Status of the XENON100 experiment

Teresa Marrodán Undagoitia
marrodan@physik.uzh.ch

Physik Institut
Universität Zürich

München, 29/10/2010

www.physik.uzh.ch/groups/groupbaudis/xenon/
1. Introduction

2. The XENON experiment

3. Detector calibration

4. First XENON100 results

5. Highlights of run08

6. Status XENON1T

7. Summary
Xenon as detection medium

Detection via scatter off nuclei

- Self-shielding → High stopping power
- 178 nm UV photons → No wavelength-shifter
- Simple cryogenics
 \[\sim 180 \text{ K} = -93^\circ \]
- High atomic mass \(A \sim 131 \)
 → spin-indep. interactions
- \(^{129}\text{Xe}\) and \(^{131}\text{Xe}\)
 → spin-dep. interactions

\[M_\chi = 100 \text{ GeV}, \sigma_{\chi-p} = 10^{-45} \text{ cm}^2 \]
Noble gas scintillation process

Nuclear recoil

Ionization: R^+ and e^-'s

$R^+ + R \rightarrow R_2^+$

$R_2^+ + e^- \rightarrow R^{**} + R$

$R^{**} \rightarrow R^* + \text{heat}$

$R^* + R \rightarrow R_2^*$

$R_2^* \rightarrow 2R + \text{hv}$

Excitation: R^*

$R^* + R \rightarrow R_2^*$

$R_2^* \rightarrow 2R + \text{hv}$

Singlet: 19 ns, 5 ns, 3 ns

Triplet: 15 µs, 1.6 µs, 25 ns

Neon

Argon

Xenon
Two phase noble gas TPC

Electron recombination is stronger for nuclear recoils

→ Electron- / nuclear recoil discrimination

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
Outline

1. Introduction
2. The XENON experiment
3. Detector calibration
4. First XENON100 results
5. Highlights of run08
6. Status XENON1T
7. Summary
XENON experiment

- **XENON10**: 15 kg active volume
 - Finished: No evidence for DM

- **XENON100**: 62 kg active volume
 - Currently running

- Laboratori Nazionali del Gran Sasso (Italy)
- ~ 3 650 m.w.e. shielding
US, Switzerland, Portugal, Italy, China, Germany, Holland, France and Israel
XENON100 detector

- 30 cm drift length and 30 cm Ø
- 161 kg total (30-50 kg fiducial volume)
- $\sim 100x$ less background than XENON10
- Material screening and selection
- 242 low activity 1” PMTs (R8520)
- Cooling (PTR) outside the shield
- Active liquid xenon veto

1 inch PMTs

30 cm Ø meshes
XENON100 detector

- 30 cm drift length and 30 cm ϕ
- 161 kg total (30-50 kg fiducial volume)
- $\sim 100x$ less background than XENON10
- Material screening and selection
- 242 low activity 1” PMTs (R8520)
- Cooling (PTR) outside the shield
- Active liquid xenon veto

1 inch PMTs
30 cm ϕ meshes
Light and charge read out

- Bottom PMTs: high quantum efficiency (on average >30% @178 nm)

- 3 Dim. position reconstruction
 - XY from light pattern in the PMTs
 - Z from the drift time

- 3 mm resolution in XY and 2 mm in Z
Material screening underground with a 2.2 kg HP Ge detector

- Gamma background expected in WIMP search region:
 - $5 \cdot 10^{-3}$ evts/kg/keV/d (before S2/S1 discrimination)

- Neutron bg from simulations:
 - 2/3 from radioactivity and 1/3 muon-induced

- Removal of 85Kr: distillation column
 - Kr/Xe \sim ppm-ppb commercially available
 - Measurement in XENON100 after purification:
 - RUN07: \sim 150 ppt via delayed gamma-beta coincidence
No tuning of the Monte Carlo

The measured single scatter rate below 100 keVee is 10^{-2} evts/kg/keV/d without veto cut

is reduced by 50% with veto cut!

Factor 100 less than in XENON10 achieved!

currently optimizing the data/MC comparison
Introduction

The XENON experiment

Detector calibration

First XENON100 results

Highlights of run08

Status XENON1T

Summary
Calibration with gamma sources

Energy dependence of resolution in light (S_1), charge (S_2) and CES signals

- CES: combined energy scale using anticorrelation between S_1 and S_2 signals
Neutron calibration

- **Source:** AmBe with 220n/s
- **Determination of nuclear recoil band
 - Further calibration lines from inelastic recoils in xenon

Graphical Content:

- **Chart 1:** Logarithmic plot of $\log_{10}(cS2/cS1)$ vs. $cS1$ [pe] showing peaks at 40 keV and 80 keV.
 - Note:Label: Neutrons

- **Chart 2:** Graph showing rate vs. energy with peaks at 40keV, 80keV, 110keV, 164keV, 236keV labeled with various isotopes of xenon.
 - Legend: Only Z cut, Z cut + R<120 mm

Teresa Marrodán Undagoitia (UZH)

XENON100 experiment

München, 29/10/2010
Corrections on the S1 and S2 signals

- Data is corrected for:
 - S1 light collection
 - S2 XY-collection
 - Electron lifetime

- Sources used for corrections:
 - 40keV, inelastic line
 - 137Cs (external)
 - 164 keV, activated xenon

→ Results from different sources compatible within few %
Electronic and nuclear recoil bands

- **Electronic recoil band**: defined with ^{60}Co source
- **Nuclear recoil band**: defined with AmBe neutron source
- Discrimination better than 99% @ 50% nuclear recoil acceptance
Low energy calibration of xenon detectors

- **^{83m}Kr** calibration source:
 - EC decay-product of ^{83}Rb
 - Lines at 9.4 and 32.1 keV
 - Uniform distribution

- Target mass: ~ 0.1 kg Xe
- Volume: 3 cm drift length and 3.5 cm diameter
- Two R9869 PMTs
- 6 pe/keV in double phase

^{83m}Kr calibration planned in XENON100

Nuclear recoil energy (E_{nr}):

$$E_{nr} = \frac{S_1}{L_y L_{eff}} \times \frac{S_e}{S_r}$$

- S_1: measured signal in p.e.
- L_y: LY for 122 keV γ in p.e./keV
- S_e/S_r: quenching for 122 keV γ/NR due to drift field

Relative scintillation efficiency of NR to 122 keV γ at 0-field

$$L_{eff} = q_{nucl} \times q_{el} \times q_{esc}$$

- q_{nucl}: Linhard quenching
- q_{el}: Electronic quenching
- q_{esc}: Escape e$^-$’s at 0-field
Efforts within the collaboration to measure below 5 keV$_{nr}$

- Columbia and Zürich chambers
- First measurements done at Columbia!

Discussions on L_{eff} measurements:
A. Manalaysay, arXiv:1007.3746
1 Introduction
2 The XENON experiment
3 Detector calibration
4 First XENON100 results
5 Highlights of run08
6 Status XENON1T
7 Summary
Overview of the data taking:

- Analysis of non-blinded data
- Main data sample still blinded

- 11.17 life days
- Data selection based on stable conditions:
 - no activation
 - stable HV operation
 - low and constant Rn level

- Period: October-November 2009
- Cuts defined on calibration data: AmBe and 60Co
Cuts applied to the data

- Signal/noise ratio cut
- Single S1 peak: remove accidental coincidences
- Single S2 peak: select single scatter events
- Remove events in gas phase
- Apply active veto cut

- **Energy cut:** Select events with energies lower than $28\,\text{keV}_{nr}$ (keV nuclear recoil equivalent)

<< **Self-shielding:** Most of the low energy events are located close to the edges of the detector

\rightarrow remaining events in fiducial volume: mostly intrinsic contamination
3-D position reconstruction:
allows the selection of the inner part of the detector
○ events with energies below 28 keV_{nr}

Current fiducial volume: cylindrical shape with 40 kg mass
→ will be further optimized
‘Background free’: in the 11.17 days after discrimination

Comparison to XENON10: for approximately the same exposure
→ much cleaner detector
Limit from non-blinded data analysis

- Excellent sensitivity: even for few days of data
- Sensitivity to low WIMP masses depends on L_{eff}

Spin independent limit: for standard halo parameters

Highlights of run08: Overview

Long data set being analyzed:

- New likelihood for anomalous pattern recognition
- New position reconstruction algorithms
- Improved corrections: XY and Z
- New analysis of sensitivity based on likelihood methods

→ preparing the unblinding for end of the year/beginning of next year
Highlights of run08: likelihood for anomalous patterns

Events leaking into the nuclear recoil band

Log Likelihood cut defined as 97.5% acceptance of the NR

- **Gamma-X events**: double scatters where one of them takes place in a charge insensitive region
 Highlights of run08: position reconstruction

SVM position reconstruction used for run07 analysis

Improved NN position reconstruction
Highlights of run08: new corrections

Run07 S2 XY correction determined with ^{137}Cs or 40 keV

Improved Run08 improved map, more statistics allow for finer binning
Future: XENON1T

- 1 ton fiducial mass (total of 2.4 ton LXe)
- Drift length = ~ 90 cm
- 100x background reduction
- Muon veto
- Copper/titanium cryostat
- New photo-detectors: QUPIDs

→ New collaborators
→ Currently working on MC simulations and design

Timeline: 2011 - 2014
Light readout

- QUartz Photon Intensifying Detector (hybrid detector)
- Development by UCLA & Hamamatsu for LXe and LAr detectors

- Ultra-low radioactivity (∼ 0.1 mBq)
- High QE and high SPE resolution

Alternative solution
- Low radioactivity R11410 3” PMT
- High QE: > 34% at 175 nm
 → PMTs being currently tested at University of Zurich
Status of location

XENON1T @ LNGS (Hall B)
- 4 m water shield

XENON1T @ LSM
- solid shield (55cm poly, 20cm Pb, 15cm poly, 2cm ancient Pb, >99% muon veto)
XENON100 sensitivity for 6,000 kg days (200 d × 30 kg bg free)

- Capability to detect about 10 events for 100 GeV mass for a WIMP-nucleon cross section of $\sim 10^{-44}$ cm2
Outline

1. Introduction
2. The XENON experiment
3. Detector calibration
4. First XENON100 results
5. Highlights of run08
6. Status XENON1T
7. Summary
Liquid xenon is a promising detector material to discover dark matter
- Large nucleus (A^2 enhancement on σ)
- Dual-phase: particle discrimination and fiducialization
- Self-shielding (large detectors)

XENON100 is taking dark matter data
- Design low background level achieved!
- First non-blinded data analyzed
 - first results published, also arXiv:1005.0380
- Run08 data is being analyzed (~ 100 days)
 - new results coming ...

XENON1T currently under design
- TDR submitted to Gran Sasso in October
Background in the low energy range

→ Lowest ever measured background rate in a dark matter experiment