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From the inflationary GW power-spectrum, taking into account the subsequent evolution of the

universe, it is possible to calculate the present-time GW spectral energy-density:
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which it is still filling the universe.

Single-field slow-roll inflation

Current bounds and observational prospects

- Amplitude: At ~ H? — measure of the energy scale of inflation;

- Spectral index: ny = —2¢ < 0 — measure of the deviation from a de-Sitter background;
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\/ Primordial GW constitute a smoking-gun for the cosmological inflationary model and carry information about the energy-scale of inflation,
its dynamics and the field excursion of the inflaton.
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Taken from [1]. Current direct/indirect bounds and expected sensitivity curves for future experiments.

The GW signal produced by vacuum fluctuations
of the gravitational field characterize any infla-
tionary model. Moreover, a further contribution N single-field slow-roll
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Table 1: Taken from [1].
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\/ Inflationary GW represent a crucial discriminant among the variety of inflationary models and represent the possibility of testing the

theory of gravity underlying the inflationary scenario. In particular, GW power-spectra with enhanced amplitude at small scales represent interesting CMB bound
signals for laser interferometer detectors. " — integral - bound
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Inflationary consistency relation and its violations cy

Constraints on the parameter-space of inflation with a spectator field, provided by current experiments and in case of a

non-detection by eLISA at 95% C.L.. Due to the presence of the extra field, besides vacuum fluctuations, a certain amount

For single-field slow-roll inflation, at the lowest of GW is expected to be produced classically. Being the sourced GW power-spectrum admitted to be blue (quantified by
i _ ' _ the parameter s), GW experiments at small scales might assume an interesting role in constraining this model parameters.
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Constraints expected for a COrE-like CMB experiment for fiducial values of r = 0.001, nt = 0.26: the validity of the

consistency relation cannot be excluded by this experiment. For the same amount of GW, a detection by eLISA is expected

Single-field slow-roll inflation

at 95% C.L., which would clearly exclude the validity of the consistency relation. It follows that, in some cases, detectors

= Consistency relation: » = —8nr at small scales are expected to be more powerful than CMB experiments in testing the consistency relation.

« GW spectral index n: slightly negative, that is red tilted (see fig.1).
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