

A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements Hao Yan, Hui-Zong Duan, Hsien-Chi Yeh

> Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan, P. R. China 430074

## I. Introduction

We develop a dual-heterodyne laser interferometer without DWS (Differential-front Sensing) which can measure picometer-level linear displacement and nano-radian-level angular displacement simultaneously. Due to a highly-symmetric optical path configuration, this dual-heterodyne laser interferometer has reduced sensitivity to the low-frequency noise mainly caused by the environmental fluctuations by means of common-mode noise rejection. This dual-heterodyne laser interferometer offers potentials for optical readout system of proof mass attitude metrology in space borne gravitational wave detection.

# **II.** Experiment Setup

- ◆ Laser : Nd:YAG , 1064nm
- ◆ AOM : Gooch & Housego , TeO<sub>2</sub>
- ◆ Nano-Positioning System : PI, Hexapod Microrobot



- II. Optical bench: two fiber collimators, five beamsplitters, one mirror, three photodetectors (PD)
- III. Calibration system: 6-Axis Nano-Position system, autocollimator

- **Acquisition System : NI-PXI-1112**
- Heterodyne frequency :  $f_{het} = 20 \text{ kHz}$
- ◆Laser Power ( received by a single PD ):200uW



# **III.** Results

## A. Noise Level



Figures on the right show the noise levels of the linear and angular displacements measurements are 50 pm/ $\sqrt{Hz}$  and 50 nrad/ $\sqrt{Hz}$  at 10 mHz, respectively. The noise with frequency above 6 Hz is likely attributable to mechanical vibrations.

## **B.** Calibration









The translational displacement of two parallel measurement points on surface of the testing mirror (M1) is measured, so information of two degrees of freedom of M1 is known: translational displacement along the measurement laser axis and tilt in the laser plane.



#### **Translation Calibration**

- Actuator : 6-Six Miniature Hexapod
- Calibration : Miniature Hexapod
- Square Mode : 10 nm @ T=4s
- Step Mode : 100 nm @ T=5s
- Nonlinearty : <1 %
- Travel Range : >200um



#### **Tilt Calibration**

- Actuator : 6-Axis Miniature Hexapod
- Calibration : Miniature Hexapod , Autocollimator
- Square Mode : 10 urad @ T=60s
- Step Mode : 10 urad @ T=50s
- Nonlinearity : <1 %
- Travel Range : > ±100urad

# **IV. Future Work**

A dual-heterodyne laser interferometer with displacement resolution of picometer-level translation and nano-radian-level tilt are demonstrated. It can be used as optical readout system prototype for proof mass attitude metrology.







# **Challenges** :

**Desired resolution (**a**) 10 mHz): 10 pm/\sqrt{Hz}, 10 nrad/\sqrt{Hz}** 

Cross-Coupling effects between six DOFs

Compact packaging of 6-DOF Optical Readout System

### reference :

■H. Yan, H. Z. Duan, L. T Li, Y. R. Liang, J. Luo, and H. C. Yeh, "A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements," Rev. Sci. Instrum. 86, 123102 (2015).

I. Optical Bench

**II. Compact 2-DOF Interferometry** 

**III. 6-DOF Optical Readout System**