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Overview

• Fermi/ACT Dark Matter dwarf spheroidal limits 

• Missing satellites issue, redux

• Direct detection and the Galactic halo

• Velocity distribution

• Can the WIMP mass be determined?
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What is a (dwarf spheroidal) galaxy?
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Dwarf spheroidal questions

❖Is it a galaxy?

❖How much dark matter?

❖Intrinsic sources of gamma-rays?

Hundreds of Milky Way Satellites? 5

TABLE 1
PROPERTIES OF KNOWN MILKY WAY SATELLITE GALAXIES. DATA ARE FROM
BOTHUN & THOMPSON (1988); MATEO (1998); GREBEL ET AL. (2003); SIMON

& GEHA (2007); MARTIN ET AL. (2008); DE JONG ET AL. (2008).

Satellite MV LV [L!] dsun[kpc] Rhalf [pc]
a ε b

SDSS-discovered Satellites

Canes Venatici I -8.6 2.36 × 105 224 565 0.99

Leo T -8.0 5.92 × 104 417 170 0.76

Hercules -6.6 3.73 × 104 138 330 0.72

Boötes I -6.3 2.83 × 104 60 242 1.0

Ursa Major I -5.5 1.36 × 104 106 318 0.56

Leo IV -5.0 8.55 × 103 158 116 0.79

Canes Venatici II -4.9 7.80 × 103 151 74 0.47

Ursa Major II -4.2 4.09 × 103 32 140 0.78

Coma -4.1 3.7 × 103 44 77 0.97

Boötes II -2.7 1.03 × 103 43 72 0.2

Willman 1 -2.7 1.03 × 103 38 25 0.99

Segue 1 -1.5 3.40 × 102 23 29 1.0

Classical (Pre-SDSS) Satellites

Large Magellanic Cloud -18.5 2.15 × 109 49 2591 -

Small Magellanic Cloud -17.1 5.92 × 108 63 1088 -

Sagittarius -15.0 8.55 × 107 28 125 -

Fornax -13.1 1.49 × 107 138 460 -

Leo I -11.9 4.92 × 106 270 215 1.0

Leo II -10.1 9.38 × 105 205 160 1.0

Sculptor -9.8 7.11 × 105 88 110 -

Sextans -9.5 5.40 × 105 86 335 -

Carina -9.4 4.92 × 105 94 210 -

Draco -9.4 4.92 × 105 79 180 1.0

Ursa Minor -8.9 1.49 × 105 69 200 -

aSatellite projected half light radius.
bDetection efficiency from Koposov et al. (2007).
!Galaxy sits within the SDSS DR5 footprint.
†Satellite is not used in fiducial LF correction.

from data for the SDSS-II SEGUE survey (Belokurov et al.
2007). All of the objects we list in this table have large mass-
to-light ratios (Martin et al. 2007; Simon & Geha 2007; Stri-
gari et al. 2008).
For our fiducial corrections, following the convention of

Koposov et al. (2007), we have not included Segue 1, as it
does not lie inside the DR5 footprint and hence the published
DR5 detection limits are not applicable. We do include Segue
1 in an alternative correction scenario below (see Table 3).
We do not correct the classical dwarf satellite galaxies for lu-
minosity bias or sky coverage, because appropriate detection
limits for these classical dwarf satellites are unclear given that
they are not part of a homogeneous survey like SDSS. We
assume that all satellites within those magnitude bins would
have been discovered anywhere in the sky, with the possible
exception of objects at low Galactic latitudes, where Milky
Way extinction and contamination become significant (Will-
man et al. 2004a). This assumption is conservative in the
sense that it will bias our total numerical estimate low, but
it is only a minor effect, as our correction described in §3 is
dominated by low luminosity satellites.
Before we use the radial distribution of Via Lactea subha-

los to correct the observed luminosity function, it is impor-
tant to investigate whether this assumption is even self consis-
tent with the data we have on the radial distribution of known
satellites. The relevant comparison is shown in Figure 5. We
have normalized to an outer radiusRouter = 417 kpc (slightly
larger than the Via Lactea virial radius) in order to allow a

comparison that includes the DR5 dwarf Leo T; this exten-
sion is useful because the known dwarf satellite count is so
low that even adding one satellite to the distribution increases
the statistics significantly.
The radial distribution of all 23 known Milky Way satel-

lites is shown by the magenta dashed line in Figure 5. The
four solid lines show radial distributions for four choices of
subhalo populations: the 65 largest vpeak(upper) subhalos (65
LBA) as discussed in Madau et al. (2008), vpeak > 10 km
s−1 (upper-middle), vpeak > 5 km s−1 (lower-middle), and

vmax > 7 km s−1 (lower). We note that the all-observed pro-
file is clearly more centrally concentrated than any of the the-
oretical subhalo distributions. However, as shown in Figure
1, our limited ability to detect faint satellite galaxies almost
certainly biases the observed satellite population to be more
centrally concentrated than the full population.
If we include only the 11 satellites (excluding SMC and

LMC) that are bright enough to be detected within 417 kpc
(MV ! −7), we obtain the thick blue dashed line. This dis-
tribution is significantly closer to all of the theoretical sub-
halo distributions, and matches quite well within r ∼ 50 kpc,
where the incompleteness correction to the luminosity func-
tion will matter most. It is still more centrally concentrated
then the distribution of all subhalos, however, as has been
noted in the past (at least for the classical satellites – e.g. Will-
man et al. 2004b; Diemand et al. 2004; Kravtsov et al. 2004).
In order to more rigorously determine whether the theoreti-
cal distribution is consistent with that of the 11 “complete”
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Fig. 1.— Aitoff projections of the Galactic coordinates of MW galactic satellites (top panel); the M31

sub-group (blue) and isolated Local Group galaxies (green; middle panel); the nearest galaxies to the Local

Group that have distances based on resolved stellar populations that place them within 3Mpc (magenta;

bottom panel). The positions of nearby galaxy groups are indicated in grey in the bottom panel.
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How much 
dark matter?

❖Various theoretical approaches 
[Virial theorem, jeans, distribution 
functions, Schwarschild codes]

❖Dark matter mass well-determined 
within ~ degree scale of Fermi-LAT

❖No sensitivity to core/cusp for 
Fermi-LAT 

❖Modern/Future ACTs will be 
sensitive to DM and photometric 
core/cusp
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Fig. 2.— (a) Color-magnitude diagram of observed stars in Segue 1. The large black circles represent stars identified as radial velocity
members of the galaxy using our subjective approach, the small black dots represent stars identified as non-members, and the magenta
crosses are spectroscopically confirmed background galaxies and quasars. The red curve shows the location of the red giant branch, subgiant
branch, and main sequence turnoff populations in the globular cluster M92 and the cyan curve shows the location of the horizontal branch
of M13, both corrected for Galactic extinction and shifted to a distance of 23 kpc (data from Clem et al. 2008). (b) Spatial distribution
of observed stars in Segue 1. Symbols are the same as in (a), and the ellipse represents the half-light radius of Segue 1 from Martin et al.
(2008). (c) Velocity histogram of observed stars in Segue 1. Velocities are corrected to the heliocentric rest frame. The filled red histogram
represents stars classified as members, and the hatched black-and-white histogram represents non-members. The velocity bins are 2 km s−1

wide.

Fig. 3.— (a) Distribution of observed stars in velocity and radius. Filled red points represent stars that pass the color and magnitude
selection (at either high or low priority) described in § 2.2, and open black points are stars that lie outside that selection region. Stars
that have been observed multiple times are plotted with their weighted average values. Segue 1 stands out as the large overdensity of stars
near vhel = 200 km s−1 extending out to a radius of ∼ 13′. Based on the distribution of Milky Way stars, it is clear that at small radii
(r ≤ 7′) the risk of contamination of the Segue 1 member sample is very low. In addition to Segue 1, there is also a distinct concentration
of stars near 300 km s−1. (b) Distribution of observed stars in velocity and reduced Ca triplet equivalent width, a proxy for metallicity.
As in the left panel, a large fraction of the Segue 1 members separate cleanly from the Milky Way foreground population. At W′ > 5 Å,
the distributions begin to overlap, and unambiguously classifying individual stars as members or nonmembers becomes more difficult.
Fortunately, relatively few stars are located in this region. It is clear that Segue 1 is more metal-poor than the bulk of the foreground
population, although W′ is a much less accurate metallicity indicator for main sequence stars than giants. The 300 km s−1 structure
appears to be more enriched than Segue 1.

the measured velocities. These calculations are a natural
generalization of the Walker et al. (2009b) EM method.
The method is described in more detail in Paper II and
is summarized here in § 5. In this framework, we find

53 definite members (〈p〉 ≥ 0.9) and 9 further proba-
ble members (0.8 ≤ 〈p〉 < 0.9), plus the 2 RR Lyrae
variables (see § 4.2), but 7 of the stars considered likely
members by the other two techniques receive lower prob-
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ABSTRACT

We present the results of a comprehensive Keck/DEIMOS spectroscopic survey of the ultra-faint
Milky Way satellite galaxy Segue 1. We have obtained velocity measurements for 98.2% of the stars
within 67 pc (10′, or 2.3 half-light radii) of the center of Segue 1 that have colors and magnitudes
consistent with membership, down to a magnitude limit of r = 21.7. Based on photometric, kinematic,
and metallicity information, we identify 71 stars as probable Segue 1 members, including some as far
out as 87 pc. After correcting for the influence of binary stars using repeated velocity measurements,
we determine a velocity dispersion of 3.7+1.4

−1.1 km s−1. The mass within the half-light radius is 5.8+8.2
−3.1×

105 M#. The stellar kinematics of Segue 1 require very high mass-to-light ratios unless the system is
far from dynamical equilibrium, even if the period distribution of unresolved binary stars is skewed
toward implausibly short periods. With a total luminosity less than that of a single bright red giant
and a V-band mass-to-light ratio of 3400 M#/L#, Segue 1 is the darkest galaxy currently known. We
critically re-examine recent claims that Segue 1 is a tidally disrupting star cluster and that kinematic
samples are contaminated by the Sagittarius stream. The extremely low metallicities ([Fe/H] < −3)
of two Segue 1 stars and the large metallicity spread among the members demonstrate conclusively
that Segue 1 is a dwarf galaxy, and we find no evidence in favor of tidal effects. We also show that
contamination by the Sagittarius stream has been overestimated. Segue 1 has the highest estimated
dark matter density of any known galaxy and will therefore be a prime testing ground for dark matter
physics and galaxy formation on small scales.
Subject headings: dark matter — galaxies: dwarf — galaxies: kinematics and dynamics — galaxies:

individual (Segue 1) — Local Group

1. INTRODUCTION

The Sloan Digital Sky Survey (SDSS) has been
tremendously successful in revealing new Milky
Way dwarf galaxies over the past five years (e.g.,
Willman et al. 2005; Zucker et al. 2006; Belokurov et al.
2007a; Walsh et al. 2007; Belokurov et al. 2010). How-
ever, its limited depth and sky coverage, along with the
difficulty of obtaining spectroscopic followup observa-
tions, still leave us with an incomplete understanding
of the Milky Way’s satellite population. In particular,
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key parameters such as the luminosity function, mass
function, radial distribution, and total number of
satellites depend extremely sensitively on the properties
of the few least luminous dwarfs (e.g., Tollerud et al.
2008), which are not yet well-determined. Since the
least luminous dwarfs are the closest and densest
known dark matter halos to the Milky Way, these
same objects represent critical targets for indirect dark
matter detection experiments (e.g., Baltz et al. 2000;
Evans, Ferrer, & Sarkar 2004; Colafrancesco et al. 2007;
Strigari et al. 2008b; Kuhlen, Diemand, & Madau 2008;
Bringmann et al. 2009; Pieri et al. 2009; Martinez et al.
2009) and for placing limits on the phase space density
of dark matter particles (e.g., Hogan & Dalcanton
2000; Dalcanton & Hogan 2001; Kaplinghat 2005;
Simon & Geha 2007; Strigari et al. 2008b; Geha et al.
2009). However, as the closest known satellites to the
Milky Way, they are also the most susceptible to tidal
forces and other observational systematics.
Because of the extreme lack of bright stars in these

systems, most of the faintest dwarfs such as Will-
man 1 (Willman et al. 2005), Boötes II (Walsh et al.
2007), Segue 1 (Belokurov et al. 2007a), and Segue 2
(Belokurov et al. 2009) remain relatively poorly char-
acterized by observations; for example, the dynamical
state of Willman 1 has still has not been established
(Martin et al. 2007; Willman et al. 2010), and the veloc-
ity dispersion of Boo II is uncertain at the factor of ∼ 5
level (Koch et al. 2009). Similarly, although Geha et al.
(2009, hereafter G09) demonstrated that the kinemat-
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Fig. 1.— Dereddened color-magnitude diagram of all stars within
two elliptical half-light radii of the center of Willman 1 from KPNO
g- and r-band photometry. We used (position angle, ellipticity,
rhalf) = (77,0.47,2.3′) from Martin et al. (2008a) to calculate half-
light distances. The region inside the dotted boxes is the location
of our highest priority spectroscopic selection criteria, hereafter
referred to as the color criteria used to identify stars possibly be-
longing to Wil 1. The sizes of color and magnitude uncertainties
are shown by the crosses on the left of the CMD.

ible. Dotted boxes outline the liberal color-magnitude
selection that we will use in the rest of this paper as the
color-magnitude requirements for possible Wil 1 mem-
bership.
We applied the color-magnitude selection shown in

Figure 1 to this photometric catalog to calculate a re-
vised center of Willman 1. We began with the cen-
ter, based on the much shallower SDSS dataset, calcu-
lated by Martin et al. (2008b), and then iteratively cal-
culated the average position of stars within 2 arcmin-
utes of the center until we converged on (α2000, δ2000) =
(162.3397,51.0508). We will use this center for the rest
of the paper.

2.2. Spectroscopic Target Selection

Stars in Wil 1 were targeted for spectroscopy using
the photometric catalog described in the previous sec-
tion. We set the target priorities to preferentially ob-
serve stars with a high likelihood of being Wil 1 mem-
bers based on their color, magnitude and spatial position.
First priority was given to stars that (1) spatially over-
lap the main body of Wil 1 and (2) reside within regions
of the color-magnitude diagram that are consistent with
the Main Sequence (MS) and turnoff, horizontal branch,
and red giant branch of an old stellar population at the
distance of Wil 1. These color-magnitude criteria are
shown by the dotted lines overplotted on Figure 1. We
chose to implement liberal, rectangular color-magnitude
criteria to include Wil 1 member stars with a range of
possible [Fe/H] and ages in our spectroscopic sample.
Second priority was given to stars occupying a similar
color-magnitude region, independent of spatial location.
All remaining stars were assigned third priority. Within
each of these three tiers, stars were further prioritized by
their apparent magnitude, with the brightest stars re-
ceiving highest priority. An average of 100 slitlets were

placed on each mask (see Table 1).

2.3. Spectroscopy and Data Reduction

Four multislit masks were observed for Willman 1 us-
ing the Keck II 10-m telescope and the DEIMOS spec-
trograph (Faber et al. 2003). Three masks were observed
on the nights of November 20–22, 2006, the fourth was
observed on March 20, 2007. Exposure times, mask po-
sitions and additional observing details are given in Ta-
ble 1. The masks were observed with the 1200 line mm−1

grating covering a wavelength region 6400− 9100Å. The
spatial scale is 0.12′′ per pixel, the spectral dispersion of
this setup is 0.33Å, and the resulting spectral resolution
is 1.37Å (FWHM). Slitlets were 0.7′′ wide. The seeing
conditions during both runs were on average ∼ 0.75′′.
Despite the similar observing conditions, few spectra
were usable from the fourth mask because the targeted
stars were fainter. The minimum slit length was 4′′ to al-
low adequate sky subtraction; the minimum spatial sep-
aration between slit ends was 0.4′′ (three pixels).
Spectra were reduced using a modified version of the

spec2d software pipeline (version 1.1.4) developed by the
DEEP2 team at the University of California-Berkeley
for that survey. A detailed description of the two-
dimensional reductions can be found in Simon & Geha
(2007). The final one-dimensional spectra are re-
binned into logarithmically spaced wavelength bins with
15 km s−1 per pixel.

2.4. Radial Velocities and Error Estimates

We measure radial velocities and estimate velocity er-
rors using the method detailed in Simon & Geha (2007).
We refer the reader to this paper for a description of the
method and only highlight the important steps below.
Radial velocities were measured by cross-correlating

the observed science spectra with a series of high signal-
to-noise stellar templates. The templates were observed
with Keck/DEIMOS using the same setup as described
in § 2.3 and cover a wide range of stellar types (F8 to
M8 giants, subgiants and dwarf stars) and metallicities
([Fe/H] = −2.12 to +0.11). We calculate and apply a
telluric correction to each science spectrum by cross cor-
relating a hot stellar template with the night sky ab-
sorption lines following the method in Sohn et al. (2007).
The telluric correction accounts for the velocity error due
to mis-centering the star within the 0.7′′ slit caused by
small mask rotations or astrometric errors. We apply
both a telluric and heliocentric correction to all veloci-
ties presented in this paper.
It is crucial to accurately assess our velocity errors be-

cause the internal velocity dispersion of Willman 1 is
expected to be comparable to the DEIMOS velocity er-
rors associated with individual measurements. We de-
termine the random component of our velocity errors us-
ing a Monte-Carlo bootstrap method. Noise is added
to each pixel in the one-dimensional science spectrum.
We then recalculate the velocity and telluric correction
for 1000 noise realizations. Error bars are defined as
the square root of the variance in the recovered mean
velocity in the Monte-Carlo simulations. The system-
atic contribution to the velocity error was determined by
Simon & Geha (2007) to be 2.2 km s−1 based on repeated
independent measurements of individual stars, and has
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Fig. 2.— Velocity distributions of: the 58 stars that satisfy our
Wil 1 color-magnitude selection criteria (open) and the 39 stars
that do not satisfy these criteria (grey filled). The dotted lines show
the velocity range of −30 < vhelio < 0 km s−1used to select Wil 1
member stars. Binsize is 4.7 km s−1, the median velocity error of
the 58 stars passing the color-magnitude criteria for membership.

between −30 and 0 km s−1. We identify these 45 color-
magnitude-velocity (CM-V) selected stars as likely Wil
1 members. This does not necessarily mean that none
of the 13 CM selected stars with outlying velocities are
physically associated with Wil 1. However, the spatial
distribution of those 13 stars at outlying velocities is not
clustered around the Wil 1 center.
We present in Table 2 the equatorial coordinates, r

magnitudes, g−r colors, heliocentric velocities, and spec-
tral S/N of the 45 CM-V selected Wil 1 member stars.
We also include the CaT W′ (and uncertainty) for the
15 possible red giant branch, as calculated in § 2.5. Ta-
ble 3 contains the same data (but not W′) for the 52
non-member stars.

3.2. Predicting the Number of Interlopers in the
Color-Magnitude-Velocity Sample

Figure 3 shows a CMD of the stars in our spectroscopic
catalog. Filled symbols represent the 45 candidate Wil
1 members selected in § 3.1, and open symbols represent
the 52 foreground Milky Way stars. The number of open
symbols overlapping with the filled symbols shows that
shows that 40% of stars with colors and magnitudes con-
sistent with the red giant branch of Wil 1 are foreground
stars belonging to the MilkyWay. These foreground stars
were only identified because their line-of-sight velocities
were different than those of Wil 1 stars. The median
velocity of Milky Way stars passing the CM criterion
for membership is −35.7 km s−1(based on the Besancon
Galaxy model), with 16% of these having −30 < vlos < 0
km s−1. How many Milky Way interlopers remain in the
CM-V sample of 45 candidate Wil 1 members?
We simulate the number of interloper stars expected

among the 45 candidate members using the Besancon
Galaxy model. Because photometric studies suggest the
presence of tidal features around Wil 1 (Willman et al.
2006; Martin et al. 2007), we first predict the number of
Milky Way contaminant stars without assuming that all

−0.5 0.0 0.5 1.0
(g − r)0

22

20
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r 0

MS/BHB sample

faint RGB sample

bright RGB sample

filled − candidate Wil 1 members
open − MW stars

Fig. 3.— Color-magnitude diagram of the 97 stars with
DEIMOS/Keck velocities. Open symbols show Milky Way stars.
Filled symbols show probable Wil 1 member stars, as selected by
color-magnitude and velocity (−30 < v < 0 km s−1) criteria. Tri-
angles, circles, and squares highlight stars belonging to the bRGB,
fRGB, and MS/BHB sub-samples used to characterize foreground
contamination. 5-point stars show those stars that did not satisfy
the initial color-magnitude cut for membership.

CM selected stars outside the Wil 1 velocity peak belong
to the Milky Way. We instead use the Besancon model to
predict the absolute number density of Milky Way stars
satisfying the color-magnitude-velocity criteria for can-
didate members. The predicted number of contaminant
stars thus rests on the assumptions that the velocity dis-
tribution of Besancon model stars and the absolute num-
bers of stars in the Besancon model are correct. We later
verify that this yields a reasonable prediction.
The primary ingredients in our calculation are:

1. nfg,vel, the projected number density of Milky Way
stars in the Besancon model satisfying the CM-
V criteria for Wil 1 membership. We calculated
nfg,vel and its dispersion in 1000 small fields ran-
domly placed in a 1 square degree Besancon simu-
lation centered on the position of Wil 1. To do this,
we shuffled the RAs and Decs of Besancon model
stars before selecting each random field. The ran-
dom fields each had an area approximately equal
to that of our spectroscopic survey footprint. Be-
cause the CM cuts applied to our data were liberal,
we simply used the model CFHT-Megacam g and
r magnitudes as a proxy for the observed SDSS
g and r magnitudes. We convolved 4.7 km s−1

measurement uncertainties, the median for the 45
candidate members, to the model velocities of each
Besancon star. The average number of possible in-
terlopers in the CM-V sample within a given area
of sky, A, is then Ncont,vel = A ∗ nfg,vel.

2. ftarg, the fraction of stars in our photometric cat-
alog satisfying the CM criteria for Wil 1 member-
ship that also end up in our spectroscopic catalog
of 97 stars. Not all stars satisfying the CM criteria
for membership were targeted, and not all targeted
stars had spectra with high enough S/N to be in
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ABSTRACT

We investigate the kinematic properties and stellar population of the Galactic satellite Willman
1 (Wil 1) by combining Keck/DEIMOS spectroscopy with KPNO mosaic camera imaging. Wil 1,
also known as SDSS J1049+5103, is a nearby, ultra-low luminosity Milky Way companion. This
object lies in a region of size-luminosity space (MV ∼ −2 mag, d ∼ 38 kpc, rhalf ∼ 20 pc) also
occupied by the Galactic satellites Boötes II and Segue 1 and 2, but no other known old stellar
system. We use kinematic and color-magnitude criteria to identify 45 stars as possible members of
Wil 1. With a systemic velocity of vhelio = −12.8± 1.0 km s−1, Wil 1 stars have velocities similar to
those of foreground Milky Way stars. Informed by Monte-Carlo simulations, we identify 5 of the 45
candidate member stars as likely foreground contaminants, with a small number possibly remaining
at faint apparent magnitudes. These contaminants could have mimicked a large velocity dispersion
and abundance spread in previous work. We confirm a significant spread in the abundances of the
likely Wil 1 red giant branch members ([Fe/H] = −1.73 ± 0.12 and −2.65 ± 0.12, [Ca/Fe] = −0.4
± 0.18 and +0.13 ± 0.28). This spread supports the scenario that Wil 1 is an ultra-low luminosity
dwarf galaxy rather than a star cluster. Wil 1’s innermost stars move with radial velocities offset by
8 km s−1 from its outer stars and have a velocity dispersion consistent with 0 km s−1 , suggesting
that Wil 1 may not be in dynamical equilibrium. The combination of the foreground contamination
and unusual kinematic distribution make it difficult to robustly determine the dark matter mass of
Wil 1. As a result, X-ray or gamma-ray observations of Wil 1 that attempt to constrain models of
particle dark matter using an equilibrium mass model are strongly affected by the systematics in the
observations presented here. We conclude that, despite the unusual features in the Wil 1 kinematic
distribution, evidence indicates that this object is, or at least once was, a dwarf galaxy.

Subject headings: galaxies: star clusters — galaxies: dwarf — galaxies: kinematics and dynamics —
galaxies: individual (Willman 1)

1. INTRODUCTION

Since 2004, over a dozen Milky Way satellites
have been discovered via slight statistical overdensi-
ties of individual stars in the Sloan Digital Sky Sur-
vey (SDSS) catalog and confirmed by both follow-
up imaging and spectroscopy (e.g. Willman et al.
2005a,b; Zucker et al. 2006a,b; Belokurov et al. 2006,
2007; Sakamoto & Hasegawa 2006; Irwin et al. 2007;
Walsh et al. 2007; Belokurov et al. 2008, 2009). These
satellites are dominated by old stellar populations and
have absolute magnitudes of −8 < MV < −1 mag.
Their median MV is ∼ −4, less luminous than the me-
dian observed for Milky Way globular clusters (GCs;
Harris 1996). Stellar kinematics consistent with mass-
to-light (M/L) ratios > 100 demonstrate that most of

1 Departments of Physics and Astronomy, Haverford Col-
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these objects are dark matter dominated dwarf galaxies
(Muñoz et al. 2006; Simon & Geha 2007; Martin et al.
2007; Strigari et al. 2008a).
Four of the new Milky Way companions - Willman 1,

Boötes II, Segue 1 and Segue 2 - contain L ∼< 1000L" and
have been difficult to classify. With estimated rhalf of 20
– 40 pc, these four objects lie in a gap between the sizes
of known old stellar populations (Milky Way GCs and
dwarf spheroidals) in size-luminosity space. They are
less luminous than all but three known objects classified
as globular clusters, providing few stars bright enough for
kinematic study (Willman et al. 2005a; Belokurov et al.
2007; Walsh et al. 2008; Belokurov et al. 2009). More-
over, their proximity to the Milky Way (d ∼< 40
kpc) and their possible embedding in the Sagittarius
stream (Boötes II and Segue 1 and 2, Belokurov et al.
2009; Niederste-Ostholt et al. 2009 - although see
Law & Majewski 2010) complicate the interpretation of
their observed properties.
Measuring the dark mass content of satellites with

MV > −3 is a critical ingredient to our understand-
ing of the size and mass scale of dark matter cluster-
ing, the abundance and distribution of dark matter ha-
los, and the extreme low mass limit of galaxy formation.
Koposov et al. (2007) and Walsh et al. (2009) showed
that Milky Way companions fainter thanMV ∼ −3 could
not have been discovered at all in SDSS if they are more
distant than ∼ 50 kpc from the Sun. They may thus rep-

Ultra-faint satellites:
How much dark matter?



0 20 40 60 80 100 120 140
Distance [kpc]

17

18

19

20

21

Lo
g 1

0 [
 J 

(G
eV

2  c
m

-5
) ]

Segue 1
UMaII

Coma

Boo I

Ursa Minor Draco

Sculptor

Carina

Fornax
Sextans

Strigari et al. PRD 2008; Martinez et al. JCAP 2009

2

more massive galaxies in the local group were considered
in [25], potentially dark subhalos were studied in [26, 27,
28, 29, 30, 31], and the prospects of detecting microhalos
were explored in [32, 33].

In comparison to previous studies of dSphs, our work is
the first to combine theoretical predictions for CDM halo
profile shapes and normalizations with specific dynami-
cal constraints for each observed system. Though the
observed velocity dispersion profiles are equally well fit
by both central density cores and cusps, we restrict our-
selves to inner profile shapes ρ ∝ r−γ with γ " 0.7 − 1.2
[34, 35], because this is what is expected for the sub-
set of dark matter candidates that actually annihilate
into photons (CDM). We show that the primary uncer-
tainty in the smooth dark matter flux contribution for
CDM halos comes not from the relatively narrow range
of central cusp slopes, but from the density and radius
normalization parameters, ρs and rs for the halo. As we
show below, the published velocity dispersion data along
with the predicted relations between ρs and rs for CDM
halos allow a tight constraint on the dark-halo density
contribution to the annihilation signal.

While the value of the expected flux signal for each
dSph is sensitive to the (unknown) nature of the under-
lying dark matter candidate, we demonstrate that the
relative flux from system-to-system is significantly con-
strained. Ursa Minor is the most promising dSph can-
didate for detection and we present the expected γ-ray
flux ratios between the remaining five dSphs and Ursa
Minor. We also demonstrate that enhancement of the
signal due to the presence of substructure in dSph halos
themselves increases the predicted fluxes by at most a
factor of ∼ 100.

This paper is organized as follows. In section II, we
discuss the γ-ray annihilation signal expected from CDM
halos and the enhancement of the flux due to the presence
of substructure within the dSph dark matter halos. In
section III we discuss the dynamical modeling of the dSph
galaxies. In section IV we present our results, and we
conclude in section V. Throughout the paper, we assume
a ΛCDM cosmological model with Ωm = 0.3, ΩΛ = 0.7,
h = 0.7 and σ8 = 0.9.

II. GAMMA-RAYS FROM ANNIHILATION IN
COLD DARK MATTER HALOS

The γ-ray flux from dark matter annihilation in a dark
matter halo with characteristic density ρs and radius rs

at a distance D may be written as

dNγ

dAdt
=

1

4π
P [〈σv〉, Mχ, dNγ/dE] L(ρs, rs,D). (1)

We have explicitly divided the flux into a term that de-
pends only on the dark matter particle and its annihila-
tion characteristics, P(〈σv〉, Mχ, dNγ/dE), and one that
depends only on the density structure of the dark mat-
ter halo, the distance to the halo, D, and the angular

size over which the system is observed, L(ρs, rs,D). The
structure quantity L is defined as

L =

∫ ∆Ω

0

{
∫

LOS
ρ2[r(θ,D, s)] ds

}

dΩ (2)

where the integral is performed along the line of sight over
a solid angle ∆Ω = 2π(1−cos θ). The term that contains
the microscopic dark matter physics is given explicitly as

P =

∫ Mχ

Eth

∑

i

dNγ,i

dE

〈σv〉i
M2

χ
dE. (3)

Here, the mass of the dark matter particle is Mχ, the an-
nihilation cross section to a final state “i” is 〈σv〉i, and
the spectrum of photons emitted from dark matter anni-
hilation to that final state is dNγ,i/dE. Our goal is to use
observed velocity dispersion profiles to empirically con-
strain the L term. This allows observations from γ−ray
telescopes to more effectively constrain the particle na-
ture of dark matter through P .

A. Photon spectrum and cross sections

As a fiducial case, we consider neutralino dark matter
in order to determine an appropriate value for P . Neu-
tralino annihilation to a photon final state occurs via: (1)
loop diagrams to two photons (γγ), each of energy Eγγ =
Mχ; (2) loop diagrams to a photon and a Z0 boson (γZ0)
with a photon energy of EγZ0 = Mχ[1 − (Mz0/2Mχ)2];
and (3) through an intermediate state that subsequently
decays and/or hadronizes, yielding photons (h). For this
latter case, the resulting photon spectrum is a continuum
and is well-approximated by [12]

dNγ,h

dE
= α1

E

Mχ

(

E

Mχ

)−3/2

exp

[

−α2
E

Mχ

]

(4)

where (α1, α2) = (0.73, 7.76) for WW and Z0Z0 final
states, (α1, α2) = (1.0, 10.7) for bb̄, (α1, α2) = (1.1, 15.1)
for tt̄, and (α1, α2) = (0.95, 6.5) for uū. The cross sec-
tions associated with these processes span many orders
of magnitude. For the direct annihilation to a γγ or γZ0

final states the maximum presently allowed value of the
annihilation cross section to these final states is roughly
∼ 〈σv〉γγ,γZ0 ∼ 10−28cm3s−1. The total cross section
associated with photon emission from the hadronization
of the annihilation products has a corresponding upper
bound of 〈σv〉h ≈ 5 × 10−26cm3s−1. In the most opti-
mistic scenario, where the cross sections are fixed to their
highest value and the mass of the neutralino is ∼ 46 GeV,
so that P = PSUSY ≈ 10−28cm3s−1GeV−2.

The value of P will be different for different dark mat-
ter candidates. For example, in models of minimal uni-
versal extra-dimensions, the annihilation cross section
and the mass of the lightest Kaluza-Klein particle can
be significantly higher than what we assumed here (e.g.,
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Fig. 3. Gamma-ray > 100 MeV luminosity versus total number of hy-
drogen atoms (top panel) and star formation rate (bottom panel) for
Local Group galaxies and the starbursts M82 and NGC253. In the bot-
tom panel, the lines are power-law fits to the data for the MW, M31, the
LMC, and the SMC, for which the slope was free (solid) or fixed to 1
(dashed).

relation obtained for Local Group galaxies also holds for nearby
starburst galaxies. Assuming that it also holds for M33 allows
estimation of the luminosity of Lγ ∼ (1 − 4) × 1041 ph s−1 for
this galaxy, corresponding to a >100 MeV flux of (1− 4) × 10−9
ph cm−2 s−1. M33 thus may be within reach of the LAT within
the next few years.

The Lγ-SFR plot does suggest a correlation in common for
Local Group and starburst galaxies. Although it is premature
to draw conclusions about any strong correlation over such a
wide range of galaxy properties because of the small size of our
sample, if such a correlation exists, it would be analogous to
the well-known tight correlation between radio and far-infrared
emission over a wide range of galaxy types (e.g. Murphy et
al. 2006). The latter is linked to the relation between CRs and
SFR, and although not yet fully understood, it is thought to re-
sult to some extent from CR electron calorimetry. While pro-
ton calorimetry clearly can be excluded as an explanation of
the Lγ-SFR correlation because the intermediate-size galaxies
of the Local Group are thought to be very inefficient at retaining
CR protons, the dominant CR component (Strong et al. 2010),
a correlation may relate to the contribution of CR leptons to
the gamma-ray emission. Depending on the ISM and CR trans-
port conditions, CR leptonsmay lose their energy predominantly
through gamma-ray-emitting processes (like inverse-Compton
or Bremsstrahlung, as opposed to ionization and synchrotron)

and dominate the total gamma-ray luminosity7. This could drive
the correlation between Lγ and SFR for galactic systems with
high lepton calorimetric efficiency.Whatever the explanation for
this global correlation, it is worthwhile noting that it holds de-
spite the fact that conditions may vary considerably within a
galaxy (e.g. the peculiar 30 Doradus region in the LMC, or the
very active cores of starbursts).

The Lγ vs SFR plane therefore seems to hold potential for
defining constraints on CR production and transport processes.
The inferred Lγ values are, however, not uniquely due to CR-
ISM interactions but include a contribution of individual galactic
sources such as pulsars and their nebulae. The relative contribu-
tions of discrete sources and CR-ISM interactions to the total
gamma-ray emission very likely vary with galaxy properties like
SFR, which may complicate the interpretation of any Lγ trend in
terms of CR large-scale population and transport.

Also more exotic processes, such as annihilation or decay
of WIMPs (weakly interacting massive particles), might con-
tribute to the overall signal from M31. Several extensions of
the Standard Model of particle physics naturally predict the ex-
istence of WIMPs (e.g. supersymmetry, universal extra dimen-
sions). Rather than focusing on a specific scenario, we estimate
a conservative upper bound on this contribution in the case of
a generic 100 GeV WIMP annihilating exclusively into bottom
quarks, which is one of the leading tree level annihilation chan-
nels of a WIMP predicted by supersymmetric theories. The nor-
malization of the predicted spectrum is initially set to zero and is
increased until it just meets, but does not exceed, the 95% confi-
dence upper limit on the measured M31 spectrum at any energy.
We find that when assuming an Einasto dark matter halo pro-
file (Navarro et al. 2010) that matches the M31 kinematic data
(Klypin et al. 2002), this contribution corresponds to a 95% con-
fidence upper limit on the annihilation cross section of approxi-
mately 5 × 10−25 cm3 s−1.
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Fig. 3. Predicted number of MSPs versus stellar encounter rate
Γe. Horizontal error bars indicate the uncertainties in Γe due to
the distance uncertainties given in Table 4 and due to uncertain-
ties in θc that we estimated from the spread of values quoted in
the recent literature. The data have been fitted by a linear relation
NMSP = 0.5 × Γe + 18.

Kulkarni et al. (1990), should still be relevant. On the low end,
Heinke et al. (2005) estimated the Galactic globular cluster pul-
sar population as 700, essentially from X-ray observations and
the stellar encounter rate, the latter being commensurate with
the estimate ofWijers & van Paradijs (1991) which was deduced
from radio observations. Fruchter & Goss (1990) deduced the
total number of MSPs in the Galactic globular system to lie be-
tween 500 and 2000, but concluded that the expected number of
pulsars in a globular cluster depends only weakly on the stellar
collision rate.

It appears that our independent method of determining the
number of MSPs in Galactic globular clusters through gamma-
ray observations is entirely compatible with earlier estimates.

4. Conclusions
An analysis of Fermi LAT data from 13 globular clusters has
revealed 8 significant, point-like and steady gamma-ray sources
that are spatially consistent with the locations of the clusters.
Five of them (47 Tuc, Omega Cen, NGC 6388, Terzan 5, and
M 28) show hard spectral power law indices (0.7 < Γ < 1.4) and
clear evidence for an exponential cut-off in the range 1.0 − 2.6
GeV, which is the characteristic signature of magnetospheric
emission fromMSPs. We thus classify these 5 sources as plausi-
ble globular cluster candidates. Three of them (M 62, NGC 6440
and NGC 6652) also show hard spectral indices (1.0 < Γ < 1.7),
however the presence of an exponential cut-off cannot unam-
biguously be established. More data are required before definite
conclusions can be drawn; hence we qualify these 3 sources as
possible globular cluster candidates.

From the 8 globular clusters that are associated with sig-
nificant gamma-ray sources, 5 are known to harbour MSPs. In
Omega Cen, NGC 6388 and NGC 6652, however, no MSPs have
so far been detected, neither by radio nor by X-ray observations.
The observation of gamma-ray signatures that are characteris-
tic of MSPs provides strong support that these GCs indeed also
harbour important populations of MSPs. In particular, we pre-
dict from the observed gamma-ray luminosities that the total
MSP populations amount to 10 − 30 (Omega Cen), 80 − 300
(NGC 6388), and 30 − 80 (NGC 6652) in these clusters. Deep

radio and X-ray follow-up observations may help to unveil first
members of these populations.

Our predicted number of MSPs shows evidence for a posi-
tive correlation with the stellar encounter rate in a similar way
to their progenitors, the neutron star low mass X-ray binaries.
This correlation allows us to deduce the total number of MSPs
in Galactic globular clusters (2600 − 4700) which lies midway
between all previous estimates, supporting such a correlation.
Such an estimate can be used to derive constraints on the original
neutron star X-ray binary population, essential for understanding
the importance of binary systems in slowing the inevitable core
collapse of globular clusters.
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Fig. 2.— (a) Color-magnitude diagram of observed stars in Segue 1. The large black circles represent stars identified as radial velocity
members of the galaxy using our subjective approach, the small black dots represent stars identified as non-members, and the magenta
crosses are spectroscopically confirmed background galaxies and quasars. The red curve shows the location of the red giant branch, subgiant
branch, and main sequence turnoff populations in the globular cluster M92 and the cyan curve shows the location of the horizontal branch
of M13, both corrected for Galactic extinction and shifted to a distance of 23 kpc (data from Clem et al. 2008). (b) Spatial distribution
of observed stars in Segue 1. Symbols are the same as in (a), and the ellipse represents the half-light radius of Segue 1 from Martin et al.
(2008). (c) Velocity histogram of observed stars in Segue 1. Velocities are corrected to the heliocentric rest frame. The filled red histogram
represents stars classified as members, and the hatched black-and-white histogram represents non-members. The velocity bins are 2 km s−1

wide.

Fig. 3.— (a) Distribution of observed stars in velocity and radius. Filled red points represent stars that pass the color and magnitude
selection (at either high or low priority) described in § 2.2, and open black points are stars that lie outside that selection region. Stars
that have been observed multiple times are plotted with their weighted average values. Segue 1 stands out as the large overdensity of stars
near vhel = 200 km s−1 extending out to a radius of ∼ 13′. Based on the distribution of Milky Way stars, it is clear that at small radii
(r ≤ 7′) the risk of contamination of the Segue 1 member sample is very low. In addition to Segue 1, there is also a distinct concentration
of stars near 300 km s−1. (b) Distribution of observed stars in velocity and reduced Ca triplet equivalent width, a proxy for metallicity.
As in the left panel, a large fraction of the Segue 1 members separate cleanly from the Milky Way foreground population. At W′ > 5 Å,
the distributions begin to overlap, and unambiguously classifying individual stars as members or nonmembers becomes more difficult.
Fortunately, relatively few stars are located in this region. It is clear that Segue 1 is more metal-poor than the bulk of the foreground
population, although W′ is a much less accurate metallicity indicator for main sequence stars than giants. The 300 km s−1 structure
appears to be more enriched than Segue 1.

the measured velocities. These calculations are a natural
generalization of the Walker et al. (2009b) EM method.
The method is described in more detail in Paper II and
is summarized here in § 5. In this framework, we find

53 definite members (〈p〉 ≥ 0.9) and 9 further proba-
ble members (0.8 ≤ 〈p〉 < 0.9), plus the 2 RR Lyrae
variables (see § 4.2), but 7 of the stars considered likely
members by the other two techniques receive lower prob-

Simon et al. 2011
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i denotes the binned Poisson likelihood that

is commonly used in a standard single ROI analysis
of the LAT data, i indexes the ROIs, D represents
the binned gamma-ray data, pW represents the set of
ROI-independent DM parameters (⌅⇥annv⇧ ,mW , and the
annihilation branching ratios bf ), {p}i are the ROI-
dependent model parameters. In this analysis, {p}i in-
cludes the normalizations of the nearby point and dif-
fuse sources and the J-factor, Ji. log10(Ji) and ⇥i are
the mean and standard deviation of the distribution of
log10 (Ji), approximated to be gaussian, and their values
are given in cols. 5 and 6 respectively of Table I.

The fit proceeds as follows. For given fixed values of
mW and bf , we optimize � lnL, with L given in eq. 1.
Confidence intervals or upper limits, taking into account
uncertainties in the nuisance parameters, are then com-
puted using the ‘profile likelihood’ technique, which is a
standard method for treating nuisance parameters in like-
lihood analyses (see e.g., [30]), and consists of calculat-
ing the profile likelihood � lnLp(⌅⇥annv⇧) for several fixed
masses mW , where for each ⌅⇥annv⇧, � lnL is minimized
with respect to all other parameters. The intervals are
then obtained by requiring 2� ln(Lp) = 2.71 for a one-
sided 95% confidence level. The MINUIT subroutine MI-
NOS [31] is used as the implementation of this technique.
Note that uncertainties in the background fit (di⇥use and
nearby sources) are also treated in this way. The cover-
age of this profile joint likelihood method for calculating
confidence intervals has been verified using toy Monte
Carlo for a Poisson process with known background and
Fermi-LAT simulations of galactic and isotropic di⇥use
gamma-ray emission. The parameter range for ⌅⇥annv⇧
is restricted to have a lower bound of zero, to facilitate
convergence of the MINOS fit, resulting in slight over-
coverage for small signals, i.e. conservative limits.

RESULTS AND CONCLUSIONS

As no significant signal is found, we report upper lim-
its. Individual and combined upper limits on the anni-
hilation cross section for the bb̄ final state are shown in
Fig. 1, see also [32]. Including the J-factor uncertainties
in the fit results in increased upper limits compared to
using the nominal J-factors. Averaged over the WIMP
masses, the upper limits increase by a factor up to 12
for Segue 1, and down to 1.2 for Draco. Combining the
dSphs yields a much milder overall increase of the upper

FIG. 1. Derived 95% C.L. upper limits on WIMP annihilation
cross section for all selected dSphs and for the joint likelihood
analysis for annihilation into bb̄ final state. The most generic
cross section (� 3 · 10�26 cm3s�1 for a purely s-wave cross
section) is plotted as a reference. Uncertainties in the J-factor
are included.

FIG. 2. Derived 95% C.L. upper limits on WIMP annihilation
cross section for the bb̄ channel, the �+�� channel, the µ+µ�

channel, and the W+W� channel. The most generic cross
section (� 3 · 10�26 cm3s�1 for a purely s-wave cross section)
is plotted as a reference. Uncertainties in the J-factor are
included.

limit compared to using nominal J-factors, a factor of
1.3.
The combined upper limit curve shown in Fig. 1 in-

cludes Segue 1 and Ursa Major II, two ultra-faint satel-
lites with small kinematic datasets and relatively large
uncertainties on their J-factors. Conservatively, exclud-
ing these objects from the analysis results in an increase
in the upper limit by a factor ⇤1.5, which illustrates the
robustness of the combined fit.
Finally, Fig. 2 shows the combined limits for all stud-
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FIG. 1. Derived 95% C.L. upper limits on a WIMP anni-
hilation cross section for all selected dSphs and for the joint
likelihood analysis for annihilation into the bb̄ final state. The
most generic cross section (⇠ 3 · 10�26 cm3s�1 for a purely s-
wave cross section) is plotted as a reference. Uncertainties in
the J factor are included.

FIG. 2. Derived 95% C.L. upper limits on a WIMP annihila-
tion cross section for the bb̄ channel, the ⌧+⌧� channel, the
µ+µ� channel, and the W+W� channel. The most generic
cross section (⇠ 3 ·10�26 cm3s�1 for a purely s-wave cross sec-
tion) is plotted as a reference. Uncertainties in the J factor
are included.

in the fit results in increased upper limits compared to
using the nominal J factors. Averaged over the WIMP
masses, the upper limits increase by a factor up to 12
for Segue 1, and down to 1.2 for Draco. Combining the
dSphs yields a much milder overall increase of the upper
limit compared to using nominal J factors, a factor of
1.3.
The combined upper limit curve shown in Fig. 1 in-

cludes Segue 1 and Ursa Major II, two ultrafaint satel-
lites with small kinematic data sets and relatively large
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The fit proceeds as follows. For given fixed values of
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and bf , we optimize � lnL, with L given in Eq. 1.
Confidence intervals or upper limits, taking into account
uncertainties in the nuisance parameters, are then com-
puted using the “profile likelihood”technique, which is
a standard method for treating nuisance parameters in
likelihood analyses (see, e.g., [32]), and consists of calcu-
lating the profile likelihood � lnL
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a one-sided 95% confidence level. The MINUIT subrou-
tine MINOS [33] is used as the implementation of this
technique. Note that uncertainties in the background fit
(di↵use and nearby sources) are also treated in this way.
To summarize, the free parameters of the fit are h�

ann

vi,
the J factors, and the Galactic di↵use and isotropic back-
ground normalizations as well as the normalizations of
near-by point sources. The coverage of this profile joint
likelihood method for calculating confidence intervals has
been verified using toy Monte Carlo calculations for a
Poisson process with known background and Fermi-LAT
simulations of Galactic and isotropic di↵use gamma-ray
emission. The parameter range for h�

ann

vi is restricted
to have a lower bound of zero, to facilitate convergence of
the MINOS fit, resulting in slight overcoverage for small
signals, i.e., conservative limits.

RESULTS AND CONCLUSIONS

As no significant signal is found, we report upper lim-
its. Individual and combined upper limits on the anni-
hilation cross section for the b

¯

b final state are shown in
Fig. 1; see also [34]. Including the J-factor uncertainties

FIG. 1. Derived 95% C.L. upper limits on a WIMP anni-
hilation cross section for all selected dSphs and for the joint
likelihood analysis for annihilation into the bb̄ final state. The
most generic cross section (⇠ 3 · 10�26 cm3s�1 for a purely s-
wave cross section) is plotted as a reference. Uncertainties in
the J factor are included.

FIG. 2. Derived 95% C.L. upper limits on a WIMP annihila-
tion cross section for the bb̄ channel, the ⌧+⌧� channel, the
µ+µ� channel, and the W+W� channel. The most generic
cross section (⇠ 3 ·10�26 cm3s�1 for a purely s-wave cross sec-
tion) is plotted as a reference. Uncertainties in the J factor
are included.

in the fit results in increased upper limits compared to
using the nominal J factors. Averaged over the WIMP
masses, the upper limits increase by a factor up to 12
for Segue 1, and down to 1.2 for Draco. Combining the
dSphs yields a much milder overall increase of the upper
limit compared to using nominal J factors, a factor of
1.3.
The combined upper limit curve shown in Fig. 1 in-

cludes Segue 1 and Ursa Major II, two ultrafaint satel-
lites with small kinematic data sets and relatively large
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The fit proceeds as follows. For given fixed values of
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W

and bf , we optimize � lnL, with L given in Eq. 1.
Confidence intervals or upper limits, taking into account
uncertainties in the nuisance parameters, are then com-
puted using the “profile likelihood”technique, which is
a standard method for treating nuisance parameters in
likelihood analyses (see, e.g., [32]), and consists of calcu-
lating the profile likelihood � lnL
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, where, for each h�
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imized with respect to all other parameters. The inter-
vals are then obtained by requiring 2� ln(L

p

) = 2.71 for
a one-sided 95% confidence level. The MINUIT subrou-
tine MINOS [33] is used as the implementation of this
technique. Note that uncertainties in the background fit
(di↵use and nearby sources) are also treated in this way.
To summarize, the free parameters of the fit are h�

ann

vi,
the J factors, and the Galactic di↵use and isotropic back-
ground normalizations as well as the normalizations of
near-by point sources. The coverage of this profile joint
likelihood method for calculating confidence intervals has
been verified using toy Monte Carlo calculations for a
Poisson process with known background and Fermi-LAT
simulations of Galactic and isotropic di↵use gamma-ray
emission. The parameter range for h�

ann

vi is restricted
to have a lower bound of zero, to facilitate convergence of
the MINOS fit, resulting in slight overcoverage for small
signals, i.e., conservative limits.

RESULTS AND CONCLUSIONS

As no significant signal is found, we report upper lim-
its. Individual and combined upper limits on the anni-
hilation cross section for the b

¯

b final state are shown in
Fig. 1; see also [34]. Including the J-factor uncertainties

FIG. 1. Derived 95% C.L. upper limits on a WIMP anni-
hilation cross section for all selected dSphs and for the joint
likelihood analysis for annihilation into the bb̄ final state. The
most generic cross section (⇠ 3 · 10�26 cm3s�1 for a purely s-
wave cross section) is plotted as a reference. Uncertainties in
the J factor are included.

FIG. 2. Derived 95% C.L. upper limits on a WIMP annihila-
tion cross section for the bb̄ channel, the ⌧+⌧� channel, the
µ+µ� channel, and the W+W� channel. The most generic
cross section (⇠ 3 ·10�26 cm3s�1 for a purely s-wave cross sec-
tion) is plotted as a reference. Uncertainties in the J factor
are included.

in the fit results in increased upper limits compared to
using the nominal J factors. Averaged over the WIMP
masses, the upper limits increase by a factor up to 12
for Segue 1, and down to 1.2 for Draco. Combining the
dSphs yields a much milder overall increase of the upper
limit compared to using nominal J factors, a factor of
1.3.
The combined upper limit curve shown in Fig. 1 in-

cludes Segue 1 and Ursa Major II, two ultrafaint satel-
lites with small kinematic data sets and relatively large



Dark Matter line? 4

FIG. 2: Results of the a search for line emission using an opti-
mized combined search of seven dwarf galaxies. The horizon-
tal axis represents the energy of the gamma-ray line searched
for. The left vertical axis is the significance of the detection
(in terms of Gaussian standard deviations). The right vertical
axis incorporates a trials factor of 24, roughly the number of
independent energies searched. The non-significant peak at
200 GeV is due to a single photon from Sculptor (see Fig. 1).

about 24 trials. On the right vertical axis of Fig. 2 we
plot the significance including a trials factor of 24 as a
rough guide to the true significance of any tentative line.
It is clear that the data do not strongly suggest that line
emission is present at any energy.

Given that there is no evidence of line emission from
the dwarfs we can place upper limits on the annihilation
cross section into two photons. In this case, the weight
choice analogous to Eq. 3 that maximizes the signal to
noise ratio is w(Q) = sQ/(bQ + sQ) [22]. For each mass
we find the cross section above which there is less than a
5% chance of measuring the test statistic T to be smaller
than observed. The resulting upper limits are plotted in
Fig. 3 (together with the results from [7, 8]). By far,
the largest source of systematic uncertainty is in the J
values for the dwarfs. The black line in the figure is the
limit found when the J values are set to their best fit
values found in [21]. The e↵ect of varying the J values
within their observational uncertainties is shown by the
blue shaded region. One at a time, we set the J value
for each dwarf to its upper or lower 95% error bar and
recompute the 95% cross section upper limit. The dif-
ferences induced by each dwarf are added in quadrature
to produce the boundaries of the shaded region. This
procedure gives an estimate of the systematic e↵ect due
to the di�culty of determining each dwarf’s dark matter
distribution.

For annihilation channels producing continuum emis-

FIG. 3: 95% upper limits on h�vi for annihilation into a pair
of photons each having energy E� . The black line is the limit
using the best fit J values for the dwarfs. The blue region cor-
responds to the 95% systematic uncertainty in the estimates
of J . The two points are the dark matter interpretations for
the tentative signals observed by [7, 8] under the assumption
of an Einasto dark matter profile and annihilation into two
gamma-rays, with 95% error bars.

sion (e.g. into heavy quark or lepton pairs) dwarf galax-
ies provide strong limits on the annihilation cross section
[20, 21, 34, 36, 41–48]. It is challenging to produce such
limits from the Galactic center: despite the high dark
matter density (J value 100s to 1000s times larger than
the dwarfs) the astrophysical background cannot be eas-
ily subtracted or modeled. However, a gamma-ray line
search is not hindered by these backgrounds to the de-
gree that a continuum search is. For this reason, the
Galactic center may be a more attractive target when
searching for line emission. The upper limits obtained
by [7, 49] are much stronger than those obtained here
from the dwarf data. A recent search by the Fermi col-
laboration for gamma-ray lines in the Galactic halo (in-
cluding the Galactic center) [17] did not show evidence
for a 130 GeV line and places stronger upper limits than
found here.

It appears that the large increase in dark matter den-
sity, and the proximity of the Galactic center are much
more constraining than are dwarf galaxies when it comes
to line emission searches. At the present time dwarf
galaxies can neither confirm nor deny a dark matter line
interpretation of the Galactic center data.

SMK thanks the Texas Cosmology Center for hospi-
tality and the organizers and participants of the ”Dark
Matter Signatures in the Gamma-ray Sky” workshop at
the University of Texas-Austin for stimulating discus-
sions that lead to this work. AGS and SMK are sup-

Don’t yet verify/deny claim of a line from the Galactic center 
[Geringer-Sameth & Koushiappas 2012]
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ACT Limits from Segue 1

recorded in at least two telescopes is ≥ 90 photoelectrons, which effectively sets the analysis

energy threshold to 170 GeV. Finally, a cut on θ, the angle between the target position

and the reconstructed arrival direction, is applied to the γ-ray candidates and defines the

signal search region (θ2 ≤ 0.015 deg2 in our analysis). After γ-ray selection, the residual

background was estimated using the ring background technique [84]. The ring background

method computes the background for each position in the field of view using the background

rate contained in a ring around that position. Two circular regions, of radius 0.2◦ centered

on the target position and of radius 0.3◦ centered on the bright star η-Leonis (with apparent

magnitude in the visible band MV = 3.5, and located 0.68◦ from the position of Segue 1),

were excluded for the background determination.

The analysis of the data resulted in the selection of NON = 1082 γ-ray candidates in the

signal search region and NOFF = 12479 background events in the background ring region,

with a normalization factor α = 0.084, resulting in 30.4 excess events. The corresponding

significance, calculated according to the method of Li & Ma [85], is 0.9 σ. No significant

γ-ray excess is found at the nominal position of Segue 1, nor in the whole field of view,

as shown by the significance map on Figure 1. The large depletion area, with negative

significances, corresponds to the bright star η-Leonis.
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FIG. 1. Significance map obtained from the VERITAS observations of Segue 1 after γ-ray selection
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details.
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illustrate the range of uncertainties on the 〈σv〉 ULs from the dark matter particle physics

model. Concerning the lepton channels e+e− and µ+µ−, the limits are at the level of

10−23 cm3 s−1 at 1 TeV. The current ULs on 〈σv〉 are two orders of magnitude above the

predictions for thermally produced WIMP dark matter.
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annihilation cross-section 〈σv〉 as a function of the WIMP mass, considering different final state

particles. The grey band area represents a range of generic values for the annihilation cross-section

in the case of thermally produced dark matter. Left: hadronic channels W+W−, bb̄ and τ+τ−.

Right: leptonic channels e+e− and µ+µ−.

C. Lower limits on the decay lifetime

If we assume that dark matter is a decaying particle, LLs on the lifetime of dark matter

can be derived. In decaying dark matter scenarios, the dark matter particle can either

be bosonic or fermionic. The LLs are computed using eq. 7 and making the appropriate

substitutions to eq. 3, as explained in section IVA. For bosonic dark matter particles, the

same channels as in the annihilating dark matter case are considered: W+W−, bb̄, τ+τ−,

e+e− and µ+µ−. The decay spectra are the same as those used for the annihilating dark

matter bounds (see right panel of Figure 2, and eq. 8), making the substitution for the

scaled variable x → 2x, or equivalently mχ → mχ/2. The left panel of Figure 4 shows the

95% LLs on the decay lifetime τ for the five channels mentioned above. The limits peak at

the level of τ ∼ 1024 − 1025 s, depending on the dark matter particle mass.
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Veritas, arXiv:1202.2144

CTA could reach thermal relic scale (2017?; Funk & Hinton arxiv 2012)
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vo,ı is the observed velocity of the ith star and vo is the mean
of these velocities over all stars in the galaxy. The quantity
eı represents the measurement uncertainty of the ith star,
and angle brackets represent an average over all the stars in
a radial bin. We further assume that the error on vo is neg-
ligible and that the actual velocities are uncorrelated with
their measurement error. With these assumptions, σ̂2 is an
unbiased estimator of the corresponding population quan-
tity, and approximating the sampling distributions of 〈v2〉
and 〈e2〉 as normal, the uncertainty on σ̂ can be estimated
as

ε2 =
1
2N

〈v2〉2

〈v2〉 − 〈e2〉
. (9)

Given an estimate of the intrinsic velocity dispersion
profile of each satellite based on Eq. 8, we step through all
the subhalos in the six Aquarius simulations to determine
which subhalo has the (spherically averaged) potential that
best describes the data. Specifically, for each Aquarius sub-
halo, we derive a spherical potential from the mass profile
M(r) and then use the Jeans equation (2) to calculate the
line-of-sight velocity dispersion profile, σlos(R), which cor-
responds to the model star count profile of Table 1 and an
everywhere isotropic velocity dispersion tensor. This line-of-
sight velocity dispersion is then averaged over the positions
of all the stars in each annulus to predict the population
mean square velocity within that annulus. For each satellite-
subhalo pair we then determine the quantity

χ2 =

Nbins
∑

ı=1

[σ̂ı − σlos(Rı)]
2

ε2ı
, (10)

where Nbins is the number of annuli and Rı is the mean value
of the projected radius of the stars in the ıth annulus. For a
given satellite, it then follows that the best fitting Aquarius
subhalo is the one that minimizes Eq. 10.

Once a “best” subhalo has been identified in this way,
we can quantify whether it actually provides an acceptable
fit by comparing the χ2 value from Eq. 10 to the theoretical
distribution of χ2 for Nbins degrees of freedom. If p is the
fraction of the theoretical distribution at larger values than
the measured χ2, then we can exclude the hypothesis that
the observed satellite has isotropic velocity dispersions and
is hosted by this “best” subhalo at confidence level 1 − p.
(Note that, given our assumptions, there are no free parame-
ters when comparing observed and predicted dispersion pro-
files for a specific subhalo.) If p is not very small, then we
conclude that the observed satellite could be hosted by a
ΛCDM subhalo. Note that the converse does not apply. If
p is very small, the observed satellite could still live in a
ΛCDM subhalo if it has significant velocity anisotropies.

4 RESULTS

In this section we turn to the implementation of the algo-
rithms described above. We begin by finding the Aquarius
subhalo that best matches the line-of-sight velocity disper-
sion of each satellite under the assumption of negligible ve-
locity anisotropy and for the model stellar density profile we
have fitted to the observed counts. We then check whether
the line-of-sight velocity distributions of these models are
consistent with those observed.
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Figure 2. Line-of-sight velocity dispersion for our five satellites.
The solid curves show the dispersion predicted by inserting the
potential determined from the best fitting Aquarius subhalo and
the photometric profile of Table 1 into Eq. 1, assuming no veloc-
ity anisotropies. The symbols show the observational data taken
from Mateo et al. (2008) (Leo I) and Walker et al. (2009) (For-
nax, Carina, Sculptor, and Sextans). The errors on the velocity
dispersion in each bin are assigned according to Eq. 9.

Table 1. Number of member stars with measured radial velocities
in each of our five galaxies, together with the parameters in Eq. 4
for our preferred fits to their star count profiles, as shown in Fig. 1.
The final column gives the value of χ2 per degree of freedom for
these count profile fits.

Satellite # of stars a b c r0 [kpc] χ2/d.o.f

Fornax 2409 1 4 4.5 0.67 1.0
Leo I 328 0 3 7.5 0.40 1.6
Carina 758 0.5 3 5.3 0.29 1.1
Sculptor 1392 0.5 3 5.5 0.32 0.4
Sextans 424 0.5 3 3.3 0.44 0.1

4.1 Best-fitting subhalos

Figure 2 compares the observed velocity dispersion profiles
of our five satellites to those predicted by Eq. 2 when a
stellar system with a star count profile given by Eq. 4 with
the parameters in Table 1, with a stellar mass-to-light ratio
of 1, and with negligible velocity anisotropy, is embedded in
the Aquarius subhalo that fits best according to the criterion
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vo,ı is the observed velocity of the ith star and vo is the mean
of these velocities over all stars in the galaxy. The quantity
eı represents the measurement uncertainty of the ith star,
and angle brackets represent an average over all the stars in
a radial bin. We further assume that the error on vo is neg-
ligible and that the actual velocities are uncorrelated with
their measurement error. With these assumptions, σ̂2 is an
unbiased estimator of the corresponding population quan-
tity, and approximating the sampling distributions of 〈v2〉
and 〈e2〉 as normal, the uncertainty on σ̂ can be estimated
as

ε2 =
1
2N

〈v2〉2

〈v2〉 − 〈e2〉
. (9)

Given an estimate of the intrinsic velocity dispersion
profile of each satellite based on Eq. 8, we step through all
the subhalos in the six Aquarius simulations to determine
which subhalo has the (spherically averaged) potential that
best describes the data. Specifically, for each Aquarius sub-
halo, we derive a spherical potential from the mass profile
M(r) and then use the Jeans equation (2) to calculate the
line-of-sight velocity dispersion profile, σlos(R), which cor-
responds to the model star count profile of Table 1 and an
everywhere isotropic velocity dispersion tensor. This line-of-
sight velocity dispersion is then averaged over the positions
of all the stars in each annulus to predict the population
mean square velocity within that annulus. For each satellite-
subhalo pair we then determine the quantity

χ2 =

Nbins
∑

ı=1

[σ̂ı − σlos(Rı)]
2

ε2ı
, (10)

where Nbins is the number of annuli and Rı is the mean value
of the projected radius of the stars in the ıth annulus. For a
given satellite, it then follows that the best fitting Aquarius
subhalo is the one that minimizes Eq. 10.

Once a “best” subhalo has been identified in this way,
we can quantify whether it actually provides an acceptable
fit by comparing the χ2 value from Eq. 10 to the theoretical
distribution of χ2 for Nbins degrees of freedom. If p is the
fraction of the theoretical distribution at larger values than
the measured χ2, then we can exclude the hypothesis that
the observed satellite has isotropic velocity dispersions and
is hosted by this “best” subhalo at confidence level 1 − p.
(Note that, given our assumptions, there are no free parame-
ters when comparing observed and predicted dispersion pro-
files for a specific subhalo.) If p is not very small, then we
conclude that the observed satellite could be hosted by a
ΛCDM subhalo. Note that the converse does not apply. If
p is very small, the observed satellite could still live in a
ΛCDM subhalo if it has significant velocity anisotropies.

4 RESULTS

In this section we turn to the implementation of the algo-
rithms described above. We begin by finding the Aquarius
subhalo that best matches the line-of-sight velocity disper-
sion of each satellite under the assumption of negligible ve-
locity anisotropy and for the model stellar density profile we
have fitted to the observed counts. We then check whether
the line-of-sight velocity distributions of these models are
consistent with those observed.

R [kpc]

V
el

o
ci

ty
 d

is
p

er
si

o
n

 [
k

m
 s

-1
]

    
0

5

10

15
fnx

    
0

5

10

15
leo

    
0

5

10

15
car

    
0

5

10

15
scu

0.0 0.5 1.0 1.5
0

5

10

15
sex

Figure 2. Line-of-sight velocity dispersion for our five satellites.
The solid curves show the dispersion predicted by inserting the
potential determined from the best fitting Aquarius subhalo and
the photometric profile of Table 1 into Eq. 1, assuming no veloc-
ity anisotropies. The symbols show the observational data taken
from Mateo et al. (2008) (Leo I) and Walker et al. (2009) (For-
nax, Carina, Sculptor, and Sextans). The errors on the velocity
dispersion in each bin are assigned according to Eq. 9.

Table 1. Number of member stars with measured radial velocities
in each of our five galaxies, together with the parameters in Eq. 4
for our preferred fits to their star count profiles, as shown in Fig. 1.
The final column gives the value of χ2 per degree of freedom for
these count profile fits.

Satellite # of stars a b c r0 [kpc] χ2/d.o.f

Fornax 2409 1 4 4.5 0.67 1.0
Leo I 328 0 3 7.5 0.40 1.6
Carina 758 0.5 3 5.3 0.29 1.1
Sculptor 1392 0.5 3 5.5 0.32 0.4
Sextans 424 0.5 3 3.3 0.44 0.1

4.1 Best-fitting subhalos

Figure 2 compares the observed velocity dispersion profiles
of our five satellites to those predicted by Eq. 2 when a
stellar system with a star count profile given by Eq. 4 with
the parameters in Table 1, with a stellar mass-to-light ratio
of 1, and with negligible velocity anisotropy, is embedded in
the Aquarius subhalo that fits best according to the criterion

Kinematics of Milky Way Satellites in a Lambda Cold Dark Matter Universe 5

vo,ı is the observed velocity of the ith star and vo is the mean
of these velocities over all stars in the galaxy. The quantity
eı represents the measurement uncertainty of the ith star,
and angle brackets represent an average over all the stars in
a radial bin. We further assume that the error on vo is neg-
ligible and that the actual velocities are uncorrelated with
their measurement error. With these assumptions, σ̂2 is an
unbiased estimator of the corresponding population quan-
tity, and approximating the sampling distributions of 〈v2〉
and 〈e2〉 as normal, the uncertainty on σ̂ can be estimated
as

ε2 =
1
2N

〈v2〉2

〈v2〉 − 〈e2〉
. (9)

Given an estimate of the intrinsic velocity dispersion
profile of each satellite based on Eq. 8, we step through all
the subhalos in the six Aquarius simulations to determine
which subhalo has the (spherically averaged) potential that
best describes the data. Specifically, for each Aquarius sub-
halo, we derive a spherical potential from the mass profile
M(r) and then use the Jeans equation (2) to calculate the
line-of-sight velocity dispersion profile, σlos(R), which cor-
responds to the model star count profile of Table 1 and an
everywhere isotropic velocity dispersion tensor. This line-of-
sight velocity dispersion is then averaged over the positions
of all the stars in each annulus to predict the population
mean square velocity within that annulus. For each satellite-
subhalo pair we then determine the quantity

χ2 =

Nbins
∑

ı=1

[σ̂ı − σlos(Rı)]
2

ε2ı
, (10)

where Nbins is the number of annuli and Rı is the mean value
of the projected radius of the stars in the ıth annulus. For a
given satellite, it then follows that the best fitting Aquarius
subhalo is the one that minimizes Eq. 10.

Once a “best” subhalo has been identified in this way,
we can quantify whether it actually provides an acceptable
fit by comparing the χ2 value from Eq. 10 to the theoretical
distribution of χ2 for Nbins degrees of freedom. If p is the
fraction of the theoretical distribution at larger values than
the measured χ2, then we can exclude the hypothesis that
the observed satellite has isotropic velocity dispersions and
is hosted by this “best” subhalo at confidence level 1 − p.
(Note that, given our assumptions, there are no free parame-
ters when comparing observed and predicted dispersion pro-
files for a specific subhalo.) If p is not very small, then we
conclude that the observed satellite could be hosted by a
ΛCDM subhalo. Note that the converse does not apply. If
p is very small, the observed satellite could still live in a
ΛCDM subhalo if it has significant velocity anisotropies.

4 RESULTS

In this section we turn to the implementation of the algo-
rithms described above. We begin by finding the Aquarius
subhalo that best matches the line-of-sight velocity disper-
sion of each satellite under the assumption of negligible ve-
locity anisotropy and for the model stellar density profile we
have fitted to the observed counts. We then check whether
the line-of-sight velocity distributions of these models are
consistent with those observed.
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Figure 2. Line-of-sight velocity dispersion for our five satellites.
The solid curves show the dispersion predicted by inserting the
potential determined from the best fitting Aquarius subhalo and
the photometric profile of Table 1 into Eq. 1, assuming no veloc-
ity anisotropies. The symbols show the observational data taken
from Mateo et al. (2008) (Leo I) and Walker et al. (2009) (For-
nax, Carina, Sculptor, and Sextans). The errors on the velocity
dispersion in each bin are assigned according to Eq. 9.

Table 1. Number of member stars with measured radial velocities
in each of our five galaxies, together with the parameters in Eq. 4
for our preferred fits to their star count profiles, as shown in Fig. 1.
The final column gives the value of χ2 per degree of freedom for
these count profile fits.

Satellite # of stars a b c r0 [kpc] χ2/d.o.f

Fornax 2409 1 4 4.5 0.67 1.0
Leo I 328 0 3 7.5 0.40 1.6
Carina 758 0.5 3 5.3 0.29 1.1
Sculptor 1392 0.5 3 5.5 0.32 0.4
Sextans 424 0.5 3 3.3 0.44 0.1

4.1 Best-fitting subhalos

Figure 2 compares the observed velocity dispersion profiles
of our five satellites to those predicted by Eq. 2 when a
stellar system with a star count profile given by Eq. 4 with
the parameters in Table 1, with a stellar mass-to-light ratio
of 1, and with negligible velocity anisotropy, is embedded in
the Aquarius subhalo that fits best according to the criterion
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vo,ı is the observed velocity of the ith star and vo is the mean
of these velocities over all stars in the galaxy. The quantity
eı represents the measurement uncertainty of the ith star,
and angle brackets represent an average over all the stars in
a radial bin. We further assume that the error on vo is neg-
ligible and that the actual velocities are uncorrelated with
their measurement error. With these assumptions, σ̂2 is an
unbiased estimator of the corresponding population quan-
tity, and approximating the sampling distributions of 〈v2〉
and 〈e2〉 as normal, the uncertainty on σ̂ can be estimated
as

ε2 =
1
2N

〈v2〉2

〈v2〉 − 〈e2〉
. (9)

Given an estimate of the intrinsic velocity dispersion
profile of each satellite based on Eq. 8, we step through all
the subhalos in the six Aquarius simulations to determine
which subhalo has the (spherically averaged) potential that
best describes the data. Specifically, for each Aquarius sub-
halo, we derive a spherical potential from the mass profile
M(r) and then use the Jeans equation (2) to calculate the
line-of-sight velocity dispersion profile, σlos(R), which cor-
responds to the model star count profile of Table 1 and an
everywhere isotropic velocity dispersion tensor. This line-of-
sight velocity dispersion is then averaged over the positions
of all the stars in each annulus to predict the population
mean square velocity within that annulus. For each satellite-
subhalo pair we then determine the quantity

χ2 =

Nbins
∑

ı=1

[σ̂ı − σlos(Rı)]
2

ε2ı
, (10)

where Nbins is the number of annuli and Rı is the mean value
of the projected radius of the stars in the ıth annulus. For a
given satellite, it then follows that the best fitting Aquarius
subhalo is the one that minimizes Eq. 10.

Once a “best” subhalo has been identified in this way,
we can quantify whether it actually provides an acceptable
fit by comparing the χ2 value from Eq. 10 to the theoretical
distribution of χ2 for Nbins degrees of freedom. If p is the
fraction of the theoretical distribution at larger values than
the measured χ2, then we can exclude the hypothesis that
the observed satellite has isotropic velocity dispersions and
is hosted by this “best” subhalo at confidence level 1 − p.
(Note that, given our assumptions, there are no free parame-
ters when comparing observed and predicted dispersion pro-
files for a specific subhalo.) If p is not very small, then we
conclude that the observed satellite could be hosted by a
ΛCDM subhalo. Note that the converse does not apply. If
p is very small, the observed satellite could still live in a
ΛCDM subhalo if it has significant velocity anisotropies.

4 RESULTS

In this section we turn to the implementation of the algo-
rithms described above. We begin by finding the Aquarius
subhalo that best matches the line-of-sight velocity disper-
sion of each satellite under the assumption of negligible ve-
locity anisotropy and for the model stellar density profile we
have fitted to the observed counts. We then check whether
the line-of-sight velocity distributions of these models are
consistent with those observed.
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Figure 2. Line-of-sight velocity dispersion for our five satellites.
The solid curves show the dispersion predicted by inserting the
potential determined from the best fitting Aquarius subhalo and
the photometric profile of Table 1 into Eq. 1, assuming no veloc-
ity anisotropies. The symbols show the observational data taken
from Mateo et al. (2008) (Leo I) and Walker et al. (2009) (For-
nax, Carina, Sculptor, and Sextans). The errors on the velocity
dispersion in each bin are assigned according to Eq. 9.

Table 1. Number of member stars with measured radial velocities
in each of our five galaxies, together with the parameters in Eq. 4
for our preferred fits to their star count profiles, as shown in Fig. 1.
The final column gives the value of χ2 per degree of freedom for
these count profile fits.

Satellite # of stars a b c r0 [kpc] χ2/d.o.f

Fornax 2409 1 4 4.5 0.67 1.0
Leo I 328 0 3 7.5 0.40 1.6
Carina 758 0.5 3 5.3 0.29 1.1
Sculptor 1392 0.5 3 5.5 0.32 0.4
Sextans 424 0.5 3 3.3 0.44 0.1

4.1 Best-fitting subhalos

Figure 2 compares the observed velocity dispersion profiles
of our five satellites to those predicted by Eq. 2 when a
stellar system with a star count profile given by Eq. 4 with
the parameters in Table 1, with a stellar mass-to-light ratio
of 1, and with negligible velocity anisotropy, is embedded in
the Aquarius subhalo that fits best according to the criterion
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4 Strigari et al.

3.1 Photometry

We use photometric data from the following sources for
the surface density profiles of our five galaxies: Fornax
(Coleman et al. 2005); Sculptor (Battaglia et al. 2008); Sex-
tans (Irwin & Hatzidimitriou 1995); Leo I (Smolcic et al.
2007); Carina (Munoz et al. 2006). Traditional fits to these
data sets have used King or Plummer models, the latter
corresponding to {a, b, c} = {0, 2, 5} in Eq. 4. Such fits typi-
cally fail to reproduce the measured star counts in the outer
regions (Irwin & Hatzidimitriou 1995). In addition, they en-
force a constant density core which is consistent with star
counts in some globular clusters but not with photometry of
the inner regions of brighter early type galaxies, almost all
of which show inner cusps corresponding to a values signifi-
cantly greater than zero (Gebhardt et al. 1996).

We take {a, b, c, r0} in Eq. 4 as free parameters to be
adjusted when fitting the observed star count profiles. We
perform a standard Abel projection of ρ!(r) to obtain I∗(R)
and we determine the free parameters for each satellite via
a standard χ2 minimization procedure. In performing these
fits, we find that there is a complex degeneracy in the space
spanned by the four parameters. Motivated by reasons that
we discuss in detail in Section 4, we focus on models in which
the 3D stellar profiles are characterized by a central shallow
cusp and a relatively sharp turnover to a steep outer power
law. For Sculptor, Carina, and Sextans we will specifically
adopt a central cusp with a = 0.5, and b = 3, while for
Fornax, we will use a = 1 and b = 4. In Leo I, the star counts
do appear to require a core, and we adopt a = 0 and a similar
transition to the steep outer power law. With a and b fixed
a priori, we vary the remaining parameters, {c, r0}, in order
to minimize χ2. In all cases this results in reduced χ2 values
near unity, indicating an acceptable fit, and also within the
90% c.l. of the minimum values attainable by varying all
four parameters independently. The resulting parameter sets
are given together with the corresponding χ2/(Nbin − 5) in
Table 1. Note that since our goal is to demonstrate that the
observations are consistent with simple spherical, isotropic
models within ΛCDM subhalos, it is not necessary for us to
choose the best-fit profile parameters; rather we need only
show that the parameters we do choose are consistent with
the star count data.

In Figure 1 we plot these surface density profiles for each
satellite on top of the observed data. The scale radii vary
over the range 0.29 kpc (Carina) ! r0 ! 0.67 kpc (Fornax)
and the outer slopes over the range 3.3 (Sextans) ! c !

7.5 (Leo). As noted above, the degeneracies allow signifi-
cant variations in these quantities, particularly if a and b
are allowed to vary away from the values we have chosen.
Our choices are motivated in part by simplicity (e.g. for a),
in part by experimentation, determining which parameter
ranges allow good fits also to the kinematic data (see be-
low). For Sextans such considerations lead us to settle on
a relatively shallow outer density profile, while for Leo the
data force us to a steep outer profile. Note that in all cases,
the star counts were actually carried out in elliptical annuli.
The radial coordinate plotted is the geometric mean of the
major and minor axes which we expect to correspond best
to the count profile for circular annuli. (The typical elliptic-
ities of these satellites are ∼ 0.3 (Irwin & Hatzidimitriou
1995)).
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Figure 1. Projected surface density profiles for each of the satel-
lites that we consider, fit using the formula in Eq. 4. The values
chosen for the parameters (a, b, c, r0) for each galaxy are given in
Table 1, together with the corresponding χ2 per degree of free-
dom. Our procedures for selecting these parameters are outlined
in section 3, where we also give references for the observational
data plotted in each panel.

3.2 Kinematics

The kinematic datasets that we use consist of line-of-sight
stellar velocities from the samples of Mateo et al. (2008)
and Walker et al. (2009). The latter use an “Expectation
Maximization” method for evaluating membership and re-
moving contaminants from each sample, and we consider
only those stars for which Walker et al. (2009) assign > 90%
probability of membership. The resulting numbers of stars
are listed in Table 1. For Leo I, which is the only galaxy
in our sample without published membership probabilities,
we use data from Mateo et al. (2008), and consider those
stars as members that have velocities in the range from
240 to 320 km s−1. As this range of velocities is well sepa-
rated from that of MW foreground stars, it is unlikely that
this sample suffers significant contamination. Other meth-
ods for cleaning dSphs from contaminating MW halo stars
have been considered (e.g. Klimentowski et al. 2007); these
typically reduce the velocity dispersion at outer radii. The
Walker et al. (2009) membership cuts appear appropriate
for our analysis here.

For each satellite, we bin the velocity data in a series
of circular annuli and estimate the mean square line-of-sight
velocity in each annulus as

σ̂2 ≡ 〈v2〉 − 〈e2〉. (8)

Here we define the velocity of a star as vı = vo,ı − vo, where

4 Strigari et al.
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Figure 1. Projected surface density profiles for each of the satel-
lites that we consider, fit using the formula in Eq. 4. The values
chosen for the parameters (a, b, c, r0) for each galaxy are given in
Table 1, together with the corresponding χ2 per degree of free-
dom. Our procedures for selecting these parameters are outlined
in section 3, where we also give references for the observational
data plotted in each panel.

3.2 Kinematics

The kinematic datasets that we use consist of line-of-sight
stellar velocities from the samples of Mateo et al. (2008)
and Walker et al. (2009). The latter use an “Expectation
Maximization” method for evaluating membership and re-
moving contaminants from each sample, and we consider
only those stars for which Walker et al. (2009) assign > 90%
probability of membership. The resulting numbers of stars
are listed in Table 1. For Leo I, which is the only galaxy
in our sample without published membership probabilities,
we use data from Mateo et al. (2008), and consider those
stars as members that have velocities in the range from
240 to 320 km s−1. As this range of velocities is well sepa-
rated from that of MW foreground stars, it is unlikely that
this sample suffers significant contamination. Other meth-
ods for cleaning dSphs from contaminating MW halo stars
have been considered (e.g. Klimentowski et al. 2007); these
typically reduce the velocity dispersion at outer radii. The
Walker et al. (2009) membership cuts appear appropriate
for our analysis here.

For each satellite, we bin the velocity data in a series
of circular annuli and estimate the mean square line-of-sight
velocity in each annulus as

σ̂2 ≡ 〈v2〉 − 〈e2〉. (8)

Here we define the velocity of a star as vı = vo,ı − vo, where

3D Core increases central dispersion

Implications for future ACTs: 
[Essig, Sehgal Strigari PRD 2010; Charbonnier et al. 2011]



Part II
How many MW satellites?
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vast majority of the ∼ 2500 potential satellite galaxies; for
these low-mass halos, all star formation must happen before
zreion. With this in mind, we can define a subhalo as being a
satellite galaxy using a two parameter model: A subhalo must
grow to a threshold mass, Mt, above which HI cooling will
allow star formation, before the host halo reionizes at zreion in
order to host a satellite.
While we demonstrate the effects of varying both param-

eters in the next section, the work of Abel et al. (2002) uses
high resolution AMR simulations to model the formation of

the first stars and indicates that we anticipate Mt ≈ 106 −

107h−1M!. It is important to note that this process of hy-
drogen cooling simply defines a minimum mass of the pop-
ulation of the dark matter subhalos that could host satellite
galaxies. However, this work predicts the stars forming in
these halos to be very massive and short–lived. As such
these very first star forming halos cannot be the direct pro-
genitors of Milky Way satellites, which are observed to be
metal-enriched objects with stars presumably of masses less
than a solar mass. More relevant here are the calculations of
Wise & Abel (2008), who followed the build up of halos up
to the masses when they start cooling via Lyman-alpha from
neutral hydrogen. They included the radiative as well as the
supernova feedback from the first generation of massive stars.
The short-lived sources keep ionizing the baryonic material
in the halos they form in, as well as their surroundings. How-
ever, as they turn off, material can cool again and repopulate
the dark matter halos. So while the baryon fraction (Fig. 4 in
Wise & Abel 2008) fluctuates and decreases at times to as lit-
tle as 10%, star formation can continue as long as no sustained
external UV flux sterilizes the halo. The latter case severely
limits star formation and has been discussed many time in the
literature (e.g., Babul & Rees 1992; Thoul & Weinberg 1996;
Kepner et al. 1999; Dijkstra et al. 2004). It seems clear then
from the limited guidance we have from numerical simula-
tions that most Milky Way satellite halo progenitors experi-
encedmost of their star formation before they are permanently
ionized.
Once we have identified satellite galaxies in the simula-

tion, we must assign magnitudes to them in order to make
direct comparisons with observations and to account for ob-
servational completeness effects. This is done using two
methods. First, we use a halo abundance matching method
(Kravtsov et al. 2004a; Blanton et al. 2008). Here, luminosi-
ties are assigned to halos by assuming a one-to-one corre-
spondence between n(< MV ), the observed number density
of galaxies brighter than Mv, with n(> vmax), the number
density of simulated halos with maximum circular veloci-
ties larger than vmax. For the distribution of magnitudes, we
use the double-Schechter fit of Blanton et al. (2005) for low
luminosity SDSS galaxies in the g− and r−bands down to
Mr = −12.375. The vmax values are taken from the halo catalog
of a 160 Mpc/h simulation complete down to vmax ≈ 90km/s.
In order to extrapolate this to lower circular velocities, we
calculate a power-law fit to the low end of the dn/dvmax func-
tion. The resulting correspondence is shown in Figure 1 for
the r−, g−, andV−bands (red, green, and black curves). TheV
band magnitudes are calculated using the transformationV =
g − 0.55(g− r) − 0.03 from Smith et al. (2002). This method
implicitly assumes that all galaxies have average color. Since
the data from Blanton et al. (2005) is not deep enough to map
onto the dwarf galaxy distribution, we use a power law to ex-
trapolate the MV (vmax) relation to lower magnitudes. For the
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FIG. 1.— The relationship between magnitude and vmax for the r−, g−, and
V− bands using abundance matching (solid red, green and black lines). The
dashed lines show power law fits to the low-luminosity end.

V−band, we get

MV −5log(h) = 18.2−2.5log

[

( vmax

1km/s

)7.1
]

. (1)

When selecting the appropriate vmax for assigning a luminos-
ity, we follow the method of Conroy et al. (2006) and choose
the peak vmax over the trajectory of the subhalo for subhalos

that eventually cross the 105K post-reionization star forming
threshold. For subhalos that never reach this threshold, we use
the value of vmax at zreion. In both cases, this then corresponds
roughly to the mass the halo had at the redshift they stopped
rapidly forming stars.
The appeal of this method is that we are able to ignore

much of the poorly understood (and poorly simulated) physics
of galaxy formation using a statistical method that has been
shown to, on average, reproduce a wide variety of observ-
able properties for moremassive galaxies (Conroy et al. 2006;
Conroy & Wechsler 2009), as well as some properties of
dwarf galaxies down to vmax ∼ 50km/s (Blanton et al. 2008).
It is still unclear how this method will fare at lower masses;
it must break down for small halos once they no longer host
one galaxy on average. If this transition is sharp, however,
it may be a reasonable approximation for most of the mass
range where halos host galaxies.
As a second approach for assigning magnitudes, we use a

toy model to predict the star formation rate and stellar mass
of a satellite combined with the stellar population synthesis
(SPS) code of Bruzual & Charlot (2003)3. Here, we again as-
sume that star formation begins when the satellite first crosses
the mass threshold, Mt, and ends at the reionization time,
zreion. During this period, the star formation rate is set by the
dark matter mass of the subhalo,

SFR =

{

ε
(

fcoldgas
MDM

1 M!

)α

ifMDM >Mt, z> zreion

0 otherwise
(2)

where fcoldgas is the fraction of cold gas in the halo, and
α and ε are free parameters. This is similar to model 1B
of Koposov et al. (2009), with a couple of key differences.
First, we impose a hard truncation of star formation at the
epoch of reionization, something they only consider using

3 http://www.cida.ve/ bruzual/bc2003
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A few ways out

❖Baryons in simulations [Wadepuhl & Springel 2011; Parry et al 2012]

❖More fundamental modifications

❖Warm dark matter

❖Primordial power spectrum

❖Low mass of the Milky Way [Vira-Ciro et al., 2012; Wang et al. 2012]

❖The Milky Way is an oddball

❖Baryons in simulations [Wadepuhl & Springel 2011; Parry et al 2012]

❖More fundamental modifications

❖Warm dark matter

❖Primordial power spectrum

❖Low mass of the Milky Way [Vira-Ciro et al., 2012; Wang et al. 2012]

❖The Milky Way is an oddball

❖Baryons in simulations [Wadepuhl & Springel 2011; Parry et al 2012]

❖More fundamental modifications

❖Warm dark matter

❖Primordial power spectrum

❖Low mass of the Milky Way [Vira-Ciro et al., 2012; Wang et al. 2012]

❖The Milky Way is an oddball

❖Baryons in simulations [Wadepuhl & Springel 2011; Parry et al 2012]

❖More fundamental modifications

❖Warm dark matter

❖Primordial power spectrum

❖Low mass of the Milky Way [Vira-Ciro et al., 2012; Wang et al. 2012]

❖The Milky Way is an oddball

❖Baryons in simulations [Wadepuhl & Springel 2011; Parry et al 2012]

❖More fundamental modifications

❖Warm dark matter

❖Primordial power spectrum

❖Low mass of the Milky Way [Vira-Ciro et al., 2012; Wang et al. 2012]

❖The Milky Way is an oddball

❖Baryons in simulations [Wadepuhl & Springel 2011; Parry et al 2012]

❖More fundamental modifications

❖Warm dark matter

❖Primordial power spectrum

❖Low mass of the Milky Way [Vira-Ciro et al., 2012; Wang et al. 2012]

❖The Milky Way is an oddball



The oddball hypothesis

Hundreds of Milky Way Satellites? 5

TABLE 1
PROPERTIES OF KNOWN MILKY WAY SATELLITE GALAXIES. DATA ARE FROM
BOTHUN & THOMPSON (1988); MATEO (1998); GREBEL ET AL. (2003); SIMON

& GEHA (2007); MARTIN ET AL. (2008); DE JONG ET AL. (2008).

Satellite MV LV [L!] dsun[kpc] Rhalf [pc]
a ε b

SDSS-discovered Satellites

Canes Venatici I -8.6 2.36 × 105 224 565 0.99

Leo T -8.0 5.92 × 104 417 170 0.76

Hercules -6.6 3.73 × 104 138 330 0.72

Boötes I -6.3 2.83 × 104 60 242 1.0

Ursa Major I -5.5 1.36 × 104 106 318 0.56

Leo IV -5.0 8.55 × 103 158 116 0.79

Canes Venatici II -4.9 7.80 × 103 151 74 0.47

Ursa Major II -4.2 4.09 × 103 32 140 0.78

Coma -4.1 3.7 × 103 44 77 0.97

Boötes II -2.7 1.03 × 103 43 72 0.2

Willman 1 -2.7 1.03 × 103 38 25 0.99

Segue 1 -1.5 3.40 × 102 23 29 1.0

Classical (Pre-SDSS) Satellites

Large Magellanic Cloud -18.5 2.15 × 109 49 2591 -

Small Magellanic Cloud -17.1 5.92 × 108 63 1088 -

Sagittarius -15.0 8.55 × 107 28 125 -

Fornax -13.1 1.49 × 107 138 460 -

Leo I -11.9 4.92 × 106 270 215 1.0

Leo II -10.1 9.38 × 105 205 160 1.0

Sculptor -9.8 7.11 × 105 88 110 -

Sextans -9.5 5.40 × 105 86 335 -

Carina -9.4 4.92 × 105 94 210 -

Draco -9.4 4.92 × 105 79 180 1.0

Ursa Minor -8.9 1.49 × 105 69 200 -

aSatellite projected half light radius.
bDetection efficiency from Koposov et al. (2007).
!Galaxy sits within the SDSS DR5 footprint.
†Satellite is not used in fiducial LF correction.

from data for the SDSS-II SEGUE survey (Belokurov et al.
2007). All of the objects we list in this table have large mass-
to-light ratios (Martin et al. 2007; Simon & Geha 2007; Stri-
gari et al. 2008).
For our fiducial corrections, following the convention of

Koposov et al. (2007), we have not included Segue 1, as it
does not lie inside the DR5 footprint and hence the published
DR5 detection limits are not applicable. We do include Segue
1 in an alternative correction scenario below (see Table 3).
We do not correct the classical dwarf satellite galaxies for lu-
minosity bias or sky coverage, because appropriate detection
limits for these classical dwarf satellites are unclear given that
they are not part of a homogeneous survey like SDSS. We
assume that all satellites within those magnitude bins would
have been discovered anywhere in the sky, with the possible
exception of objects at low Galactic latitudes, where Milky
Way extinction and contamination become significant (Will-
man et al. 2004a). This assumption is conservative in the
sense that it will bias our total numerical estimate low, but
it is only a minor effect, as our correction described in §3 is
dominated by low luminosity satellites.
Before we use the radial distribution of Via Lactea subha-

los to correct the observed luminosity function, it is impor-
tant to investigate whether this assumption is even self consis-
tent with the data we have on the radial distribution of known
satellites. The relevant comparison is shown in Figure 5. We
have normalized to an outer radiusRouter = 417 kpc (slightly
larger than the Via Lactea virial radius) in order to allow a

comparison that includes the DR5 dwarf Leo T; this exten-
sion is useful because the known dwarf satellite count is so
low that even adding one satellite to the distribution increases
the statistics significantly.
The radial distribution of all 23 known Milky Way satel-

lites is shown by the magenta dashed line in Figure 5. The
four solid lines show radial distributions for four choices of
subhalo populations: the 65 largest vpeak(upper) subhalos (65
LBA) as discussed in Madau et al. (2008), vpeak > 10 km
s−1 (upper-middle), vpeak > 5 km s−1 (lower-middle), and

vmax > 7 km s−1 (lower). We note that the all-observed pro-
file is clearly more centrally concentrated than any of the the-
oretical subhalo distributions. However, as shown in Figure
1, our limited ability to detect faint satellite galaxies almost
certainly biases the observed satellite population to be more
centrally concentrated than the full population.
If we include only the 11 satellites (excluding SMC and

LMC) that are bright enough to be detected within 417 kpc
(MV ! −7), we obtain the thick blue dashed line. This dis-
tribution is significantly closer to all of the theoretical sub-
halo distributions, and matches quite well within r ∼ 50 kpc,
where the incompleteness correction to the luminosity func-
tion will matter most. It is still more centrally concentrated
then the distribution of all subhalos, however, as has been
noted in the past (at least for the classical satellites – e.g. Will-
man et al. 2004b; Diemand et al. 2004; Kravtsov et al. 2004).
In order to more rigorously determine whether the theoreti-
cal distribution is consistent with that of the 11 “complete”
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Canes Venatici II -4.9 7.80 × 103 151 74 0.47

Ursa Major II -4.2 4.09 × 103 32 140 0.78

Coma -4.1 3.7 × 103 44 77 0.97

Boötes II -2.7 1.03 × 103 43 72 0.2

Willman 1 -2.7 1.03 × 103 38 25 0.99

Segue 1 -1.5 3.40 × 102 23 29 1.0

Classical (Pre-SDSS) Satellites

Large Magellanic Cloud -18.5 2.15 × 109 49 2591 -

Small Magellanic Cloud -17.1 5.92 × 108 63 1088 -

Sagittarius -15.0 8.55 × 107 28 125 -

Fornax -13.1 1.49 × 107 138 460 -

Leo I -11.9 4.92 × 106 270 215 1.0

Leo II -10.1 9.38 × 105 205 160 1.0

Sculptor -9.8 7.11 × 105 88 110 -

Sextans -9.5 5.40 × 105 86 335 -

Carina -9.4 4.92 × 105 94 210 -

Draco -9.4 4.92 × 105 79 180 1.0

Ursa Minor -8.9 1.49 × 105 69 200 -

aSatellite projected half light radius.
bDetection efficiency from Koposov et al. (2007).
!Galaxy sits within the SDSS DR5 footprint.
†Satellite is not used in fiducial LF correction.

from data for the SDSS-II SEGUE survey (Belokurov et al.
2007). All of the objects we list in this table have large mass-
to-light ratios (Martin et al. 2007; Simon & Geha 2007; Stri-
gari et al. 2008).
For our fiducial corrections, following the convention of

Koposov et al. (2007), we have not included Segue 1, as it
does not lie inside the DR5 footprint and hence the published
DR5 detection limits are not applicable. We do include Segue
1 in an alternative correction scenario below (see Table 3).
We do not correct the classical dwarf satellite galaxies for lu-
minosity bias or sky coverage, because appropriate detection
limits for these classical dwarf satellites are unclear given that
they are not part of a homogeneous survey like SDSS. We
assume that all satellites within those magnitude bins would
have been discovered anywhere in the sky, with the possible
exception of objects at low Galactic latitudes, where Milky
Way extinction and contamination become significant (Will-
man et al. 2004a). This assumption is conservative in the
sense that it will bias our total numerical estimate low, but
it is only a minor effect, as our correction described in §3 is
dominated by low luminosity satellites.
Before we use the radial distribution of Via Lactea subha-

los to correct the observed luminosity function, it is impor-
tant to investigate whether this assumption is even self consis-
tent with the data we have on the radial distribution of known
satellites. The relevant comparison is shown in Figure 5. We
have normalized to an outer radiusRouter = 417 kpc (slightly
larger than the Via Lactea virial radius) in order to allow a

comparison that includes the DR5 dwarf Leo T; this exten-
sion is useful because the known dwarf satellite count is so
low that even adding one satellite to the distribution increases
the statistics significantly.
The radial distribution of all 23 known Milky Way satel-

lites is shown by the magenta dashed line in Figure 5. The
four solid lines show radial distributions for four choices of
subhalo populations: the 65 largest vpeak(upper) subhalos (65
LBA) as discussed in Madau et al. (2008), vpeak > 10 km
s−1 (upper-middle), vpeak > 5 km s−1 (lower-middle), and

vmax > 7 km s−1 (lower). We note that the all-observed pro-
file is clearly more centrally concentrated than any of the the-
oretical subhalo distributions. However, as shown in Figure
1, our limited ability to detect faint satellite galaxies almost
certainly biases the observed satellite population to be more
centrally concentrated than the full population.
If we include only the 11 satellites (excluding SMC and

LMC) that are bright enough to be detected within 417 kpc
(MV ! −7), we obtain the thick blue dashed line. This dis-
tribution is significantly closer to all of the theoretical sub-
halo distributions, and matches quite well within r ∼ 50 kpc,
where the incompleteness correction to the luminosity func-
tion will matter most. It is still more centrally concentrated
then the distribution of all subhalos, however, as has been
noted in the past (at least for the classical satellites – e.g. Will-
man et al. 2004b; Diemand et al. 2004; Kravtsov et al. 2004).
In order to more rigorously determine whether the theoreti-
cal distribution is consistent with that of the 11 “complete”

❖ Search MW-analogs in SDSS  
for satellite galaxies

❖ Probabilistic model using 
background subtraction

❖ Combine spectroscopic and 
photometric redshifts



The oddball hypothesis

❖ About 600 systems with 
spectra on MC-like satellites

❖ About 10,000 systems with 
photometric redshifts on 
MC-like satellites

❖ About 1,00 systems with 
photometric redshifts for 
Fornax-like satellites

6 LIU ET AL.

Fig. 2.— Images of selected MW-like hosts with exactly two MC-like satellites in the SDSS spectroscopic catalog, identified as those
objects within a radius of 150 kpc and within 300 km s�1of the host. Each image is scaled to 300 physical kpc on a side, centered on
the host galaxy. Satellites identified as MC-like companions are circled in yellow. The 1st, 2nd, 4th, and 11th images (counting from left
to right, top to bottom) show at least one bright, close companion to the MW-sized host. Image 11 shows two such objects at the same
redshift as the central galaxy. In each of these cases, the companion is recognized as a satellite of the host but is too luminous to meet
our criteria for being an MC-like satellite. The 5th, 6th, 8th, 9th, and 11th images feature prominent background objects with spectra at
dissimilar redshifts. Background objects without spectra are clearly visible in every panel. The 5th and 12th panels exhibit fiber collisions.
The blue object next to the upper left MC-like satellite in panel 5, though bright enough, did not have its spectrum collected or analyzed,
similarly, the object to the right of the bluer MC-like satellite in panel 12 has no redshift or absolute magnitude information due to fiber
collisions.

Liu et al. 2011
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Figure 2. Left: Mean number of satellites brighter than ∆m magnitudes fainter than the primary galaxy, assuming primaries within
±0.25 magnitudes of the Milky Way. Blue diamonds are determined from the spectroscopic sample of satellites (method 1), black squares
from the photometric sample (method 3). The solid errors are the uncertainty on the mean, the thin, dashed errors are the intrinsic scatter
(σs from Eq. 3). The arrows indicate 90% c.l. upper limits. The red triangles indicate the Milky Way satellites. Right: Same as left, except
for primaries within ±0.25 magnitudes of M31.

MW-like primaries and ∆m = [4, 5], we find a mean in-
trinsic scatter of σs = [0.56±0.04, 0.89±0.19], where the
errors represent one-sigma uncertainties as above. The
best-fitting values for σs are shown as thin, dashed er-
ror bars in Fig. 2 for ∆m ≤ 7. Via the method out-
lined in Liu et al. (2011), we are also able to estimate
the full probability distribution down to ∆m = 5; here
we find that the probability to obtain [0, 1, 2, 3] satel-
lites with ∆m < 5 is [0.59, 0.25, 0.11, 0.03, 0.02]. Down
to fainter magnitudes, the spectroscopic sample is too
sparse to measure the full satellite probability distribu-
tion. These results indicate that there is still substantial
intrinsic scatter in the satellite population, even at the
brightest scales.

5. COMPARISON TO PREVIOUS RESULTS

There have been several recent analyses on the pop-
ulation of bright satellites around MW-analog galaxies
along the lines presented in this paper. It is instructive
to compare the results presented here to these previous
analyses.

Guo et al. (2011) used SDSS DR7 to construct the lu-
minosity function of satellites down to the magnitude
scale of Fornax, correcting for the incompleteness of
SDSS. These authors used best-fitting photometric red-
shifts from DR7 to eliminate obvious background galax-
ies. Our analysis differs from these authors in that we
utilize both DR8 imaging and a maximum likelihood
method that incorporates full photometric redshift prob-
ability distributions. We also directly quantify the bias
in abundance counts for faint satellites that is incurred
when utilizing available photometric redshifts. Via some-
what different methods for cutting background galaxies,
Lares et al. (2011) use DR7 data to obtain a mean num-
ber of satellites down to the magnitude of Sagittarius for
projected radii ! 100 kpc. As we discuss above, we have

verified that our results are consistent with these authors
over the radial range considered, and further that we do
not incur a significant bias by including galaxies within
projected radii < 100 kpc. Tollerud et al. (2011) utilize
the DR7 volume-limited spectroscopic sample and find
that ∼ 40% of MW-analogs have satellites brighter than
the LMC within 250 kpc. James & Ivory (2011) use Hα
narrow band imaging to search for start forming galax-
ies around 143 spiral galaxies like the MW, and find that
nearly two-thirds do not have satellites that resemble the
Magellanic Clouds. These latter two results are consis-
tent with the spectroscopic results that we present for
bright satellites.

6. DISCUSSION AND CONCLUSION

We have used DR8 photometric redshift data to limit
the mean number of satellites around MW-analog galax-
ies down to ten magnitudes fainter than the MW. At
least down to the scale of Sagittarius, the results indi-
cate that the MW is not a significant statistical outlier
in its number of bright, classical satellites.
Our 90% c.l. upper bound of " 13 satellites brighter

than the Fornax dSph already places a strict bound on
the efficiency of galaxy formation at the dSph luminos-
ity scale. This is particularly true considering that there
are anywhere from ∼ 25 − 75 dark matter subhalos in
the Aquarius simulations (Springel et al. 2008) that have
present-day circular velocities greater than that of For-
nax. However, it is very interesting to note that the ob-
servational result we present is perfectly consistent with
abundance matching extrapolations for the satellite lu-
minosity function, which predict ∼ 1.2, 1.7 satellites for
magnitude differences ∆m = 7, 10 (Busha et al. 2011).
This does not guarentee that such models will have the
correct velocity function; in fact it appears increasingly
difficult to simultaneously match both the luminosities

Strigari & Wechsler ApJ  2012

Cosmic abundance of MW satellites



Improving results

❖ Dark energy survey will give about 4x more MW like 
galaxies than SDSS

❖ External satellites about two orders of magnitude fainter 
than SDSS

❖ For nearby systems satellites are identified and velocity 
dispersions can be determined 

❖ Perhaps ~tens more satellites of the MW
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Galactic halo models



Part III: Direct detection and 
Galactic halo models

❖ How much dark matter is in your coffee cup?

❖ How fast is it moving? 

❖ How does it interact with ordinary matter? 



Theoretical approach
❖ Typically assume ‘Standard Halo Model’ maxwellian velocity 

distribution

❖ Not necessarily ‘self-consistent’: velocity distribution does 
not follow from dark matter density profile

❖ Assuming isotropy and spherical symmetry, mapping is 
simple: 

6 Ewa L. !Lokas and Gary A. Mamon

c = 10. Thus the NFW model produces γs that are higher
than the canonical value of 0.4, especially if more velocity
anisotropy is assumed. This may be caused by the ill-defined
cutoff radius.

In models with homogeneous cores, the central density,
the core radius rc and the central 3-D velocity dispersion
σ2(0) are related through

4πGρ(0)r2
c =

1
3
η σ2(0) . (32)

King (1966) models have η = 9. In models with cuspy cores,
we propose the scaling relation

4πGρ(rs)r
2
s =

1
3
η
〈
σ2

〉
r<rs

. (33)

Using equations (2), (6) and (7), one has 4πGρ(rs)r
2
s =

c g(c)V 2
v /4 and from equation (31) for x = 1/c one obtains

η =
3cg(c)V 2

v M(1/c)

8T (1/c, β)
. (34)

For different velocity anisotropy models we then have

η(β = 0) =
3(2 ln 2 − 1)

2(π2 − 7 − 8 ln 2 + 6 ln2 2)
" 2.797, (35)

η(β = 0.5) =
9(1 − 2 ln 2)

4(π2 − 9 − 6 ln 2 + 6 ln2 2)
" 2.138, (36)

η(β = 1) =
9(2 ln 2 − 1)

2(π2 − 3 − 12 ln 2 + 6 ln2 2)
" 1.212, (37)

where we have used equations (8) and (24)-(26), and the fact
that Li2(−1) = −π2/12. Note that η is independent of c in
all cases with β =const. For the Osipkov-Merritt model η is
no longer a constant but we find 1.902 < η < 2.797 in the
range 1 < c < 100 with the limiting cases of η → η(β = 1)
for c → 0 and η → η(β = 0) for c → ∞. Such limiting
behaviour is due to the fact that for large c the integration
of T (1/c, β), equation (23), probes only the range of s where
β is close to zero, while for small c the integral is dominated
by contribution from large s where β is close to unity.

Finally, we consider the structural parameter

WUM =
W (s)

M(s)Φ(0)
(38)

brought forward by Seidov & Skvirsky (2000) with the moti-
vation of WUM being constant for different self-gravitating
objects of simple geometry. Using equations (8), (9) and (21)
we find that for the NFW model

WUM =
cs(2 + cs) − 2(1 + cs) ln(1 + cs)

2(1 + cs)[−cs + (1 + cs) ln(1 + cs)]
(39)

so the parameter turns out to be a function of cs = r/rs only.
It grows with s from zero at s → 0 reaching a maximum
value of 0.196 at r/rs = 4.62 and decreases to zero again as
s → ∞. The values of this parameter at the virial radius are
0.196, 0.187 and 0.125 respectively for c = 5, 10 and 100.

2.4 The distribution function

A quantity of great dynamical importance is the distribu-
tion function. For a spherical system with an isotropic veloc-
ity tensor, the distribution function depends on the phase-
space coordinates only through the energy (e.g. Binney &

Figure 5. The distribution function for isotropic model (eq. [40])
for three different values of the concentration parameter.

Tremaine 1987), and can be derived through the Eddington
(1916) formula (e.g. Binney & Tremaine 1987):

f(E) =
1√
8π2

[∫ E

0

d2ρ
dΨ2

dΨ√
E − Ψ

+
1

E1/2

(
dρ
dΨ

)

Ψ=0

]
, (40)

where E and Ψ are the conventionally defined relative energy
and potential; here E = −E, where E is the total energy per
unit mass and Ψ = −Φ, where Φ is given by equation (9).

It is easy to show that, given equations (6) and (9),
the second term in brackets in equation (40) is zero. The
simplest way to perform the integration of the first term is to
introduce dimensionless variables Ψ̃ = Ψ/C1 and ρ̃ = ρ/C2,
where C1 = g(c)V 2

v and C2 = c2g(c)Mv/(4πr3
v). Then the

integration variable should be changed to s and the limit of
integration corresponding to E found numerically for each E
by solving equation Ψ(s) = E . Otherwise, with a few percent
accuracy, the integration in (40) can be done directly with

an approximation sapx = −1.75 ln(Ψ̃/c)/Ψ̃.
The calculations of the distribution function are usually

performed in units such that G = M = Re = 1 (Binney &
Tremaine 1987), where M is the total mass of the system and
Re is its effective radius. Since in the case of NFW profile
the total mass is infinite a reasonable choice seems to be to
put Mv = 1. The effective radius is not well defined either
but can be approximated as rv/2 (see the next section).
Therefore we choose the units so that G = Mv = rv/2 = 1
and arrive at the numerical results shown in Figure 5. This
choice of normalization is equivalent to measuring f in units
of

√
8Mv/(rvVv)3 and E in units of V 2

v .
Figure 5 proves that the distribution function turns out

to be similar to the distribution functions obtained from
other density profiles (see e.g. Figure 4-12 in Binney &
Tremaine 1987), except that the NFW distribution functions
do not display the cutoff at nearly unbound energies charac-
teristic of King (1966) models. The results shown in Figure 5
indicate a proper behaviour of the distribution function (it
is nowhere negative). Quantitative comparisons with other
models should, however, be made with caution because of

c© 0000 RAS, MNRAS 000, 000–000



Spherical and Isotropic Halos
Modeling Dark Matter Halos

2

Direct dark matter detection experiments look for low
energy nuclear recoil events caused by dark matter scat-
tering o� of target nuclei [21]. The nuclear recoil thresh-
olds for dark matter detection experiments are in the
range of tens of keV, which implies that the recoil ener-
gies in many models of dark matter are well below thresh-
old. Only particles with the largest velocities have suf-
ficiently energetic nuclear recoils to be visible at direct
detection experiments. This fact makes it particularly
important to accurately describe the high velocity tail
of the dark matter velocity distribution in the halo sur-
rounding the Milky Way. Relative to a Maxwell distribu-
tion, (1) predicts a smaller fraction of dark matter near
the escape velocity, which a�ects the relative rates be-
tween direct detection experiments, especially those with
di�erent target nuclei or energy thresholds.

This paper is organized as follows. Sec. II motivates
the ansatz in (1) and derives a general form for the power-
law index. Sec. III compares (1) to numerical calculations
of the full velocity distribution function for Milky Way-
like spatial profiles, including a gravitational potential
model of the disk. The ansatz in (1) is also compared
to the results of N-body simulations. Elementary direct
detection phenomenology is explored in Sec. IV, and con-
clusions are presented in Sec. V.

II. EQUILIBRIUM DARK MATTER
DISTRIBUTIONS

The Galactic halo forms through a process of hier-
archical merging, smooth accretion, and violent relax-
ation [1, 22, 23]. The central regions of halos, where
relaxation processes have ended, are in quasi-static equi-
librium [24]. In this case the dominant component of
Galactic dark matter is described by a steady-state dis-
tribution function that evolves slowly with time. In the
outer regions of the halo, at low binding energies, the
phase space distribution will depend more dramatically
on both the history and environment of the halo. For
example, a halo with a fairly quiescent formation history
will have a di�erent phase space distribution at low bind-
ing energies compared to one with a recent major merger
[6]. Sec. III argues that the behavior of the distribu-
tion function of the Milky Way at high velocities and low
binding energies resembles an equilibrated system on av-
erage. There can be large excursions from equilibrium
at the high velocity tail due to recent accretion; how-
ever, N-body simulations suggest that these are spatially
localized streams.

According to Jeans theorem, the six-dimensional phase
space distribution function f(⌃x,⌃v) for a spherically sym-
metric and isotropic system can be written in terms of
the energy, which is an integral of motion:

E ⌅ 2⇧(⌃x)� ⌃v2. (2)

The local escape velocity is defined as the velocity where

E = 0 and therefore

E ⌅ v2esc(r)� v2. (3)

Due to the assumption of equilibrium, f(E) for E < 0
must vanish since this corresponds to particles with ve-
locities greater than the escape velocity of the system.
If the dark matter of the Milky Way is nearly equi-

librated, then the Jeans theorem implies that the dark
matter density determines the velocity distribution func-
tion. Dark matter halos in cosmological simulations are
well fit by spherically averaged double power-law density
distributions of the form,

⌅(r) =
⌅s

(r/rs)�(1 + (r/rs))(⇥��)
, (4)

where ⌅s is the scale density, rs is the scale radius, �
is the slope of the halo density near the core, and ⇥ is
the slope at large radii. For example the NFW profile
has (�, ⇥) = (1, 3) [1], while the Hernquist model has
(�, ⇥) = (1, 4) [25]. The Ja�e model has (�, ⇥) = (2, 4),
but the � = 2 inner slope is steeper than indicated by
numerical simulations.
Velocity distribution functions that behave as

Maxwell-Boltzmann distribution functions at low veloc-
ities arise from dark matter halos with inner slopes of
� = 2. This article is primarily concerned with the ef-
fects of the dark matter velocity distribution on direct
detection rates. The relative velocity between dark mat-
ter and target nuclei for v ⇥ v0 is set by the solar veloc-
ity; therefore, the low velocity behavior of the Galactic
dark matter does not significantly a�ect direct detection
rates. Though finding a velocity distribution function
that describes � < 2 is important, these modifications
to the dark matter velocity do not qualitatively change
the direct detection rates [26]. The goal of this section is
to derive a phenomenological velocity distribution func-
tion that can arise from these double power-law density
models to predict direct dark matter detection rates.
A given density distribution is related to the velocity

distribution through the gravitational potential of the
halo, ⇧(r):

⌃2⇧ = �4⇤G⌅ = �4⇤GM

⇧
f(v)d3v, (5)

where G is the gravitational constant and M is the halo
mass. For an isotropic density distribution, there is a one-
to-one correspondence between the density and ergodic
distribution function, given by the Eddington formula:

f(⇧) =
1⇧
8⇤2

⇤⇧ ⇤

0

d⇧⇥
⇧
⇧ � ⇧⇥

d2⌅

d⇧⇥2 +
1⇧
⇧

� d⌅

d⇧

⇥

⇤=0

⌅
. (6)

The expression for f(⇧) can be written in terms of the
binding energy E by replacing ⇧ ⇤ E . Equation (6)
is a powerful simplification that allows one to solve for
the distribution function of an arbitrary spherical density
model. In many cases, however, the solution for f(v) is
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analytically intractable and must be obtained by solving
(6) numerically. This is the case for most combinations
of (�, ⇥) in (4); as a result, there is no general closed-
form analytic solution for the velocity distribution func-
tion that corresponds to double power-law density mod-
els. Fortunately, it is still possible to assume an ansatz
for f(v) that reproduces the numerical solution of the
Eddington formula for double power-law densities. The
possibilities for such an ansatz are limited if one assumes
that the dark matter halo is in equilibrium.

The high velocity tail of the local dark matter distribu-
tion function arising from equilibrated, double power-law
models is in conflict with the Standard Halo Model and
its variants. Consider the following generalization of the
Standard Halo Model as an ansatz

f(E) ⌥ (eE/E0 � 1)k�(E), (7)

where k is the power-law index of the distribution and
describes the behavior near the escape velocity. The ben-
efit of this ansatz is that it satisfies the Jeans theorem for
an equilibrated system and goes continuously to zero at
the escape velocity.

The power-law index is defined as

k = lim
E⇥0+

k(E), (8)

with

k(E) ⇥ E
f(E)

df(E)
dE . (9)

For double-power density profiles of the form in (4), the
power-law index can be evaluated analytically. In this
case, the second term of the Eddington formula is negli-
gible. Expanding the density, potential, and the distri-
bution function in (6) around small E gives a power-law
index

k = ⇥ � 3

2
(10)

for ⇥ > 3 [27]. As ⇥ ⇧ 3, k(E) does not approach a simple
power-law and the approximations that lead to (10) break
down [14]. Sec. III fits the numerical solutions to the
parameters for the ansatz velocity distribution function
in (1). As ⇥ ⇧ 3, the best fits for k tend to be k ⌃
2.0, slightly larger than (10). Earlier studies from galaxy
formation via violent relaxation motivated k = 1.5 [28].

It is remarkable that k takes such a general and simple
form. The index is determined almost exclusively by the
outer slope of the density distribution; all terms that de-
pend on � vanish in the low energy limit. The outer slope
controls the behavior of k because the dark matter parti-
cles with the highest velocities are those with the small-
est binding energies. These particles will be in highly
energetic orbits about the halo, and will be concentrated
at large radii, far from the core. Density distributions
with larger outer slopes have fewer particles orbiting at
large radii, which means that the low-energy component

of f(E) is suppressed. A large value of k precisely cap-
tures this behavior.
The distribution function for binding energies can be

rewritten in terms of velocities using the relation in (3)
to get (1). The velocity distribution ansatz in (1) is well-
described by a Gaussian peaked near v0 for v ⌅ vesc. As
v ⇧ vesc, the distribution function approaches

f(v) ⇧ (vesc � v)k. (11)

Cosmological N-body simulations indicate ⇥ ⇤ 3 � 5 [1,
29], which means that the velocity distribution falls o⇥
near the escape velocity to the power k = [1.5, 3.5]. A
more detailed comparison with cosmological simulations
follows in Sec. III.
The Standard Halo Model and the King model provide

a useful comparison to the distribution in (7) and they
are defined, respectively, as

fSHM(E) = N(E0)eE/E0�(E)
fKing(E) = N(E0)(eE/E0 � 1)�(E). (12)

These distributions are frequently used for direct dark
matter detection predictions because they make the cal-
culations tractable. In addition, they satisfy Jeans theo-
rem under the assumption of isotropy and spherical sym-
metry. However, they do not correspond to NFW-like
density models, especially near the high-velocity tails of
the distributions. In particular, the SHM behaves near
the tail as k ⇧ 0, and the King model has k = 1. Conse-
quently, these velocity distribution functions over-predict
the number of particles in the tail of the distribution.
The Tsallis distribution is another model for the veloc-

ity distribution that has been recently discussed in the
literature, and is defined as

fTsallis(v) ⌥
�
1� (1� q)

v2

v20

⇥q/(1�q)

. (13)

The Tsallis distribution predicts that the escape velocity
is given by v2esc = v20/(1 � q) and k = q/(1 � q), where
the distribution in (1) sets these three parameters inde-
pendently. Hansen et al. [30] show there is a correlation
between the parameter q and the local density slope, im-
plying that q varies with radius if the density slope is
not the same at all radii. A disadvantage of this model,
however, is that does not satisfy the Jeans theorem for
spherical and isotropic systems if the circular velocity, v0,
is held constant. This violation of Jeans theorem is also
true for the generalized Maxwellian distribution, which
has been used to model the radial and tangential compo-
nents of the velocity distribution [9].
The formalism and models in this section only apply

to the spherically-averaged velocity distribution, and do
not capture any physics pertaining to steams, subhalos,
or any other structure in the phase space distribution.
Though streams are unlikely to a⇥ect the overall velocity
distribution because their densities are less than ⇤ 0.1%

Important low mass WIMP implications [Lisanti, LS, Wacker, Wechsler PRD 2011]



Simulations: In halo variance

Phase-space structure in the local dark matter distribution 3

for all six halos with about 200 million particles within R200. Fur-

ther details of the halos and their characteristics can be found in

Springel et al. (2008).

In the following analysis we will often compare the six level-2

resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,

we scale the halos in mass and radius by the constant required to

give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-

nate system that is aligned with the principal axes of the inner halo,

and which labels particles by an ellipsoidal radius rell defined as

the semi-major axis length of the ellipsoidal equidensity surface on

which the particle sits. We determine the orientation and shape of

these ellipsoids as follows. For each halo we begin by diagonal-

ising the moment of inertia tensor of the dark matter within the

spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and

shape of the best fitting ellipsoid. We then reselect particles with

6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-

to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark

matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of

DM particles passing through laboratory detectors. It is important,

therefore, to determine not only the mean value of the DM density

8 kpc from the Galactic Centre, but also the fluctuations around this

mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our

simulations using an SPH smoothing kernel adapted to the 64

nearest neighbours. We then fit a power law to the resulting dis-

tribution of ln ρ against ln rell over the ellipsoidal radius range

6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles

in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that

the resulting distribution refers to random points within our ellip-

soidal shell rather than to random mass elements. We normalise the

resulting DPDFs to have unit integral. They then provide a prob-

ability distribution for the local dark matter density at a random

point in units of that predicted by the best fitting smooth ellipsoidal

model.

In Fig. 1 we show the DPDFs measured in this way for all

resimulations of Aq-A (top panel) and for all level-2 halos after

scaling to a common Vmax (bottom panel). Two distinct compo-

nents are evident in both plots. One is smoothly and log-normally

distributed around ρ = ρmodel, the other is a power-law tail to high

densities which contains less than 10−4 of all points. The power-

law tail is not present in the lower resolution halos (Aq-A-3, Aq-

A-4, Aq-A-5) because they are unable to resolve subhalos in these

inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-

sults, suggesting that resolution level 2 is sufficient to get a reason-

able estimate of the overall level of the tail. A comparison of the six

level 2 simulations then demonstrates that this tail has similar shape

in different halos, but a normalisation which can vary by a factor

of several. In none of our halos does the fraction of the distribu-

tion in this tail rise above 5× 10−5. Furthermore, the arguments of

Springel et al (2008) suggest that the total mass fraction in the in-

ner halo (and thus also the total volume fraction) in subhalos below
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Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel

to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured

directly from the simulation, while black dashed lines show a multivari-

ate Gaussian model fit to the individual component distributions. Residuals

from this model are shown in the upper part of each panel. The major axis

velocity distribution is clearly platykurtic, whereas the other two distribu-

tions are leptokurtic. All three are very smooth, showing no evidence for

spikes due to individual streams. In contrast, the distribution of the velocity

modulus, shown in the upper left panel, shows broad bumps and dips with

amplitudes of up to ten percent of the distribution maximum. Lower panel:

Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives

the median of all the fitted multivariate Gaussians. The dark and light blue

contours enclose 68% and 95% of all the measured distributions at each ve-

locity. The bumps seen in the distribution for a single box are clearly present

with similar amplitude in all boxes, and so also in the median curve. The

bin size is 5 km/s in all plots.

Vogelsberger et al. 2009



Simulations: Halo-to-Halo variance

Mao, LS, Wechsler 2012 et al.

Appears to be a uniform non-maxwellian DM distribution in 
cosmological simulations

2

Universal Velocity Distribution in Simulations.— To
identify the relevant physical quantities which a↵ect the
VDF and to quantify scatter in the distributions among
di↵erent halos in cosmological simulations, we must ex-
amine a large number of halos across a wide range of
mass. At the same time, we need high resolution to re-
duce sampling error and distinguish di↵erences in VDFs
for di↵erent parameters.

In this study, we use halos from the Rhapsody and
Bolshoi simulations; state-of-the-art DM-only simula-
tions with high mass resolution. Rhapsody consists
of re-simulations of 96 massive cluster-size halos with
Mvir = 1014.8±0.05M�h�1. The particle mass is 1.3 ⇥
108M�h�1, resulting in ⇠ 5⇥ 106 particles in each halo.
This simulation set currently comprises the largest num-
ber of halos simulated with this many particles (Fig. 1
of [18]). Bolshoi is a full cosmological simulation, with
similar mass resolution, 1.3 ⇥ 108M�h�1. For detailed
descriptions of the Rhapsody and Bolshoi simulations,
refer to [18] and [19] respectively.

We use the phase-space halo finder Rockstar [20] to
identify host halos at z = 0, defined by virial masses and
radii. We examine the VDFs at a range of radii. A VDF
at radius r uses all particles within a spherical shell cen-
tered at the halo center with the inner and outer radii
of 10±0.05r, so that the ratio of the shell width to the
radius is fixed. In each shell, we determine the escape
velocity by directly calculating the gravitational poten-
tial for each particle in the shell. The escape velocity for
the shell is then assigned as the mean vesc for all particles
in the shell. We have verified that vesc determined from
this method is consistent with the same quantity deduced
from the best-fitting spherically-averaged smooth density
profile.

We fit each halo with an NFW density profile,

⇢(r) =
⇢s

(r/rs)(1 + r/rs)2
, (2)

where rs is the scale radius at which the log–log slope is
�2. The fit uses maximum-likelihood estimation based
on particles within rvir. The halo concentration is defined
as c = rvir/rs.

We investigated the impact of a variety of parameters
characterizing the halo on the shape of the VDF. We
found two important results, illustrated in Fig. 1:

1. The value of r/rs a↵ects the shape of VDF dra-
matically. The peak velocity of the distribution is
a strong function of r/rs, and the tail is a weak
function of this parameter.

2. For a fixed value of r/rs, the halo-to-halo scatter
in the VDFs is not significantly reduced when bin-
ning on mass, concentration, shape, or formation
history.

If the VDF only depends on the density profile, which
is described by an NFW profile, then this similarity of

FIG. 1. Stacked velocity distribution for 96 halos in the
Rhapsody simulation, at di↵erent values of r/rs: 0.15 (blue),
0.3 (red), 0.6 (green), 1.2 (magenta). Bands show the 68%
halo-to-halo scatter in those VDFs. Dash and dotted lines
indicate the same values of r/rs in the Bolshoi simulation
with halos of Mvir ⇠ 1012 and 1013M�h

�1 respectively. The
VDFs of low-mass halos are cut at the head and tail due to
limited particle number. The SHM assumption is shown for
comparison (black line).

VDFs at fixed r/rs can be easily understood because the
NFW profile is a function of r/rs, not of r and rs sep-
arately. We find that the above trends are robust for
halos masses down to ⇠ 1012 M�. For MW-size halos, it
has been suggested that the VDF has a universal shape
depending only on the velocity dispersion and the local
density slope d ln ⇢/d ln r [13]. This is related to our find-
ing, because the magnitude of the velocity dispersion is
roughly proportional to vesc and the local density slope
for an NFW profile is given by a monotonic function of
r/rs,

d ln ⇢

d ln r
= �1 + 3(r/rs)

1 + (r/rs)
. (3)

Given the resolution of our simulated sample, it is not
yet possible to tell whether the local density slope or r/rs
is the most relevant variable for the VDF. Our study
suggests that r/rs works better because the VDFs of ha-
los with steeper outer density slopes (i.e. replacing the 3
in Eq. (3) with a larger number) have smaller peak ve-
locities. Although this di↵erence is not significant with
current resolution, it is consistent with a näıve physical
reasoning that a halo with a steeper outer density slope
would have fewer particles in high-energy orbits and thus
fewer high-velocity particles. A practical advantage of
using r/rs is that the measurement of the local density
slope is less well determined in simulations than mea-
surement of r/rs. In any case, a well-determined value
of r�/rs for the MW is crucial to minimize uncertain-
ties in the calculation of event rates of direct detection
experiments.



Interesting trends

❖ Asymptotic tail  of distribution suppressed relative to 
Maxwell-Boltzmann distribution

❖ At z=0, full velocity distribution not straightforwardly 
related to the density profile

❖ Dominated by ‘debris flows’? [Kuhlen, Lisanti, Spergel 2012]

❖ However, correspondence appears better at z=1. Opposite 
of what’s expected?



Does dark matter substructure matter?2 Vogelsberger et al.

per limits established by other experiments (see Savage et al. 2004;

Gondolo & Gelmini 2005; Gelmini 2006, for a discussion and pos-

sible solutions). Regardless of this, recent improvements in detector

technology may enable a detection of “standard model” WIMPSor

axions within a few years.

Event rates in all direct detection experiments are determined

by the local DM phase-space distribution at the Earth’s position.

The relevant scales are those of the apparatus and so are extremely

small from an astronomical point of view. As a result, interpret-

ing null results as excluding specific regions of candidate param-

eter space must rely on (strong) assumptions about the fine-scale

structure of phase-space in the inner Galaxy. In most analyses the

dark matter has been assumed to be smoothly and spherically dis-

tributed about the Galactic Centre with an isotropic Maxwellian ve-

locity distribution (e.g. Freese et al. 1988) or a multivariate Gaus-

sian distribution (e.g. Ullio & Kamionkowski 2001; Green 2001;

Helmi et al. 2002). The theoretical justification for these assump-

tions is weak, and when numerical simulations of halo formation

reached sufficiently high resolution, it became clear that the phase-

space of CDM halos contains considerable substructure, both grav-

itationally bound subhalos and unbound streams. As numerical res-

olution has improved it has become possible to see structure closer

and closer to the centre, and this has led some investigators to sug-

gest that the CDM distribution near the Sun could, in fact, be almost

fractal, with large density variations over short length-scales (e.g.

Kamionkowski & Koushiappas 2008). This would have substantial

consequences for the ability of direct detection experiments to con-

strain particle properties.

Until very recently, simulation studies were unable to resolve

any substructure in regions as close to the Galactic Centre as the

Sun (see Moore et al. 2001; Helmi et al. 2002, 2003, for example).

This prevented realistic evaluation of the likelihood that massive

streams, clumps or holes in the dark matter distribution could af-

fect event rates in Earth-bound detectors and so weaken the par-

ticle physics conclusions that can be drawn from null detections

(see Savage et al. 2006; Kamionkowski & Koushiappas 2008, for

recent discussions). As we shall show in this paper, a new age has

dawned. As part of its Aquarius Project (Springel et al. 2008) the

Virgo Consortium has carried out a suite of ultra-high resolution

simulations of a series of Milky Way-sized CDM halos. Simula-

tions of individual Milky Way halos of similar scale have been car-

ried out by Diemand et al. (2008) and Stadel et al. (2008). Here we

use the Aquarius simulations to provide the first reliable character-

isations of the local dark matter phase-space distribution and of the

detector signals which should be anticipated in WIMP and axion

searches.

2 THE NUMERICAL SIMULATIONS

The cosmological parameters for the Aquarius simulation set are

Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9, ns = 1 and H0 =
100 h km s−1 Mpc−1 with h = 0.73, where all quantities have
their standard definitions. These parameters are consistent with cur-

rent cosmological constraints within their uncertainties, in partic-

ular, with the parameters inferred from the WMAP 1-year and

5-year data analyses (Spergel et al. 2003; Komatsu et al. 2008).

Milky Way-like halos were selected for resimulation from a par-

ent cosmological simulation which used 9003 particles to follow

the dark matter distribution in a 100h−1Mpc periodic box. Se-
lection was based primarily on halo mass (∼ 1012M") but also

required that there should be no close and massive neighbour at
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Figure 1. Top panel: Density probability distribution function (DPDF) for

all resimulations of halo Aq-A measured within a thick ellipsoidal shell

between equidensity surfaces with major axes of 6 and 12 kpc. The lo-
cal dark matter density at the position of each particle, estimated using an

SPH smoothing technique, is divided by the density of the best-fit, ellip-

soidally stratified, power-law model. The DPDF gives the distribution of

the local density in units of that predicted by the smooth model at random

points within the ellipsoidal shell. At these radii only resolution levels 1

and 2 are sufficient to follow substructure. As a result, the characteristic

power-law tail due to subhalos is not visible at lower resolution. The fluc-

tuation distribution of the smooth component is dominated by noise in our

64-particle SPH density estimates. The density distribution measured for

a uniform (Poisson) particle distribution is indicated by the black dashed

line. Bottom panel: As above, but for all level-2 halos after rescaling to

Vmax = 208.49 km/s. In all cases the core of the DPDF is dominated by
measurement noise and the fraction of points in the power law tail due to

subhalos is very small. The chance that the Sun lies within a subhalo is

∼ 10−4. With high probability the local density is close to the mean value

averaged over the Sun’s ellipsoidal shell.

z = 0. The Aquarius Project resimulated six such halos at a series
of higher resolutions. The naming convention uses the tags Aq-A

through Aq-F to refer to these six halos. An additional suffix 1 to
5 denotes the resolution level. Aq-A-1 is the highest resolution cal-
culation, with a particle mass of 1.712×103 M" and a virial mass

of 1.839 × 1012 M" it has more than a billion particles within the

virial radiusR200 which we define as the radius containing a mean

density 200 times the critical value. The Plummer equivalent soft-

ening length of this run is 20.5 pc. Level-2 simulations are available

Koushiappas & Kamionkowski PRD 2008; 
Vogelsberger et al. MNRAS 2008



Reconstructing WIMP mass
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Take away messages 
❖Fermi-LAT dSph results now test s-wave thermal relic cross 

sections with mass 10-25 GeV

❖More Galactic satellites sure to exist

❖Is one nearby? (detectable via annihilation)

❖Hinting to something different about DM?

❖Galactic astrophysics to extract from direct detection

❖Perhaps complicates, but makes detection more interesting


