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Topological Hall Effect of EuCd2As2

Abstract

The interest of studying the anomalous Hall effect in exposure of magnetism and temperature lead to

this study on the antiferromagnet EuCd2As2. It is a combined electrical and thermoelectrical transport

study and should give us a better understanding of the topology as a new organizing principle of

quantum matters. The data was obtained by using commercial Quantum Design Magnetic and Physical

Property Measurement Systems (MPMS and PPMS).

In this work, we discuss the extraction of the topological Hall effect from measurements of the overall

Hall effect of EuCd2As2. This is done with separating the overall Hall resistivity into the ordinary Hall

effect and the anomalous Hall effect. The anomalous Hall effect is then further split into the

contributions extraordinary Hall effect and topological Hall effect (THE). The theoretical working

principles of Hall effects are discussed in the introductory section to reason the equations later used in

the data processing. With the linear fitting method of Origin Lab the data is separated, leading to two

final 3D colour plots showing the topological Hall resistivity in dependence of the applied magnetic field

strength and temperature. The discussion of the source of both, the paramagnetic (PM) and

antiferromagnetic (AFM) state, leads to Weyl points (momentum-space scenario) which is also in

accordance with other studies. However the real-space scenario can’t be excluded in the AFM state.

The different behaviours of the THE isotherms in PM and AFM state seem to point to a vivid interplay

of topology and magnetism in EuCd2As2 which may be a topic for future studies.

Zusammenfassung

Das Interesse an Studien über den anonalous Hall-effekt in Kombination mit Magnetismus und

Temperatur führte zu dieser Studie am Antferromagneten EuCd2As2. Es handelt sich um eine

kombinierte elektrische und thermoelektrische Transport-Studie und sollte uns ein besseres Verständnis

über die Topologie als neues Organisationsprinzip für Quantenmaterie geben. Die Daten wurden mit

einem kommerziellen System zur Messung physikalischer Eigenschaften (PPMS) und mit einem System

zur Messung magnetischer Eigenschaften (MPMS) gemessen.

In dieser Arbeit diskutieren wir die Extraktion des topologischen Hall-Effekts aus den gemessenen

Daten des gesamten Hall-Effekts bei EuCd2As2. Dafür wird der gemessene Hall-Effekt in die Anteile

des gewöhnlichen Hall-Effekts und des abnormalen Hall-Efekts geteilt. Letzterer kann weiter in einen

aussergewöhnlichen Hall-Effekt und den gesuchten topologischen Hall-Effekt (THE) zersetzt werden.

Die theoretischen Grundlagen der verschiedenen Effekte werden in der Einleitung besprochen um das

spätere Einsetzten dieser Gleichungen in der Datenverarbeitung zu rechtfertigen. Das Endresultat kann

in zwei 3D Farbplotts dargestellt werden, welche den spezifischen topologischen Hall-Wiederstand in

Abhängigkeit des angelegten magnetischen Feldes und der Materialtemperatur zeigen. Die Diskussion

des Plots, sowohl im antiferromagnetischen (AFM) als auch im paramagnetischen (PM) Bereich, führt

uns zu Weyl Punkten (Szenario des reziproken Impuls-Raums) als Ursache, was auch in

Übereinstimmung mit Resultaten anderer Studien ist. Allerdings kann ein Anteil vom realen Raum

Szenario im antiferromagnetischen Bereich des Plots nicht ausgeschlossen werden. Die verschiedenen

Verhalten der THE-Isothermen im AFM und PM Bereich deuten auf ein lebendiges Zusammenspiel von

Topologie und Magnetismus im Material EuCd2As2 hin, was ein spannendes Thema für zukünftige
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Studien sein kann.
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1 Theory Introduction

In this work, we used different terms to describe each Hall effect contribution seperately. After

adding them up again, we must get the whole measured Hall effect. Each of the three terms

represent a Hall effect contribution with a different physical origin. Even if the used mathemat-

ical description of the different Hall effects are quite easy to use, the theory backing them up

is not straight forward. The theory of the ordinary Hall effect, for example, is well explained

so that we can derive an equation that connects the relevant quantities with little efforts. But

already when we move to the extraordinary Hall effect, the literature has more than one possible

explaination that can cause this effect and we have to work with two different phenomenological

equations. When we get to the topological Hall effect, quantum mechanics is needed to even

understand the basics of this phenomenon. So in this section I want to discuss the relevant

theories and sources used in this thesis.

1.1 Phenomenon of the Hall Effect

The Hall effect is named after Edvin Hall, who wrote his dissertation 1879 about this phe-

nomenon. The reason why Hall started to study the effect was that he doubted Maxwell’s

statement, where he described the electric current as a fluid. The effect can be described as

follows:

If we look at a current carrying conductor, the term Hall effect describes the phenomenon, that

under certain conditions we can measure an electric field orthogonal to the electric field which

is causing the current. The conditions that trigger this effect vary from external parameters like

magnetic fields to material based properties of the conductor like the magnetization.

1.2 Ordinary Hall Effect

When a magnetic field is applied orthogonal to a current carrying conducter, then an electric

field can be measured orthogonal to both of them, the magnetic field and the direction of current

flow. This transverse electrical field is called Hall field. The phenomenon that a current carrying

conductor reacts to a magnetic field with a transverse Hall field, is called the ordinary Hall effect

(OHE). To relate the theory with the physical measurement, there are two definitions that have

to be introduced: The Hall resistivity ρxy and the Hall coefficient R0. In our derivation we use

a system where the current, powered by the electric field Ex, flows in positive x direction, the

magnetic field Bz acts in positive z direction and the resulting electric Hall-field Ez appears in

positive y direction (see Fig.1).
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This effect can be derived starting with the Lorentz force, which is defined as [11]:

F = q · (E + v ×B) (1)

For describing the motion of electrons in metals under de influence of the Lorenz force, we can

use drude’s theory [11]. With the three assumptions:

1. τ is the average time that lies between two scattering events of the moving electrons.

2. When an electron scatters, the momentum p returns to 0. After that it will be accelerated

again.

3. The electrons react to the E and B fields the same was as free electrons.

Now we constuct the thermal average 〈p(t)〉 for a time t + dt: We can see that dt/τ is equivalent

to the probability that the electron will scatter. After the scattering process the electron has

momentum 0. The complementary probability (1− dt/τ) represents all the cases where there is

no scattering after dt and the momentum will grow from p(t) to p(t) + Fdt. This results in the

formula:

〈p(t + dt)〉 =

(
1− dt

τ

)
(p(t) + Fdt) + 0

dt

τ
(2)

The last term gives no contribution since it multiplies with the momentum 0. By using the

differential quotient dp
dt = p(t+dt)−p(t)

dt and keeping only linear terms in dt we end up with the

expression:

dp

dt
= F− p

τ
(3)

Here we can use Eq. 1 and have:

dp

dt
= q · (E + v ×B)− p

τ
(4)

We can rewright p as mv, take the last term to the LHS and take the magnetic field B along

the z axis: Bz = B · ez:

m

(
d

dt
+

1

τ

)
v = q(E + v × B · ez) (5)

If we split the vectors into their components, we get three seperate equations of motion[4]:

m

(
d

dt
+

1

τ

)
vx = q(Ex + Bvy)

m

(
d

dt
+

1

τ

)
vy = q(Ey − Bvx)

m

(
d

dt
+

1

τ

)
vz = qEz

(6)

We look at the case where the electrical field is static. Thus we can set the time derivatives to
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zero. After multiplying equations 6 with τ and deviding with m we end up with:

vx =
qτ

m
(Ex + Bvy) =

qτ

m
Ex + ωcτvy (7)

vy =
qτ

m
(Ey + Bvx) =

qτ

m
Ey − ωcτvx (8)

vz =
qτ

m
Ez (9)

Where ωc in Eqs. 7 - 9 is the cyclotron frequency defined as ωc = qB/m.

Because we think of the current carrying conducter as a rod, the current can not flow out of it,

so we have δvy = 0. With Eq.7 and Eq.8 we end up with the expression:

Ey = ωcτEx =
qBτ

m
Ex = −eBτ

m
Ex (10)

In the last step of Eq.10 the charge q was replaced with the electron charge −e. Notice that e is

defined positive since the sign is treated seperately! In Eq.10, we can see the direct proportional

connection between the current generating electric field Ex in x direction and the electric Hall

field Ey in y direction.

Figure 1: (a): The Orientation of the current carrying conductor, the applied magnetic field and
the current density direction is shown. (b) When applying an electric field to generate a current,
the Lorentz force pushes the electrons to one side of the conductor. (c) The electron gradient in
the conductor leads to a Hall field Ey in y-direction which counter balances the Lorentz force.
This leads to a steady state as long as the parameters are kept constant. Image taken from
Introduction to Solid State Physics by Charles Kittel [4].

The Lorentz force in z direction caused by the B field (Fig. 1a) pushes the electrons to one side of
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the rod (Fig.1b). On the other side there are electrons missing for canceling the electric charge

so that there is a positive ion excess. This causes a Hall field Ey. The separation continues

untill the transverse Lorentz force and the Hall field Ey cancel each other (Fig.1c). The Hall

coefficient is defined as follows:

R0 =
Ey

jxB
=
ρOxy
B

(11)

In the last step of Eq.11, we used the definition ρxy =
Ey

jx
. Solving Eq.11 for the resistivity we

get one of the important equation used in this thesis:

ρOxy =
Ey

jx
= R0B ∝ R0H (12)

In the last step we used the relation B = µrµ0H which is correct under the condition that the

current carrying material is isotropic and linear [8]. In the final result, we can see that the

ordinary Hall resitivity is proportional to the applied magnetic field B.

1.3 Anomalous Hall Effect

The definition we will use in this thesis is that every contribution to the measured overall Hall

effect that is not caused by the ordinary Hall effect is ascribed to the anomalous Hall effect. In

mathematical form this can be written as:

ρxy = ρOxy + ρAxy (13)

where ρAxy is the anomalous Hall effect (AHE), ρOxy is the ordinary Hall effect (OHE) and ρxy is

the overall measured Hall effect.

AHE is then further split in two separate contributions:

ρAxy = ρTxy + ρExy (14)

where ρExy is the extraordinary Hall effect (EHE) and the ρTxy is the topological Hall effect (THE).

1.3.1 Extraordinary Hall Effect

This effect doesn’t rely on a magnetic field and can therefore also occur in a magnetic field free

environment. It is commonly described by the phenomenological equation [2]:

ρExy = µ0ReM (15)

7 Rafael Spörri



Topological Hall Effect of EuCd2As2

where ρExy is the extraordinary Hall resistivity, M the magnetization, µ0 the vacuum permeability

and Re the extraordinary Hall coefficient. It took more than sixty years to clear up the origin

of the effect theoretically [7].

Re is ∝ ρnxx where n does depend on the predominant scattering mechanism that occurs in

the material: for skew scattering n = 1 and for the intrinsic deflection n = 2 [2]. ρxx is the

longitudinal resistivity. So we can rewrigt Eq.15 into two equations:

skew scattring:

ρExy = µ0ρxxM (16)

intrinsic deflection:

ρExy = µ0ρ
2
xxM (17)

Skew scattering is a phenomenon that occurs because of impurities in the material [6] and

introduces different peferential scattering directions for spin-up and spin-down particles [7].

Since there are not equal many spin-up as spin-down electrons in a ferromagnet, the separation

of spin states will lead to a extraordinary Hall effect [7].

The intrinsic deflection is a phenomenon which occurs when an electric field acts on the electrons.

The electric field produces different velocity vectors perpendicular to the motion of travel which

don’t sum up to zero. This effect is called interband coherence and leads to a nonsymmetrical

split which gives rise do a extraordinary Hall effect. [5]

In the two equations 16 and 17 we can see that the extraordinary Hall resistivity ρExy is either

proportional to ρxxM (skew) or to ρ2xxM (intrinsic).

Remark

For completition I want to mention that if both phenomenas occur at the same time, Eqs. 16

and 17 can be combined to one equation [2]:

Rs
e = aρxx + bρxx (18)

where a and b are coefficients corresponding to the skew scattering and side jump, respectively.

[2] In our case we calculated two separate versions assuming that only one of the phenomenas

was causing the extraordinary Hall effect. As we shall see later in the results, both versions are

almost identical.
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1.3.2 Topological Hall Effect

Not long ago it was found that in certain types of frustrated ferromagnetic systems with non-

coplanar magnetic moments the coefficient Re did not follow the expectations from the extraor-

dinary Hall effect theory [7]. In order to explain this new effect, a new mechanism was proposed

called topological Hall effect [7]. The topological Hall effect can have different types of origins:

In one scenario the THE is caused by the real space picture linked to to the topology of the

magnetization texture of the material. In another scenario the THE is caused by a reciprocal

band structure picture linked to a phenomenon called Weyl nodes, also called momentum space

scenario. In what follows, both cases are presented with more detail.

Topological Hall Effect of Real Space Scenario

The real space scenario is when the interaction of an electron spin with the non coplanar topology

of a material structure leads to a Berry phase. This phase can also be interpreted as being

produced by a spinless electron moving in a spatially varying magnetic field. For every angle

subtended in a cell structure, the amount of magnetic flux can be calculated to achieve the

same reaction of an electron moving past the same cell (see Fig. 2). Sumarized it can be said

that the Hamiltonian of an electron moving in a magnetization texture can be mapped onto a

Hamiltonian of a spinless electron moving in an inhomogeneous magnetic flux distribution [7].

Because of this equivalence, the topological Hall effect can be understood.

Figure 2: If an electron is assumed to follow a closed trajectory around a lattice cell as seen
left, the electron will pick up a Bery phase if the texture is noncoplanar [7]. Since a Berry
phase can also be produced by a magnetic flux piercing through the same cell (as seen right),
an equivalence relation can be formed. Image taken from Electronic transport in mesoscopic
systems by Georgo Metalidis [7].
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Topological Hall Effect of Momentum Space Scenario

The momentum space scenario is based on Weyl nodes, which act as a source and a sink of

Berry curvature [12]. In this scenario the topological Hall effect is proportional to the Brillouin-

zone integration of the Berry curvature [1]. Since the Berry curvature is related to the Berry

phase via a closed-path integration we can make the same equivalence relation and come to the

conclusion, that the reaction of an electron to a pseudo-field attributed to a Weyl node can’t be

distinguished from the reaction of an electron reacting to a real external applied magnetic field.

[3]. Therefore the Weyl nodes as an origin of the topological Hall effect can be understood.

1.4 Paramagnetism, Antiferromagnetism and Ferromagnetism

All informations in this subchapter 1.4 are based on Elektrodynamics by Wolfgang Nolting [9],

unless otherwise stated.

Paramagnetism (PM) is the phase in which the magnetic moments of a material can align with

an outer magnetic field so that the field measured inside the material is stronger than on the

outside. If no magnetic field is applied, no magnetic field can be measured from the material.

Antiferromagnetism (AFM) is the phase in which the magnetic moments of a material do cancel

each other so that no net magntic field can be measured wether there is a magnetic field acting

from the outside or not.

The temperature that separates paramagnetism and Antiferromagnetism is called the Néel tem-

perature TN . Below TN the material is AFM and above TN the material is PM. For EuCd2As2

TN ≈ 9.5K [10].

Ferromagnetism (FM) is the phase when the magnetic moments of a material align with the mag-

netic field and preserve a remanent magnetization when the external magnetic field is turned off.

This phenomenon leads to a permanent magnet. The connection of the remanent magnetization

and the applied magnetic field can be described with a hysteresis.

The temperature that separates ferromagnetism and paramagnetism is called the Curie temper-

ature TC . Below TC the material is FM and above TC the material is PM.

The different reactions of the magnetic moments to a magnetic field are shown in Fig.3:
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Figure 3: The black arrow represents the applied magnetic field while the white arrow represents
the response field of the material. (a) The antiferromagnetic phase doesn’t reaction to an external
magnetic field. (b) In the paramagnetic phase the material reacts mildly (white arrow) to the
external magnetic field and loses its internal magnetic moment alignment when the magnetic
field is turned off. (c) In the ferromagnetic phase the material react strongly to an external
magnetic field and keeps a remanent magnetisation after turning off the external magnetic field.
The material is then called a permanent magnet.
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2 Methods and Results

In this section, I will discuss the steps and methods used to process the given data of EuCd2As2

and present the obtained results. The program that was used for processing is called Origin

Lab. The fitting of the isotherms was done with the built in linear fit option of Origin Lab.

2.1 Methods and Data Acquired

The data was obtained by using commercial Quantum Design Magnetic and Physical Property

Measurement Systems (MPMS and PPMS). For the resistivity experiments a Hall-bar electrical

contact geometry was created. Good electrical contacts (∼1 Ω) were established using DuPont

6838 silver paste cured at 500 °C for 10 min and subsequent application of short high voltage

pulses. For the thermoelectric transport a home-built insert for the PPMS was used. The

temperature gradient in the sample was held at ≈3% of the sample temperature and was mea-

sured with Cernox thermometers, while the voltage was measured using nanovoltmeters. For all

measurements magnetic fields were applied along the easy-c-axis.

For this thesis, the following measured data was used:

� Magnetic field strength H [T]

� Temperature T [K]

� Overall Hall resistivityρxy [Ω m]

� Resistivity ρxx [Ω m]

� Magnetization M [ Am ]

16 measurements were done at different temperatures. During a measurement, the temperature

was held constant. The isotherms obtained were taken at the temperatures: 2K, 4K, 5K, 6K,

8K, 10K, 12K, 15K, 18K 20K, 25K, 30K, 40K, 60K, 80K, 100K.
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2.2 Raw Data of EuCd2As2 Measurement

In Fig.4 and Fig.5 the temperature- and magnetic field dependence of Hall resistivity ρxy, lon-

gitudinal resistivity ρxx and the magnetization M of EuCd2As2 are shown:

Figure 4: Raw Hall resistivity ρxy of EuCd2As2 at temperatures between 2-100K plotted against
the magnetic field strength H. Every isotherm consists of three compounds, OHE, EHE and THE,
added together. The separation and interpretation of these components is the goal of this thesis.

Figure 5: On the left hand side: Raw magnetization M of EuCd2As2 at different temperatures
plotted against the magnetic field strength H. On the rigth hand side: Raw linear resistivity
ρxx of EuCd2As2 at temperatures between 2-60K plotted against the magnetic field strength H.
Both plots are later used to obtain the EHE of EuCd2As2.

According to Eq.13 and Eq.14 from the introduction section, the isotherms of Fig.4 can be split

into three compounds ρxy = ρOxy + ρExy + ρTxy. In order to separate the contributions, the linear
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fitting of the raw data ρxy is shown in section 2.3. Then, in section 2.4, the linear fitting of the

EHE is shown, which also consists of the raw data ρxx and M . These two fits then will lead us

to the final step of extracting the topological Hall effect of EuCd2As2 in section 2.5. In section

2.6 the final results can be presented in two 3D plots.

2.3 Extracting Slope and Intersect of measured ρxy

For beeing able to use the linear fitting method, we first have to find the linear part of ρxy. The

following facts are known:

� The ordinary Hall effect is linear everywhere.

� The extraordinary Hall effect is non-linear in the low field part but from a certain field

strength on in our case is almost linear (and also nearly constant) in high field and therefore

will be linearly approximated in this part.

� The topological Hall effect is non-linear in the low field part and gets negligibly small from

a certain field strength on in the high field part.

For being able to make a reasonable linear fit to ρxy, all contributions have to be linear in the

fitted region. The component who gets linear last (EHE or THE), defines the magnetic field

strength, which distinguishes the low and high field part of ρxy. In summary this means, that

the deviation from linear of an isotherm in the measured Hall resistivity ρxy defines a field scale

that separates the low and high field part.

After defining the high field part of the isotherms, the fit of the overall Hall resistivity data ρxy

gives us the slope a and the intersect b:

high-field part of ρxy = a ·H + b (19)

The vertical intersect b is not used in this section, but will get important later on in section 2.5

and is therefore also extracted. The procedure of defining the high field part of the isotherm,

followed by a linear fit to extract the slope a and the intersect b was done for every isotherm

measured. As an example, the segmentation of the data can be seen in Fig.6 for the cases 2K

(L.H.S.) and 40K (R.H.S). In this section, both slopes of EHE and THE are treated as negligible

in the high field part. This is a good first approximation and allows us to set the extracted slope

equal to the ordinary Hall coefficient: a = R0. After subtracting the first aproximation of the

ordinary Hall effect (R0H) from the overall measured Hall resistivity ρxy, we are left with the

red line (Fig.6), representing the anomalous Hall effect (EHE + THE).
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Figure 6: Data of EuCd2As2 after subtracting the extracted first approximation OHE at 2K
(L.H.S.) and 40K (R.H.S).

2.4 Extracting Slope and Intersection of measured ρExy

In section 2.3, we treated the slope of the EHE as beeing zero in the high field part. In the next

two sections we will see that this was indeed a good approximation. However, for extracting the

most accurate THE, the fit of the data of ρExy is crucial and will be needed in the next section

to evaluate the exact contribution of the EHE in the measured Hall resistivity ρxy.

The extraordinary Hall resitivity was constructed following the Eq. 16: ρExy = µ0ρxxM for skew

scattering and Eq.17: ρExy = µ0ρ
2
xxM for intrinsic deflection from our theory section. This was

done by multiplying the measured data ρxx from (R.H.S. in Fig.5) with the measured data M

from (L.H.S. in Fig.5). Since only the proportionality of ρExy is used later on, we could ignore

the factor µ0.

The fitting process was the same as in section 2.3: For beeing able to use the linear fitting

method, we again had to find the linear high field part of the measured extraordinary Hall

resistivity ρExy, which was done by using the deviation from linear of an isotherm to define the

field scale that separates the low and high field part. The resulting fit gave us the Slope c and

Intersect d as seen in Eq.20:

high-field part of ρExy = c ·H + d (20)

Slope c and intersect d will help to scale the EHE for subtracting the correct sized anomalous

Hall effect from the measured Hall resistivity ρxy. But for doing this, a new scaling factor has

to be introduced: SH .
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2.5 Combinating Fits with Parameters R0 and SH

In this chapter, the two fits done in section 2.3 and 2.4 allow us to establish an accurate formula

that scale the OHE and EHE correctly, leading us to the correct extraction of the topological

Hall effect.

As already mentioned, compared to the high-field part of the topological hall effect (which is

constant 0), the high-field part of the EHE has a small slope c. This means that the equivalence

a = R0 has to be corrected. The corrected ordinary Hall coefficient will be written as R′0. For

finding the correct R′0, our separation process of the measured ρxy will now be written down in

terms of the fitting processes, stated in Eq. 19 and Eq. 20:

ρxy = ρOxy + ρExy + ρTxy (21)

a ·H + b = R′0 ·H + SH(c ·H + d) + ρTxy (22)

Where in Eq.22 the LHS of the equation is the fit of the measured Hall resistivity ρxy and on the

RHS of the equation (from left to right) is the ordinary Hall effect, the fit of the extraordinary

Hall effect multiplyed with a scaling factor SH and the topological Hall effect ρTxy. SH is an

additional parameter that makes sure that the intersect d of the EHE fit deletes the intersect b

from the overall Hall effect fit. This is a concequence of the fact that the EHE is the only of the

three contributions who has a constant offset in high field.

After realizing that ρTxy is zero in high-field and rearranging Eq.22 we get:

0 = (R′0 − a+ SH · c)H + SH · d− b (23)

For the R.H.S. to be zero in Eq. 23 the two terms (R′0 − a+ SH · c) and (SH · d− b) have to be

zero. Therefore we have the final two equation which give us the correlation between the fitting

parameters a,b,c and d, and the scaling factors R′0 and SH :

SH =
b

d
(24) R′0 = a− b

d
· c (25)

In Eq.25 we can see the correction term − b
d · c of the ordinary Hall coefficient.

Applying the results to the data, we first correct the OHE and subtract it from the measured

resistivity ρxy to get the corrected anomalous Hall effect. Then we scale the extraordinary Hall

resistivity with the factor SH and subtract it from the anamolous Hall resistivity to get the

extracted topological Hall resistivity. As an example, the cases 2K (L.H.S) and 40K (R.H.S.)

are shown in Fig. 7, where we can see the corrected contribution of the OHE (orange dotted
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line), the SH scaled EHE and our final extraction of the topological Hall effect at 2K and 40K

(red dotted line). It can also be seen how small the correction to R0 is since EHE is almost

constant in high-field which leads to a small slope c in the fit.

Figure 7: Raw Hall resistivity ρxy (blue isotherm) at 2K (L.H.S.) and 40K (R.H.S.) measured
on EuCd2As2 split into their contributions: corrected OHE (orange curve), EHE in intrinsic
deflection scenario (purple curve) and THE (red curve).

2.6 Diagram of Topological Hall Effect Depending on Temper-

ature and Magnetic Field

Repeating the procedure shown above for every temperature measured, we can summarize the

fndings in 3-D colour plots. Since the extraordinary Hall effect has two different outcomes for

each temperature depending on what scattering mechanism is present in the material, we end

up with two plots seen in Fig. 8:

Figure 8: On the L.H.S.: Summarized plot for extracted THE for skew scattering mechanism.
On the R.H.S.: Summarized plot for extracted THE for intrinsic deflection. Here also TN =
Neel temperature, local maxima and local minima are marked.
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3 Discussion, Conclusion and Outlook

It can be clearly seen that the two 3-D colour plots are very similar regardless of which scattering

mechanism scenario was used for the EHE. Both scenarios have their maximas at ca. 10 K and

ca. 0.3T. In the case of the skew mechanism the tolopogical Hall resistivity ranges from -4.8

to 25.7 µΩcm and therefore is a bit lower than the resistivity range of the intrinsic mechanism

which goes from -4.8 to 17.4 µΩcm.

There are 4 observations that can be made from the 3D colour plot and suggest that the mech-

anisms of the THE in the AFM and the PM state are different [13].:

� The local maxima of the resistivity are highest near the Neel temperature.

� The minimal magnetic field strength at which an isotherm reaches it’s local maximum is

also found near the Neel temperature.

� The width of the local maxima is smallest around the Neel temperature.

� Negative values of the THE resistivity are only found in the PM state.

First lets discuss the PM state (T > TN ): Since in other studies there was solid evidence found

for Weyl points in the material EuCd2As2 that are lying in the vicinity of the Fermi level already

at zero field, the Weyl points are a good candidate for producing the THE in the PM state and

could also explain both signs of the THE in the PM phase [13].

In the AFM state (T < TN ) of EuCd2As2, where the magnetic moments are coupled along the c

axis, the spins, aligned by a finite H field along the c axis, would create Weyl points which then

give rise to a THE [13]. So the Weyl points are also the most probable candidates to generate

the measured THE in the AFM state. But because the AFM part of EuCd2As2(R.H.S. of Fig.

8) has also some similarity to systems that have real-space induced THE we can’t exclude a

real-space contribution to the THE in the AFM state [13].

In conclusion we were able to extract the topological Hall effect of the material EuCd2As2 at

different temperatures and magnetic fields. The observed THE in the PM state represents a

rare case of topological transverse transport beyond the ordinary and conventional anomalous

contribution in the absence of long-range magnetic order [13]. From our results we claim the

Weyl points to be responsible for the topological Hall effect in both AFM and PM state. Since

in the AFM state a real-space scenario contribution to the THE can’t be excluded, further

measurements would be required to prove or falsify this possibility. Since the spin configuration

affects the electronic band structure significantly, the distinct mechanisms in the AFM and PM

state suggest a vivid interplay of magnetism and topology in the material EuCd2As2 [13].
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The decomposition and discussion of the Hall resistivity, measured in EuCd2As2, was able to

make assumtions on the origins of the extracted THE that are also covered by other available

studies. It further generated new data that can now be included in theoretical studies on

EuCd2As2. The analysis of the data also poses questions which incentivize to do additional

research for getting better insights into the interplay of magnetism and topology in EuCd2As2.

With further studies we then could verify or falsify the real-space induced topological Hall effect

in the AFM spectrum of EuCd2As2.
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