LISA Pathfinder Coldgas Thrusters

Joseph Martino/Eric Plagnol - LPF collaboration

Lisa Symposium September 2016 Zurich

Outline

System Description

External Disturbances and thruster noise

In Flight dedicated experiment

Conclusion

MicroNewton Coldgas Thrusters

Description

6 thrusters ~10 - 500µN nominal mission

lisa pathfinder

- Truster = Mass Flow Sensor connected to a piezo controlled valve
- 4 High Pressure N2 Gas Tanks

MicroNewton Coldgas Thrusters

2 micro-propulsion systems : Coldgas - Colloidal

Description

6 thrusters ~10 - 500µN nominal mission

lisa pathfinder

- Truster = Mass Flow Sensor connected to a piezo controlled valve
- 4 High Pressure N2 Gas Tanks
 - 2% of the total Mass : 10kg
 - 30% already used 3kg used during 9 months
 - deltaG driven emptying strategy

2

Attitude Control : sun orientation / earth communication

Drag Free control (x y z and theta): (i.e. : Satellite follow test Mass 1 on X) **Goal** : reduce external disturbances

2

01

Attitude Control : sun orientation / earth communication

Drag Free control (x y z and theta): (i.e. : Satellite follow test Mass 1 on X) **Goal** : reduce external disturbances

1/ Read out TM1 position with the interferometer o1

DFACS

2

01

Attitude Control : sun orientation / earth communication

Drag Free control (x y z and theta): (i.e. : Satellite follow test Mass 1 on X) **Goal** : reduce external disturbances

> 1/ Read out TM1 position with the interferometer o12/ Feed the DFACS with the information

DFACS

2

01

Attitude Control : sun orientation / earth communication

Drag Free control (x y z and theta) :
(i.e. : Satellite follow test Mass 1 on X)
Goal : reduce external disturbances

1/ Read out TM1 position with the interferometer o12/ Feed the DFACS with the information

3/ Actuate thrusters to nullout o1 with an authority set by the DFACS

Attitude Control : sun orientation / earth communication

Drag Free control (x y z and theta): (i.e. : Satellite follow test Mass 1 on X) **Goal** : reduce external disturbances

> 1/ Read out TM1 position with the interferometer o12/ Feed the DFACS with the information

3/ Actuate thrusters to nullout o1 with an authority set by the DFACS

The thrusters commanded Forces are a measurement of disturbances on the satellite

01

DFACS

2

Attitude Control : sun orientation / earth communication

Drag Free control (x y z and theta): (i.e. : Satellite follow test Mass 1 on X) **Goal** : reduce external disturbances

> 1/ Read out TM1 position with the interferometer o12/ Feed the DFACS with the information

3/ Actuate thrusters to nullout o1 with an authority set by the DFACS

External Disturbances are **reduced** by the DFACS authority

The thrusters commanded Forces are a measurement of disturbances on the satellite

01

DFACS

2

Attitude Control : sun orientation / earth communication

Drag Free control (x y z and theta): (i.e. : Satellite follow test Mass 1 on X) **Goal** : reduce external disturbances

> 1/ Read out TM1 position with the interferometer o12/ Feed the DFACS with the information

3/ Actuate thrusters to nullout o1 with an authority set

See poster by Henry Inchauspe

The thrusters commanded Forces are a measurement of disturbances on the satellite

01

DFACS

2

External Disturbances are **reduced** by the DFACS authority

DC contribution

- Solar Radiation Pressure (mainly Z-axis)
- Thermal IR of the satellite (mainly Z-axis)
- Self Gravity of the Satellite

DC contribution

- Solar Radiation Pressure (mainly Z-axis)
- Thermal IR of the satellite (mainly Z-axis)
- Self Gravity of the Satellite

Commanded thrusts = external disturbances

DC contribution

- Solar Radiation Pressure (mainly Z-axis)
- Thermal IR of the satellite (mainly Z-axis)
- Self Gravity of the Satellite

DC contribution

- Solar Radiation Pressure (mainly Z-axis)
- Thermal IR of the satellite (mainly Z-axis)
- Self Gravity of the Satellite

Commanded thrusts = external disturbances

=> Constrain the mean Thrusts value at ~10µN per thrusters (thrusters geometry)

DC contribution

- Solar Radiation Pressure (mainly Z-axis)
- Thermal IR of the satellite (mainly Z-axis)
- Self Gravity of the Satellite

Commanded thrusts = external disturbances

=> Constrain the mean Thrusts value at ~10µN per thrusters (thrusters geometry)

External Disturbances

DC contribution

- Solar Radiation Pressure (mainly Z-axis)
- Thermal IR of the satellite (mainly Z-axis)
- Self Gravity of the Satellite

AC contribution

- Thruster Noise
- Solar radiation pressure
- Solar Wind Protons

Events

• <u>Micro-meteorites</u>

lisa pathfinder

Magnetic Field

Daniel Hollington

See poster by Ira Thorpe

Commanded thrusts = external disturbances

External Disturbances

DC contribution

- Solar Radiation Pressure (mainly Z-axis)
- Thermal IR of the satellite (mainly Z-axis)
- Self Gravity of the Satellite

AC contribution

- Thruster Noise
- Solar radiation pressure
- Solar Wind Protons

Events

• <u>Micro-meteorites</u>

lisa pathfinder

• Magnetic Field

Daniel Hollington

See poster by Ira Thorpe

Commanded thrusts = external disturbances

<u>Hypothesis</u>: Main external disturbance = Thruster Noise

- Presence of Lines (also in the laser pump current)
- We fit a 2 components noise model white noise + 1/f

<u>Hypothesis</u>: Main external disturbance = Thruster Noise

- Presence of Lines (also in the laser pump current)
- We fit a 2 components noise model white noise + 1/f
- LPF in Flights measurements = 0.13µN/sqrt(Hz) down to 0.2mHz

<u>Hypothesis</u>: Main external disturbance = Thruster Noise

- Presence of Lines (also in the laser pump current)
- We fit a 2 components noise model white noise + 1/f
- LPF in Flights measurements = 0.13µN/sqrt(Hz) down to 0.2mHz
- On Ground Gaia measurements = 0.1µN/sqrt(Hz) limited at 2mHz by the test bench

<u>Hypothesis</u>: Main external disturbance = Thruster Noise

- Presence of Lines (also in the laser pump current)
- We fit a 2 components noise model white noise + 1/f
- LPF in Flights measurements = 0.13µN/sqrt(Hz) down to 0.2mHz
- On Ground Gaia measurements = 0.1µN/sqrt(Hz) limited at 2mHz by the test bench

Upper Limit

<u>Hypothesis</u>: Main external disturbance = Thruster Noise

- Presence of Lines (also in the laser pump current)
- We fit a 2 components noise model white noise + 1/f
- LPF in Flights measurements = 0.13µN/sqrt(Hz) down to 0.2mHz
- On Ground Gaia measurements = 0.1µN/sqrt(Hz) limited at 2mHz by the test bench

Upper Limit

A part of the 1/f could be due to the attitude control

Thrusters noise long term 🕏 lisa pathfinder

Thrusters noise long term 🕏 lisa pathfinder

Nominal Mission : March - June

• This time evolution could indicate that we measure **another external noise source**. Temperature related ?

Thrusters noise long term 🕏 lisa pathfinder

Nominal Mission : March - June

- This time evolution could indicate that we measure **another external noise source**. Temperature related ?
- Or a **common thrusters noise source** drifting with time. They share the same electronic/ColdGas feed line.

lisa pathfinder

lisa pathfinder

 6 injected forces on each thruster between 20mHz -30mHz

lisa pathfinder

- Induce large motion of the spacecraft : Stiffness + electrostatic forces negligible
- Reconstruct the motion of the SC with the inertial Sensors of TM1

 6 injected forces on each thruster between 20mHz -30mHz

isa pathfinder

- Induce large motion of the spacecraft : Stiffness + electrostatic forces negligible
- Reconstruct the motion of the SC with the inertial Sensors of TM1
- Fits a model using the commanded forces with Gains
 Delays and Center Of Mass combining all the Degrees of Freedom at every frequencies

 6 injected forces on each thruster between 20mHz -30mHz

isa pathfinder

- Induce large motion of the spacecraft : Stiffness + electrostatic forces negligible
- Reconstruct the motion of the SC with the inertial Sensors of TM1
- Fits a model using the commanded forces with Gains
 Delays and Center Of Mass combining all the Degrees of Freedom at every frequencies

Common analysis architecture with DRS/colloidal

See Poster by Jacob Slusky

Motion on X

Motion on X

Motion on Theta

Motion on Theta

Main results

- Gains = 0.91 and 1 Thruster 4 off by 8.3%
- Center Of Mass seems offset by ~ 4 cm in Z

Limits

- Limited by measurements systematics Set the estimation errors to a few percent.
- Model is not complete Moment Of Inertia Cross Sensing thrusters position
- Consolidate some geometrical parameters like housing position

Next

- This experiments = Calibration of the thrusters against IS
- Repeat the experiment during Acceleration Mode (= TM follow SC) to calibrate against Electrostatic Forces/Torques.

Conclusion

- Thruster Noise measured at 0.13µN/sqrt(Hz) noise is flat down to 0.2mHz
- We extent the frequency range characterization of more than an order of magnitude compare to the on-ground measurements
- Set an **upper limit** on the 1/f and the white noise part.
- This white noise measurements is 30 % higher than the on-ground measurements (0.1µN/sqrt(Hz))
- But the thruster noise is decreasing with time -> could be another external disturbance
- Thrusters Gains =1 within percent accuracy except thruster4 ~ 8.3% off

Conclusion

- Thruster Noise measured at 0.13µN/sqrt(Hz) noise is flat down to 0.2mHz
- We extent the frequency range characterization of more than an order of magnitude compare to the on-ground measurements
- Set an **upper limit** on the 1/f and the white noise part.
- This white noise measurements is 30 % higher than the on-ground measurements (0.1µN/sqrt(Hz))
- But the thruster noise is decreasing with time -> could be another external disturbance
- Thrusters Gains =1 within percent accuracy except thruster4 ~ 8.3% off

Cold gas microNewton are good for LISA => with the same controller performances