Lei Shu

Filled skutterudite PrPt₄Ge₁₂ has been proposed to be the candidate to host gapless Majorana fermions. We argue that unconventional superconductivity with a complex order parameter in PrPt₄Ge₁₂ by our doping studies of Pr_{1-x}La_xPt₄Ge₁₂ using specific heat, magnetization measurements, and zero-field muon spin relaxation. An additional inhomogeneous local magnetic field, indicative of broken time-reversal symmetry (TRS), is observed in the superconducting states of the alloys. For $x \le 0.5$ the broken-TRS phase sets in below a temperature T_m distinctly lower than the superconducting transition temperature T_c . For x > 0.5, $T_m \approx T_c$. The local field strength decreases as $x \rightarrow 1$, where LaPt₄Ge₁₂ is characterized by conventional pairing. The lower critical field $H_{c1}(T)$ of PrPt₄Ge₁₂ shows the onset of a second quadratic temperature region below $T_q \sim T_m$. Upper critical field $H_{c2}(T)$ measurements suggest multi-band superconductivity, and point gap nodes are consistent with the specific heat data. In Pr_{1-x}La_xPt₄Ge₁₂ only a single specific heat discontinuity is observed at T_c , in contrast to the second jump seen in PrOs₄Sb₁₂ below T_c . These results suggest that superconductivity in PrPt₄Ge₁₂ is characterized by a complex order parameter.