Short overview of Universal Extra Dimensions (UEDs)

The relic density of Kaluza-Klein particles

Elastic scattering cross sections – predictions and limits

Limits on the degeneracy parameter Δ, the Higgs mass m_h and spin-dependent WIMP-nucleon couplings
- all Standard Model particles are promoted to one or more compactified flat extra dimensions

- infinite number of new particles (Kaluza-Klein tower)

- tree level masses:

 \[m_n^2 = m^2 + \frac{n^2}{R^2} \]

 quantum number labelling the \(n^{\text{th}} \) KK mode

 mass of the associated SM particle

 compactification scale

- high degree of mass degeneracy

 radiative corrections are of crucial importance

- including radiative corrections yields KK parity \((-1)^n\) conservation

 stable level 1 particles

 possible dark matter candidates

- WIMP candidates:

 \[
 \begin{array}{c}
 \gamma_1 \quad Z_1 \quad H_1 \\
 \end{array}
 \]

 \[
 \begin{array}{c}
 \gamma_H \quad Z_H \\
 \end{array}
 \]

 \(5D \)

 \(6D \)
Relic density calculations

high degree of mass degeneracy
 → coannihilations with all n=1 KK particles were taken into account

lightest particle obeys the Boltzmann equation

\[
\frac{dn}{dt} = -3 H n - \langle \sigma_{\text{eff}} v \rangle (n^2 - n_{\text{eq}}^2)
\]

with

\[
\sigma_{\text{eff}}(x) = \sum_{ij}^{N} \sigma_{ij} \frac{g_i g_j}{g_{\text{eff}}} (1 + \Delta_i)^2 (1 + \Delta_j)^2 e^{-x(\Delta_i + \Delta_j)}
\]

\[
g_{\text{eff}}(x) = \sum_{i}^{N} g_i (1 + \Delta_i)^2 e^{-x \Delta_i}
\]

What about the masses?
assume vanishing boundary interactions at the cut-off scale (minimal UED)
 → radiative corrections to the masses can be computed (hep-ph/0204342)

LKP using MUED framework

\[
5D \quad \mathcal{Y}_1
\]

\[
6D \quad \mathcal{Y}_H
\]

But consider other possibilities as well...
Relic densities of Kaluza-Klein dark matter candidates in 5D UED

1) MUED framework
2) - assume certain mass splitting Δ between LKP and KK quarks
 - fix rest of the spectrum using MUED

- Z_1 and W_1^\pm are degenerate
- gluon is heavier than Z_1 by 20%
- all other particles are heavier than Z_1 by 10%

- coannihilations are indeed important
- the sign of the effect cannot easily be predicted

Computations of the relic density for 6D including coannihilations do not exist yet.
Feynman diagrams for γ_1 - quark scattering (others are similar):

Important parameters

- SI WIMP-nucleon couplings f_n, f_p
- SD WIMP-nucleon couplings a_n, a_p
- Higgs mass m_h
- Degeneracy parameter $\Delta = \frac{m_{q_1} - m_{\gamma_1}}{m_{\gamma_1}}$
Spin-independent scattering

\[\sigma_{\text{scalar}} = \frac{m_T^2}{4\pi(m_{\gamma_1} + m_T)^2} \left[Zf_p + (A-Z)f_n \right]^2 \]

\[f_{p,n} = \sum_{u,d,s} (\beta_q + \gamma_q) \frac{m_{p,n}}{m_q} f_{T_q} \]

\[\beta_q = m_q \frac{e^2}{\cos^2 \theta_W} \left[Y_{qL}^2 \frac{m_{\gamma_1}^2 + m_{\ell_1}^2}{(m_{\ell_1}^2 - m_{\gamma_1}^2)^2} + (L \rightarrow R) \right] \]

\[\gamma_q = m_q \frac{e^2}{2 \cos^2 \theta_W} \frac{1}{m_h^2} \]

\[m_h = 120 \text{GeV} \quad 0.01 < \Delta < 0.5 \]

- significant enhancement of cross sections for small \(\Delta \)
- CDMS and Xenon10 already exclude small mass splittings
- future ton-scale experiments should cover most of the interesting parameter space
Spin-dependent scattering

\[\sigma_{\text{spin}} = \frac{32}{\pi} G_F^2 \mu^2 \frac{J_N + 1}{J_N} \left(a_p \langle S_p \rangle + a_n \langle S_n \rangle \right)^2 \]

\[a_{p,n} = \frac{e^2}{4 \sqrt{3} G_F \cos^2 \theta_W u,d,s} \sum \left[\frac{Y_{qL}^2}{m_{qL}^2 - m_{\gamma_1}^2} + (L \rightarrow R) \right] \Delta_{q}^{p,n} \]

Proton and neutron SD cross sections are exactly equal in the case of \(Z_1 \).

Neutron SD cross sections are approximately equal for \(\gamma_1 \) and \(Z_1 \).
Spin-independent limits on Δ from 5D UED

- free parameters: LKP mass and Δ
- Higgs mass is fixed at 120 GeV

The three probes are highly complementary.

Cosmology provides upper limit on LKP masses.
Colliders are sensitive to large Δ.
Direct detection experiments are sensitive to small Δ.

Include....
- direct detection limits
- relic density constrains
- collider studies (hep-ph/0205314)
LKP mass and Δ are primary parameters. m_h plays only a secondary role.

Future direct detection experiments only probe a small part of the parameter space.

LHC will be able to test the whole parameter space shown here.
Spin-independent limits on Δ and m_h from 6D UED

Limits on Δ for $m_h = 120\,GeV$

Limits on m_h for $\Delta = 0.1$

γ_H

\[\Delta g = \frac{\Delta m}{m_{\gamma H}} \]

\[m_{\gamma H} \text{ (GeV)} \]

\[m_h \text{ (GeV)} \]
Limits on Δ can also be computed considering spin-dependent interactions.

SD constrains are about an order of magnitude smaller than the SI limits.

The experiments' sensitivities to both interactions crucially depend on the used target material.
- free parameters a_p and a_n

- limits from Xenon10: Introduce polar coordinates in $a_p - a_n$ plane.
 \[\rightarrow \text{Scan over } \theta. \]

Combining limits from odd-neutron and odd-proton experiments substantially diminishes the allowed parameter space.
Conclusion

What has been done?
Comprehensive analysis of 5D and 6D Kaluza-Klein dark matter including constrains from...
- direct detection experiments
- collider studies
- cosmology

Results
- All three approaches are complementary and have the potential to cover a huge part of the relevant parameter space.
 - Direct detection experiments restrict small values of Δ.
 - Colliders are sensitive to large Δs.
 - Cosmology rules out large LKP masses.
- Reasonable parameters to explore the KK phenomenology are Δ and m_{LKP}.
- Coannihilation processes are of crucial importance for relic density calculations.

What is missing?
- detailed LHC studies for small Δ
- further relic density computations for e.g. the γH including coannihilations