

Prof. Philip Willmott

Relativistic dipole radiation

Relativistic energy and mass

 Total relativistic energy of particle of mass m_e travelling at velocity v

$$\mathcal{E} = \frac{m_e c^2}{\sqrt{1 - (v/c)^2}} = \frac{m_e c^2}{\sqrt{1 - \beta^2}}$$
$$\boxed{\gamma = \frac{1}{\sqrt{1 - \beta^2}}}$$

This is equal to the rest mass energy
 + kinetic energy

$$\mathcal{E} = m_e c^2 + \mathrm{KE}$$

- Therefore
$$\mathrm{KE} = m_e c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$$

β and γ

We know

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Therefore

$$\beta = \left(1 - \frac{1}{\gamma^2}\right)^{1/2}$$

But

$$\frac{1}{\gamma^2} \ll 1$$

N.B.
$$(1+x)^n \approx 1 + nx; \ x \ll 1$$

Therefore

$$\beta \approx \left(1 - \frac{1}{2\gamma^2}\right)$$

Spatial distortion by special relativity

See also "<u>Mr Tompkins in Paperback</u>", George Gamow (Canto Classics)

From dipole to synchrotron radiation

Remember dipole radiation:

From dipole radiation to synchrotron radiation

From dipole to synchrotron radiation

Doppler + Einstein = synchrotron x-rays

I got the power

$$\frac{dP}{d\Omega}(\theta=0) \propto \gamma^6$$

 Assumes a constant acceleration a. Also proportional to a²

$$a = c^2 / \rho = \frac{ceB}{\gamma m_e}$$

 e.g., an increase in storage-ring energy by 25% (2.4 GeV to 3.0 GeV) results in an increase in central-cone power density of a factor 3.8

The atomic form factor

Elastic scattering of photons

- Elastic (Thomson) scattering of photons by electrons
 - $hv_{in} = hv_{out}$
- Direction (momentum) of photon can change thru' an angle 20

 2θ

- Wavevector k = $2\pi/\lambda$
- E = hc/λ = ħck
- Photon momentum = $h/\lambda = \hbar k$
- $|\mathbf{k}_{in}| = |\mathbf{k}_{out}|$
- $\overrightarrow{\Delta k} = \overrightarrow{Q} = \overrightarrow{k_{in}} \overrightarrow{k_{out}}$
- Q = "scattering vector"

The scattering vector, Q

- Elastic (Thomson) scattering of photons by electrons
 - $h_{v_{in}} = h_{v_{out}}$
- Direction (momentum) of photon can change thru' an angle 2θ
 - Wavevector k = $2\pi/\lambda$
 - $E = hc/\lambda = \hbar ck$
 - Photon momentum = $h/\lambda = \hbar k$
 - $|\mathbf{k}_{in}| = |\mathbf{k}_{out}|$
 - $\overrightarrow{\Delta k} = \overrightarrow{Q} = \overrightarrow{k_{in}} \overrightarrow{k_{out}}$
 - Q = "scattering vector"

$$\begin{array}{c} \mathbf{e} \\ k_{\text{out}} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{Q} \\ \mathbf{R} \\ \mathbf{R$$

$$Q = 2|k|\sin\theta = (4\pi/\lambda)\sin\theta$$

Scattering off an atom (atomic number Z)

- Neutral atom has Z electrons
- Atom has an electron-density distribution ho(r)
- Assume electrons are quasi unbound
- Normally assumed to be spherically symmetric
 - Poor approximation for low-Z atoms, e.g., carbon in diamond – four of six electrons involved with sp³-hybridized bonds

The atomic form factor, $f(\mathbf{Q})$, is the far-field scattering amplitude produced by the electron cloud ho(r)

 $\rho(r)$

Scattering off an atom (atomic number Z)

- Atom has an electron-density distribution ho(r)
- Assume electrons are quasi unbound
- Normally assumed to be spherically symmetric
 - Poor approximation for low-Z atoms, e.g., carbon in diamond – four of six electrons involved with sp³-hybridized bonds

$$f(\mathbf{Q}) = \int_{\text{atom}} \rho(\mathbf{r}) e^{i\mathbf{Q}\cdot\mathbf{r}} dV$$

The atomic form factor, $f(\mathbf{Q})$, is the far-field scattering amplitude produced by the electron cloud $\rho(r)$

 $\rho(r)$

Scattering between elements dV

Scattering between elements dV

Example

- $\theta = 14.48^{\circ}$, sin $\theta = 0.25$. $\lambda = 1 \text{ Å}$ sin $\theta/\lambda = 0.25 \text{ Å}^{-1}$
- $\theta = 30^{\circ}$, sin $\theta = 0.5$. $\lambda = 2$ Å sin $\theta/\lambda = 0.25$ Å⁻¹

- Optical path difference (OPD) between two volume elements dV separated by d
 - $OPD = 2d\sin\theta$

wavelengths = $2d \sin \theta / \lambda$

 $\phi = 4\pi d \sin \theta / \lambda = Qd = \mathbf{Q} \cdot \mathbf{r}$

Interference effect (i.e., amplitude of scattered radiation @ 2 θ) the same in both cases because sin θ/λ is the same

The atomic scattering factor, f

- $f(\mathbf{Q})$ is the FT of ho(r)
 - Spherical approximation: $\rho(r)$ = sum of 3D-Gaussian probability distributions
 - The FT of a Gaussian is also a Gaussian
 - Describe $f(\mathbf{Q})$ as a sum of four Gaussians plus a constant

$$f^{0}(\mathbf{Q}) = \sum_{i=1}^{4} a_{i} \exp\left[-b_{i} \left(\frac{Q}{4\pi}\right)^{2}\right] + c$$

International Tables for Crystallography

See also: http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php

The atomic scattering factor, f

Example: strontium (Z = 38)

f describes the distribution of elastic scattering by an atom relative to the direction of the incident photon

Scattering from a sulfur atom – The movie!

$$Q = \frac{4\pi}{\lambda}\sin\theta = \frac{4\pi E}{hc}\sin\theta$$

Big atom = small atomic form factor? No!

- Rules in Fourier transforms
 - Big features in real space have narrow Fourier transforms
 - Atomic radii of the elements:

- But larger atoms have larger atomic form factors! Why??
 - Note that neighbouring noble gases and alkaline elements in atomic number (e.g. Kr & Rb) have very large differences in atomic radius
 - This is due to the valence electrons!
 - Valence electrons determine chemistry
 - But for x-rays, valence electrons are no better (often worse) scatterers than any of the other electrons

Big atom = small atomic form factor? No!

- Rules in Fourier transforms
 - Big features in real space have narrow Fourier transforms
 - Atomic radii of the elements:

- But larger atoms have larger atomic form factors! Why??
 - Note that neighbouring noble gases and alkaline elements in atomic number (e.g. Kr & Rb) have very large differences in atomic radius
 - This is due to the valence electrons!
 - Valence electrons determine chemistry
 - But for x-rays, valence electrons are no better (often worse) scatterers than any of the other electrons

http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/atomicformfactors/formfactors.php

Big atom = small atomic form factor? No!

- Rules in Fourier transforms
 - Big features in real space have narrow Fourier transforms
 - Atomic radii of the elements:

- But larger atoms have larger atomic form factors! Why??
 - Note that neighbouring noble gases and alkaline elements in atomic number (e.g. Kr & Rb) have very large differences in atomic radius
 - This is due to the valence electrons!
 - Valence electrons determine chemistry
 - But for x-rays, valence electrons are no better (often worse) scatterers than any of the other electrons

Summary – elastic scattering... so far

- Scattering amplitude from the entire electron cloud ρ(r) as function of scattering vector Q
 = atomic scattering factor f
 - Integrate scattering over atom volume
 - Take into account relative phases of scattering from all volume elements dV
- Note
 - Also called "atomic form factor"
 - Normally expressed as $f(\sin \theta/\lambda)$ or f(Q)

Summary – elastic scattering... so far

- Forward scattering
 - θ = 0; Q = 0
 - All volume elements dV scatter in phase: $\phi = 0$
 - Integral of ρ(r) is therefore simply Z, the number of electrons in the atom (assuming no ionicity)
 - f(Q = 0) = f(0) = Z
- As θ increases
 - Increasing "scrambling" and destructive interference between scattering from different volume elements dV
 - f(sin θ/λ) [or f(Q)] decreases quasi-monotonically (sum of four Gaussians + constant)
 - Maximum accessible Q-value increases with photon energy

Anomalous scattering

f⁰ and beyond

$$f^{0}(\mathbf{Q}) = \sum_{i=1}^{4} a_{i} \exp\left[-b_{i} \left(\frac{Q}{4\pi}\right)^{2}\right] + c$$

Based on the assumption that all electrons in the atom are essentially unbound Response is instantaneous No coupled oscillator

Electron binding energies of the elements

Bound electrons' response to x-rays

Damped-oscillator model

$$\frac{d^2z}{dt^2} + \Gamma \frac{dz}{dt} + \omega_0^2 z = \frac{-E_0 q}{m_e} e^{i\omega t}$$
Driving force of incident EM-radiation
Damping term $\Gamma \frac{dz}{dt}$: normally $\Gamma \ll \omega_0 \ (= E_B/\hbar)$

due to re-radiation via dipole radiation

• Solutions: amplitude:
$$A(\omega) = \frac{-E_0 q/m}{\left[(\omega_0^2 - \omega^2)^2 + (\Gamma \omega)^2\right]^{1/2}}$$

phase:
$$\tan(\delta) = \frac{\Gamma\omega}{(\omega_0^2 - \omega^2)}$$

Bound electrons' response to x-rays

Bound electrons' response to x-rays

• $hv \ll E_B$

- Response strongly suppressed ~ 0
- "Rayleigh scattering" $\propto hv^4$
- n > 1
- $hv \gg E_B$
 - Thomson scattering, electron quasi "free"
 - φ = π scattered radiation out of phase with incident beam
 - n < 1
- $hv \simeq E_B$
 - Resonance
 - Enhanced response
 - $\phi = \pi/2$: dissipation (absorption)

Atomic response to x-rays

Take-home message:

Most electrons in atoms can be considered to be quasi "free" for $h_V > keV$

Correction terms to f: f'

• $h_V < E_B$

- Reduced response from those electrons that are bound ⇒ small reduction in scattering factor
- Add a negative component f'
- f' is a function of hv
- $hv \gg E_B$
 - Electron quasi "free"
 - f' ⇒ 0
- $h_{\nu} \simeq E_{B}$
 - Resonance
 - Enhanced response ⇒ maximal |f'|

 $f_1(Q, \hbar\omega) = f^0(Q) + f'(\hbar\omega)$ $f'(\hbar\omega) < 0$

f' accounts for damped oscillation amplitude

- Effect of f' is to make the atom "appear" from the perspective of the x-rays to have fewer electrons (< Z) than far above an absorption edge
 - ρ as "seen" by x-rays decreases
 - Scattering strength decreases near absorption edges

Correction terms to f: f"

- $h_V \simeq E_B$
 - Resonance
 - Enhanced response ⇒ maximal |f'|
 - Phase shift @ resonance = $\pi/2$
 - Express as imaginary component if"
 - f' a function of hν
 - Results in energy dissipation (absorption)

$$f_2 = f'' = \frac{\sigma_a}{2\lambda r_0}$$

Summary of correction terms f' and f"

Change in f for Ga @ K-edge and Q = 4.45 $Å^{-1}$

Coming up...

