

For the measurements with a magnetic field parallel to the meander-plane of the detectors, the 

electromagnet was moved accordingly, but the orientation of the Hall sensor was not altered. 

Therefore, the magnetic flux density parallel to the detector-plane could not be measured, only the 

perpendicular component. From the other measurements we know what magnetic flux densities certain 

coil currents produce, though. The maximum current through the electromagnet’s coil is set to be 

± 1.2 A, what corresponds with a magnetic flux density of around 10 mT at the detector’s site. So 

although the x-axis of the following plots shows small, measured values for 𝐵, the actual magnetic flux 

densities the detectors were exposed to vary from ≈ −10 mT to ≈ 10 mT. 

As expected, there is no significant effect of a magnetic field parallel to the detectors’ meander-planes 

(see Fig. 46).  

 

 

  

perpendicular to the meander structure perpendicular to the meander structure 

Fig. 46: Dark count rates against a magnetic field from −10 𝑚𝑇 to 10 𝑚𝑇 that was placed parallel to the detector plane. 
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5 Conclusion 

 

The asymmetric dependence of the dark count rate on an perpendicularly applied magnetic field found 

by [2] could be reproduced with three different NbN-SNSPDs. The model, that focuses on the 180° turns 

of the detectors’ meander-structure and assumes crossing vortices to be the main reason for dark 

counts was able to describe our measured data well. The factor 𝛽, representing the inequality of the 

meander-turns, respectively their contributions to generating dark counts, could be made conditional 

on the bias current to yield even better accordance of the model to the data. Even the dark count rates 

of the detector consisting of only a straight strip without bends showed a distinct asymmetry in regard 

to the sign of the applied magnetic field. In the meander-shaped detectors, this asymmetry is more 

pronounced at the lower temperature 4 K than at 6 K. Our measurement results with the lowest 

asymmetry were those of the standard meander detector at the lowest bias current and 6 K. The 

greatest effect of the magnetic field on the dark count rate was observed in the five-turns meander 

detector at 4 K, but interestingly also at the lowest bias current.  

Our results suggest, what was already assumed. In addition to narrow bends, imperfections of the strip 

edges play a part in increasing the dark count rate by causing current crowding and thus lowering the 

energy barrier for vortices to enter the superconducting strip. Depending on its direction, a 

perpendicular magnetic field causes the current density to either increase or decrease at a certain edge. 

That way, also the dark count rate can either be increased or decreased.  

In order to manufacture SNSPDs with as low dark count rates as possible, a convenient combination of 

material-choice, strip-shape, accurate fabrication, operation temperature and bias current could 

accomplish the purpose. Bulaevskii et al. [17] claim, that an “optimum current exists, which minimizes 

the effect of dark counts, while only weakly diminishing photon counts”. Detectors with strips that bend 

only in one direction, such as a spiral shape, are also promising, as mentioned by [21]. Such a SNSPD 

was implemented by J. Huang et al. [25] with a dark count rate of 100 Hz. They stated that “no 

meaningful current crowding effect was observed”.  
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