

DARWIN: the ultimate dark matter detector

Patricia Sanchez-Lucas, Universität Zürich

III CAFPE-Física Teórica Christmas Workshop Granada, 20-21 December 2018

EVIDENCES OF DARK MATTER

- Success of the Cosmological Standard Model
- Dynamic of galaxy clusters
- Rotation curves of spiral galaxies
- CMB measurements
- Collision of galaxies in the Bullet cluster

Dark Matter Features

- Weak and gravitational interaction
- No relativistic particles. Cold Dark Matter
- Stable in time scales comparable to the age of the Universe
- Dark Matter fraction 0.25

Possible Candidate

EVIDENCES OF DARK MATTER

Success of the Cosmological Standard Model

- Dynamic of galaxy clusters
- Rotation curves of spiral galaxies
- CMB measurements
- Collision of galaxies in the Bullet cluster

Dark Matter Features

- Weak and gravitational interaction
- No relativistic particles. Cold Dark Matter
- Stable in time scales comparable to the age of the Universe
- Dark Matter fraction 0.25

DIRECT DARK MATTER DETECTION

THE WIMP LANDSCAPE 2018

- The best sensitivity to WIMPs above 5 GeV/c² comes from experiments using liquid noble gases as sensitive detectors (Xe, Ar). (heavy target and easy scalability)
- Probing lower cross sections will require much larger detectors. DARWIN, with its 40 tons of active target, aims to increase 100-fold the current sensitivity.

DARWIN: THE ULTIMATE DARK MATTER DETECTOR

XENON10

 10^{-3}

DARWIN BASELINE DESIGN

the baseline design assumes PMTs but several alternative photosensors are under consideration

- Dual-phase Time Projection Chamber (TPC).
- 50 t total (40 t active) of liquid xenon (LXe).
- Dimensions: 2.6 m diameter and 2.6 m height.
- Two arrays of photosensors (top and bottom).
- 1800 PMTs of 3" diameter (~1000 of 4").
- Drift field ~0.5 kV/cm.
- Low-background double-wall cryostat.
- PTFE reflector panels & copper shaping rings.
- Outer shield filled with water (14 m diameter).
- Inner liquid scintillator neutron veto.

Possible realisation of DARWIN inside the water tank

DUAL-PHASE XENON TIME PROJECTION CHAMBER

Particle interactions Dual phase TPC working principle Detection of the scintillation light (S1) and the delayed electron recoil gammas & e scintillation light proportional to the charge (S2) (**ER**) WIMPs or GXe neutrons electron recoil time nuclear Top array of photosensors (ER) recoil (NR) (+) anode (e **S2** nuclear gate recoil (NR) The ratio S2/S1 depends on the Ēd drift time interacting particle. (depth) e^{-e-}e-Particle type discrimination KS1 **S1** cathode background ER (β,γ) Bottom array of photosensors LXe NR (WIMP, n) signal

S1

The dual-phase TPC allows a 3D position reconstruction.

x-y from the light sensors, z from the drift time

S2

DUAL-PHASE XENON TIME PROJECTION CHAMBER

Particle interactions Dual phase TPC working principle Detection of the scintillation light (S1) and the delayed electron recoil gammas & e scintillation light proportional to the charge (S2) (ER) WIMPs or GXe neutrons electron recoil time nuclear Top array of photosensors (ER) recoil (NR) + anode **S2** nuclear gate recoil (NR) The ratio S2/S1 depends on the Ēd drift time interacting particle. (depth) e^{-e-}e-Particle type discrimination S1 **K** S1 800 background 4000 cathode 200 Corrected S2 [PE] Bottom array of photosensors LXe signal-like

100

03

10

20

30

40

50

60 Corrected S1 [PE]

70

80

The dual-phase TPC allows a 3D position reconstruction.

x-y from the light sensors, z from the drift time

Electronic Recoils

Nuclear Recoils

90

100

110

120

BACKGROUND PREDICTIONS

Two different backgrounds

Electronic Recoils

- γ -rays from materials
- Intrinsic backgrounds (⁸⁵Kr, ²²²Rn, ¹³⁶Xe)
- Low energy solar neutrinos (pp, ⁷Be)

Nuclear Recoils

- CNNS (irreducible)
- Neutrons from the materials
- Cosmogenic and radiogenic (lab) neutrons (reduced by overburden, veto and fiducialisation)

Background contribution before ER discrimination

	Source	Rate	
		$[events/(t \cdot y \cdot keV]$)]
	γ -rays materials	0.054	
NR	$neutrons^*$	3.8×10^{-5}	
	intrinsic 85 Kr	1.44	
	intrinsic 222 Rn	0.35	
	$2\nu\beta\beta$ of 136 Xe	0.73	
	pp- and $^7\mathrm{Be}~\nu$	3.25	
	CNNS*	0.0022	

ER = $5.824 \text{ events}/(t \cdot y \cdot \text{keV}_{ee})$ lower than current experiments

THE WIDE VARIETY OF PHYSICS CHANNELS

The DARWIN detector, with its large mass, low-energy threshold and ultralow background, will open a large variety of relevant physics channels

THE WIDE VARIETY OF PHYSICS CHANNELS

The DARWIN detector, with its large mass, low-energy threshold and ultralow background, will open a large variety of relevant physics channels

SENSITIVITY TO WIMPS

minimum: 2.5x10⁻⁴⁹ cm² at 40 GeV/c²

NEUTRINOLESS DOUBLE-BETA DECAY

the question whether neutrinos are Majorana fermions is studied via the neutrinos less double-beta decay $(O \lor \beta \beta)$

- ¹³⁶Xe has an abundance of 8.9% in natural xenon.
- DARWIN will have more than 3.5 t of ¹³⁶Xe. (without enrichment)
- Q-value = 2.458 MeV (above the ROI of WIMPs)
- Ultra-low background environment: 222 Rn, $2\nu\beta\beta$ decays and interactions of solar ⁸B neutrinos.
- Preliminary study with 6 tons fiducial mass.
- With a resolution (σ /E) ~2% at 2.5 MeV the sensitivity will be comparable to future dedicated experiments

Projected sensitivity at 90% CL

 30 ton×year 	\longrightarrow	T _{1/2} > 5.6×10 ²⁶ yr
- 140 ton×year	\longrightarrow	T _{1/2} > 8.5×10 ²⁷ yr

SOLAR NEUTRINOS

the precise measurement of pp- neutrinos would test the main energy production mechanisms in the Sun

- pp- neutrinos are ~92% of the solar neutrino flux (SSM)
- Detection through neutrino-electron elastic scattering

$$\nu_x + e \longrightarrow \nu_x + e$$

- Real-time measurement of the neutrino flux: 371 events/(t x y) (whole energy window)
- Flux with 2% statistical precision after 1 year

 Measurement of electron neutrino survival probability (Pee) and the neutrino mixing angle below 300 keV (deviation from prediction would indicate new physics)

COHERENT NEUTRINO NUCLEUS :

DARWIN

CURRENT STATUS OF DARWIN

- 28 groups from 11 countries
- Working towards a CDR and TDR
- DARWIN is in the APPEC roadmap
- Funding with two ERC grants for R&D: ULTIMATE (UniFr) and Xenoscope (UZH)

DARWIN COLLABORATION MEETING IN ZURICH

- Organised by the University of Zurich
- 80 participants from 20 different institutions
- 33 contributions
- Discussions about R&D and design considerations
- Sensitivities studies

R&D AT THE UZH: XURICH TPC WITH SiPMs

- Small-scale, dual-phase xenon TPC (3.1cm diameter x 3.1cm height)
- Under operation at the University of Zürich
- Designed to investigate particle interactions in LXe at energies below 50 keV

Upgrade of the TPC

Replacement of the top PMT with an array of 16 SiPMs (6 x 6 mm²)

- 3D position reconstruction adding x-y coordinates (possible fiducialisation)
- Direct comparison between the performance of SiPMs and PMT in the same experiment.
- Test for the first time the performance of SiPMs in a dual-phase TPC to show if they are a viable solution for large TPCs like DARWIN

R&D AT THE UZH: DEMONSTRATOR

Medium Term Plan

4π -coverage TPC

Design and operation of a LXe TPC with a full 4π -coverage using our large cryostat MarmotXL

- 15 cm diameter x 10 cm height
- 60 SiPMs in the top array
- 61 SiPMs in the bottom array
- 5 rings with 28 SiPms each

current configuration

<section-header>

Design of the MarmotXL-TPC

Long Term Plan

DARWIN demonstrator

The main goal of Xenoscope is the demonstration of the electron drift over the full height of DARWIN

- DARWIN will be the ultimate dark matter detector, probing a wide mass-range and WIMP-nucleon cross sections down to the irreducible background from neutrinos.
- The large mass, low-energy threshold and ultra-low background, will open a large variety of relevant physics channels:
 - WIMP dark matter
 - Neutrinoless double-beta decay
 - Low energy solar neutrinos
 - CNNS
 - Axions and axion-like particles
- DARWIN is a growing collaboration, currently 28 groups from 11 countries.
- R&D and prototypes supported by two ERC grants: Ultimate (Freiburg) and Xenoscope (Zürich).
 - TPC with SiPMs
 - DARWIN demonstrator to drift electrons over 2.6m