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GW Stochastic Background

A stochastic background of gravitational waves has resulted from the
superposition of a large number of independent unresolved sources from
different stages in the evolution of the Universe.
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Implications of LIGO first detections

On Sept 14t 2015 LIGO detected for the first time the GW signal from a stellar
binary black hole (BBH) at z~0.1 (GW150914). PhysRevLetter.116.061102

Another event (GW151226), likely two (LVT151012), were detected in the
LIGO first observational run. arXiv:1606.04856

Besides the detection of loud individual sources at close distances, we expect
to see the background formed by all the sources from the whole Universe (up

to z~20)

GW150914 told us that black hole masses (m, ,~30Mg) can be larger than
previously expected in the close Universe.

Revised previous predictions of the GW background from BBHs, assuming
various formation scenarios. PhysRevLetter.116.131102
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The Background from BBHs

= Energy density spectrum in GWs characterized by:

(F) = f dp,,(f)
i p  df

= Contribution of BBHs with parameters 8,=(m,,m.,, x..x)

20 dR”
Q’;W(f,ek)—— Jy e k) :

(9 f(1+z))
Arr?(z)

= Total population:

QA= doP(OX_(£,6)



Contribution of GW150914-like BBHs

The analysis of GW150914 provides :
Masses and spin: m,=36My, m,=29Mg, X.+~0(PRL.116.241102)

Local merger rate: R,= 16", Gpc3yr' (arXiv:1602.03842)

We also assume (fiducial model):

BBHs with m~30M, form in low metallicity environment Z<1/2 Z
The formation rate is proportional to the SFR (Vangioni et al. 2015)
The merger rate tracks the formation rate, albeit with some delay {,.

tmax
R (z6,)= L R.(z.6,)P(t,,0,)dt,

Short delay time: P(t )<t with ¢, > 50 Myr
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Fiducial Model
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Alternative models

We investigated the impact of possible variations to the fiducial model

AItSFR: SFR of Madau et al. (2014), Tornatore et al. (2007)
ConstRate: redshift independent merger rate

LowMetallicity: metallicity of Z<Z /10 required to form heavy BHs
LongDelay: t,>5 Gyr

FlatDelay: uniform distribution in 50Myr-1Gyr (dynamical formation)

LowMass: add a second class of lower-mass BBHs sources

corresponding to the second most signicant event (LVT151012) with
M.=15My, R,= 61 Gpc3yr

All these variations are smaller than the Poisson uncertainty.
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Update using all of O1 arXiv:1606.04856
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Data Analysis Principle

= Assume stationary, unpolarized, isotropic and Gaussian
stochastic background

= Cross correlate the output of detector pairs to eliminate the
noise

s =h+n.
1 1 1

<s.5,>=< hlh2 > +§ nn, >J+ < hln2 >,+ < 111h2 >
0

0 0
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Isotropic search

= Frequency domain cross product:
Y= 5,013, f)df

= optimal filter:

(N, (f)
F*R(FP(f)

= in the limit noise >>GW signal

Qf) with @, (f)=Q,f°

Mean(Y)=Q T, Var(Y)=c>eT, SNR o<+/T



Overlap reduction function
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Evolution of the SNR
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Papers in preparation
PRELIMINARY

No evidence for a stochastic background for both the
Isotropic and direction searches

O1 results

But upper limits on the energy density for different power
iIndices

For a=0, the isotropic bound is 33x better than with initial
LIGO/Virgo

Q. (25Hz)<1.7x10”"
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_ _ Slide from Letizia Sammut
Directional searches

= relax assumption of isotropy and generalize the search for a
stochastic signal to the case of arbitrary angular distribution.

2 A
Qow(f) = 2L = o () [ dd

pc df S2
P(Q) = Pyeq(2
AN
Radiometer Analysis Spherical Harmonic

Decomposition

P(Q) = 77(90)52(97 QO) P(Q) = ZleYlm(Q)
Im



Summary/Conclusion

The GW stochastic background from BBHSs is expected to be
In the higher end of previous predictions

The background may be measured by LIGO/Virgo operating
at or near design sensitivity.

No evidence for a stochastic background in O1.

Upper limit on a flat spectrum 33x better than with initial LIGO/
Virgo



O1 isotropic paper, in preparation
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Indirect limits: PhysRevX.6.011035
“CMB temperature and polarization power spectra, lensing, BAOs and BBN*“

Pl integrated sensitivity curves: PhysRevD.88.124032

“The LISA sensitivity curve corresponds to an autocorrelation measurement in a
single detector assuming perfect subtraction of instrumental noise and/or any
unwanted astrophysical foreground.”



