
Exercises with Gaia RVS and AGAMA

Basic exercise Using one of three model Galactic potentials, compute actions, angles and
frequencies for a sample of the RVS stars. Plot the density of stars in the (Jφ, Jr) and (Jz,Ωz)
planes. Understand the gross structures of the distributions you obtain. What fine structure
can you see?

Secondary exercise Pick another potential and compare the distributions you obtain.
Comment on differences in the (Jφ,Ωz) distributions.

Tertiary exercise Plot the mean or median value of vφ in each pixel of the (X,Y ) phase
plane, where X =

√
2Jz cos θz and Y =

√
2Jz sin θz. What can you see? How does this relate

to arXiv:1804.10196?

Code It’s essential to first install AGAMA from https://github.com/GalacticDynamics-
Oxford/Agama. Change my makefile so it points to where you’ve installed AGAMA.

I’m not a Python user, so I’m providing only C++ code for the exercises. This code needs
to be linked to agama.so, which will be created when AGAMA is installed. If you want to use
Python, you’ll have to write wrappers for my code.

Once you’ve created appropriate data file, run heid ex.cpp. This will include lots of
AGAMA headers but also two files star.h and starx.h that define classes for stars. I pro-
vide example files described below, but you’ll need to hack these to suit your own conventions
regarding i/o, etc. My classes read and write data compressed using code you’ll find in com-

press.cpp

The code in heid ex.cpp picks a potential and then, using omp to speed up operations,
it computes the AAvars for each star. Before you run this code you should read the RVS data,
creating a star object for each read item, and write it in one of NPROC files, where NPROC is
the number of cores you have (or a multiple thereof). The reads and writes should be handled
by the star class. The code in heid ex.cpp will produce NPROC files in which each star has
AAvars and frequencies.

Example star classes My star.h has a method bool readin() that reads a running
index ind, a Gaia id, Bayesian estimate of distance s1, an inverse parallax opi, etc, etc from
an ASCII file with 32 columns. It also contains a method void putit() that writes to file a
selection of the data in compressed form and a method bool getit() that recovers the star’s
data from the compressed file.

My starx.h has a creator starx(star&,ActionAngles&,Frequencies&,InternalUnits&)
that takes in a star, its AAvars, frequencies and a structure that converts from AGAMA’s inter-
nal units to kpc, km/s. It has another creator starx(IFILE*) that takes the star’s data from
a file. Finally, it has a method void putit(FILE*) that writes the data to file in compressed
form.

You may want to replace my compression routines void compress(FILE*,float*,int),
bool decompress(FILE*,float*,int) to suit your i/o preferences. The latter returns true
on success.

Example grid class You need to be able to plot densities of stars in planes, and for the
tertiary exercise also plot the mean value of vφ in cells in the (z, vz) plane. Whatever you do,
don’t just produce a scatter diagram with a dot for each star! When data are rich, such plots
destroy almost all information and in my view your referee should never let one pass.

1



You probably already have code to produce density plots, but in case not in grid.h

and grid.cpp I provide example code that you can hack to suit your graphics system.
The code defines a class grid that has a method CIC(double x,double y) that uses the
cloud-in-cell algorithm to distribute to pixels a stars with coords (x, y), and a method
CIC(double f,double x,double y) that does this plus computing the average value of f in
cells. The creator is grid(int nx,int ny,double minx,double maxx,double miny,double

maxy). Once you’ve added every star to the grid, plot dens() will plot the density of stars,
and plot values() will plot 〈f〉. You will have to supply/replace a routine colourwh(float

**m,int nx,int ny,float min,float max,float blank,int s) that colours a nx × ny ar-
ray of pixels according to the values pointed to by m with colours assigned to values in (min,max)
pixels below blank being left white. The final integer controls whether a colour bar is added.
You could supply or delete mgobox, which simply places a box with tickmarks on top of the
coloured pixels.

2


