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(1)	Tight-binding	Model:	

Summary	of	previous	lecture
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(1)	Quantum	Oscillation	experiments:	

Summary	of	previous	lecture
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carried out in a standard 4He cryostat at the LNCMP pulsed field
facility in Toulouse using the same contact configuration. For the
torque measurements, small pieces of the same crystals were attached
to sensitive piezoresistive cantilevers and mounted in a dilution refri-
gerator in a second magnet cell at LNCMP.

Figure 1a, b shows interlayer resistance (RH) data and magnetic
torque (t) data with the field oriented close to the c axis for two
different Tl2201 crystals at temperatures below their zero-field super-
conducting transitions (Tc < 10 K). For both sets of data, an
expanded view near the field maxima reveals clear oscillations whose
amplitude grows with increasing field strength. Figure 1c shows the
oscillatory part of the magnetization Dt/B plotted versus inverse
magnetic field 1/B. The observation of oscillations, periodic in 1/B,
in both the magnetization and the resistivity, at fields well above the
upper critical field Bc2, confirm these as quantum oscillations.
Strikingly, as shown in Fig. 1c, these oscillations are more than one
order of magnitude faster than those found in underdoped
YBa2Cu4O8.

The frequency (F) of the oscillations is directly related to the
extremal cross-sectional area A of the Fermi surface normal to the
field orientation, via the Onsager relation, A 5 2peF/". Figure 2a
shows the fast Fourier transform of the data in Fig. 1c. A single, sharp
dHvA frequency of 18,100 6 50 T is obtained, corresponding to a
Fermi surface extremal cross-sectional area A of 172.8 6 0.5 nm22

and average kF of 7.42 6 0.05 nm21
. The temperature dependence of

the Shubnikov–de Haas amplitude is shown in Fig. 2b. Fitting this
with the standard Lifshitz–Kosevich theory, we obtain a cyclotron
effective mass m*5 4.1 6 1.0 me, where me is the free electron mass.
Finally, Fig. 2c shows that the field dependence of the amplitude of
the dHvA oscillations follows the expected exponential decay, from
which we estimate l 5 320 Å.

All these numbers are in excellent agreement with those deduced
from other measurements in the same material with similar doping
levels. The Fermi surface topology deduced from ADMR6,14 is repro-
duced as a solid black line in Fig. 2a inset. Its area agrees extremely
well with the measured dHvA frequency, and corresponds to ,65%
of the Brillouin zone of Tl2201 and a doping level p 5 0.30. In addi-
tion, given that for a two-dimensional Fermi surface, the electronic
specific heat (Sommerfeld coefficient) is cel 5 (pNAkB

2a2/3"2)m*
(where kB is the Boltzmann constant, NA is Avogadro’s number,
and a 5 3.86 Å is the in-plane lattice constant15), our value of m*
corresponds to cel < 6.0 6 1.0 mJ mol21 K22, in excellent agreement
with that measured directly16 for overdoped polycrystalline Tl2201
(7 6 2 mJ mol21 K22). Hence, in contrast to the previous work2–5, we
can make quantitative comparisons between quasiparticle properties
derived from quantum oscillations at high fields and those measured
directly by transport and thermodynamics at zero field. This good
overall consistency suggests that the Fermi surface is composed
entirely of the single quasi-two-dimensional sheet that we observe.
DFT calculations predict that the bare band mass in stoichiometric
Tl2201 is ,1.2me (ref. 9). The difference between the measured and
calculated masses implies strong electron-correlation-driven renor-
malization, even at this elevated doping level.

Despite strong electron–electron interactions, the observation of
quantum oscillations implies that quasiparticles exist at all points on
the Fermi surface of overdoped Tl2201. The observation of genuine
quantum oscillations in Tl2201 supports the recognized idea that
generalized Fermi-liquid theory can be applied on the overdoped
side of the phase diagram. Moreover, the observation of quantum
oscillations on both sides of optimal doping, albeit with very different
frequencies, suggests that the quantum oscillations observed in
underdoped copper oxides directly probe the Fermi surface there,
rather than some anomalous vortex physics17, and raises the intri-
guing prospect that quasiparticle states may survive, at least at some
loci on the Fermi surface, across the entire doping range, from the
insulating/superconducting boundary to the non-superconducting
metal on the heavily overdoped side.
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Figure 1 | Quantum oscillations in Tl2201. a, Raw data on interlayer
resistance (RH) with B//c for a Tl2201 single crystal at T 5 2.8 6 0.1 K.
RH(B) rises rapidly above the irreversibility field Birr, passes through a small
plateau, then grows quasi-quadratically with field up to 60 T. Inset,
magnified view of the high-field region of the down sweep. Small but well-
defined oscillations are clearly resolved in the raw data, with an amplitude
that grows with increasing field strength. The maximum amplitude of the
oscillations is only 0.5 mV. b, Averaged magnetic torque data (from five
sweeps at temperatures between 0.6 K and 0.8 K) with B close to the c axis for
a different Tl2201 crystal. The temperatures of the torque sweeps are subject
to an additional uncertainty of 150 mK due to the weak thermal link inside
the dilution refrigerator5 and the high currents needed to observe the
oscillations. Below B 5 14 T, the torque shows hysteretic behaviour due to
flux trapping and expulsion in the superconducting mixed state. Again, well-
defined oscillations are clearly resolved in the expanded region shown in the
inset. The value of Tc for both crystals is 10 K (defined by their zero-resistive
state), compared with the maximal Tc in Tl2201 of 92 K. The torque crystal
showed a very small kink in the zero-field rH data around 20 K, suggesting
that some fraction of the crystal, presumably the surface layer, had a higher
Tc value. Note that the difference in Birr exhibited by both crystals is
amplified in the pulsed magnetic field because the sweep rate dB/dt for the
higher Birr sample is greater. a.u., arbitrary units. c, The oscillatory
component of the torque data shown in b plotted as green dots against 1/B
(the corresponding B values are shown at the top of the panel), after a
monotonic background has been subtracted. The black line superimposed
on the data is a fit to the Lifshitz–Kosevich expression for dHvA oscillations
in a two-dimensional metal29. Also shown (blue), for comparison, is the
oscillatory component in the torque signal on underdoped YBa2Cu4O8.
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(a)	RAW	DATA

carried out in a standard 4He cryostat at the LNCMP pulsed field
facility in Toulouse using the same contact configuration. For the
torque measurements, small pieces of the same crystals were attached
to sensitive piezoresistive cantilevers and mounted in a dilution refri-
gerator in a second magnet cell at LNCMP.

Figure 1a, b shows interlayer resistance (RH) data and magnetic
torque (t) data with the field oriented close to the c axis for two
different Tl2201 crystals at temperatures below their zero-field super-
conducting transitions (Tc < 10 K). For both sets of data, an
expanded view near the field maxima reveals clear oscillations whose
amplitude grows with increasing field strength. Figure 1c shows the
oscillatory part of the magnetization Dt/B plotted versus inverse
magnetic field 1/B. The observation of oscillations, periodic in 1/B,
in both the magnetization and the resistivity, at fields well above the
upper critical field Bc2, confirm these as quantum oscillations.
Strikingly, as shown in Fig. 1c, these oscillations are more than one
order of magnitude faster than those found in underdoped
YBa2Cu4O8.

The frequency (F) of the oscillations is directly related to the
extremal cross-sectional area A of the Fermi surface normal to the
field orientation, via the Onsager relation, A 5 2peF/". Figure 2a
shows the fast Fourier transform of the data in Fig. 1c. A single, sharp
dHvA frequency of 18,100 6 50 T is obtained, corresponding to a
Fermi surface extremal cross-sectional area A of 172.8 6 0.5 nm22

and average kF of 7.42 6 0.05 nm21
. The temperature dependence of

the Shubnikov–de Haas amplitude is shown in Fig. 2b. Fitting this
with the standard Lifshitz–Kosevich theory, we obtain a cyclotron
effective mass m*5 4.1 6 1.0 me, where me is the free electron mass.
Finally, Fig. 2c shows that the field dependence of the amplitude of
the dHvA oscillations follows the expected exponential decay, from
which we estimate l 5 320 Å.

All these numbers are in excellent agreement with those deduced
from other measurements in the same material with similar doping
levels. The Fermi surface topology deduced from ADMR6,14 is repro-
duced as a solid black line in Fig. 2a inset. Its area agrees extremely
well with the measured dHvA frequency, and corresponds to ,65%
of the Brillouin zone of Tl2201 and a doping level p 5 0.30. In addi-
tion, given that for a two-dimensional Fermi surface, the electronic
specific heat (Sommerfeld coefficient) is cel 5 (pNAkB

2a2/3"2)m*
(where kB is the Boltzmann constant, NA is Avogadro’s number,
and a 5 3.86 Å is the in-plane lattice constant15), our value of m*
corresponds to cel < 6.0 6 1.0 mJ mol21 K22, in excellent agreement
with that measured directly16 for overdoped polycrystalline Tl2201
(7 6 2 mJ mol21 K22). Hence, in contrast to the previous work2–5, we
can make quantitative comparisons between quasiparticle properties
derived from quantum oscillations at high fields and those measured
directly by transport and thermodynamics at zero field. This good
overall consistency suggests that the Fermi surface is composed
entirely of the single quasi-two-dimensional sheet that we observe.
DFT calculations predict that the bare band mass in stoichiometric
Tl2201 is ,1.2me (ref. 9). The difference between the measured and
calculated masses implies strong electron-correlation-driven renor-
malization, even at this elevated doping level.

Despite strong electron–electron interactions, the observation of
quantum oscillations implies that quasiparticles exist at all points on
the Fermi surface of overdoped Tl2201. The observation of genuine
quantum oscillations in Tl2201 supports the recognized idea that
generalized Fermi-liquid theory can be applied on the overdoped
side of the phase diagram. Moreover, the observation of quantum
oscillations on both sides of optimal doping, albeit with very different
frequencies, suggests that the quantum oscillations observed in
underdoped copper oxides directly probe the Fermi surface there,
rather than some anomalous vortex physics17, and raises the intri-
guing prospect that quasiparticle states may survive, at least at some
loci on the Fermi surface, across the entire doping range, from the
insulating/superconducting boundary to the non-superconducting
metal on the heavily overdoped side.
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Figure 1 | Quantum oscillations in Tl2201. a, Raw data on interlayer
resistance (RH) with B//c for a Tl2201 single crystal at T 5 2.8 6 0.1 K.
RH(B) rises rapidly above the irreversibility field Birr, passes through a small
plateau, then grows quasi-quadratically with field up to 60 T. Inset,
magnified view of the high-field region of the down sweep. Small but well-
defined oscillations are clearly resolved in the raw data, with an amplitude
that grows with increasing field strength. The maximum amplitude of the
oscillations is only 0.5 mV. b, Averaged magnetic torque data (from five
sweeps at temperatures between 0.6 K and 0.8 K) with B close to the c axis for
a different Tl2201 crystal. The temperatures of the torque sweeps are subject
to an additional uncertainty of 150 mK due to the weak thermal link inside
the dilution refrigerator5 and the high currents needed to observe the
oscillations. Below B 5 14 T, the torque shows hysteretic behaviour due to
flux trapping and expulsion in the superconducting mixed state. Again, well-
defined oscillations are clearly resolved in the expanded region shown in the
inset. The value of Tc for both crystals is 10 K (defined by their zero-resistive
state), compared with the maximal Tc in Tl2201 of 92 K. The torque crystal
showed a very small kink in the zero-field rH data around 20 K, suggesting
that some fraction of the crystal, presumably the surface layer, had a higher
Tc value. Note that the difference in Birr exhibited by both crystals is
amplified in the pulsed magnetic field because the sweep rate dB/dt for the
higher Birr sample is greater. a.u., arbitrary units. c, The oscillatory
component of the torque data shown in b plotted as green dots against 1/B
(the corresponding B values are shown at the top of the panel), after a
monotonic background has been subtracted. The black line superimposed
on the data is a fit to the Lifshitz–Kosevich expression for dHvA oscillations
in a two-dimensional metal29. Also shown (blue), for comparison, is the
oscillatory component in the torque signal on underdoped YBa2Cu4O8.
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(b)	OSCILATIONS	VERSUS	1/B

Another noteworthy feature of this result is that quantum oscillations
have been observed in a metal for which one key signature of a Landau
Fermi-liquid, namely a purely quadratic temperature dependence of the
electrical resistivity at low temperatures, is absent. According to ADMR
experiments on overdoped Tl2201 crystals with comparable Tc values,
the scattering rate contains two temperature-dependent components; a
dominant isotropic component, which varies quadratically with tem-
perature and is characteristic of fermionic quasiparticle scattering, and
an anisotropic component, maximal near the Brillouin zone boundaries
and varying linearly with temperature down to very low temperatures14,
consistent with the observed form of the in-plane resistivity11,18. This
unusual form of the scattering rate has been associated with proximity
to a quantum critical point19,20 or to the Mott insulating state21, but its
origin is as yet unknown. The fact that quasiparticles arise, despite there
being a linear-in-T contribution to the scattering rate, is in agreement
with theoretical predictions22,23. However, to actually see the effect of the
anomalous contribution to the self energy in the temperature depen-
dence of the oscillations would require following them to much lower
temperature23,24.

Finally, our measurements offer strong support for the scenario25

that beyond a critical doping level within the superconducting dome,
the pseudogap vanishes—that is, that the pseudogap and the super-
conducting gap are not coincident in the overdoped regime. We
stress here that closure of the pseudogap is not field-induced, as
the Fermi surface parameters we derive are entirely consistent with
zero-field transport11, thermodynamic17 and spectroscopic7 data. The
task now is to determine whether this large Fermi surface evolves into
a collection of small pockets or into a series of disconnected arcs at
low doping. In other words, does the carrier density decrease
smoothly from 1 1 p to p, or does a competing order—such as anti-
ferromagnetism26, d-density-wave27, orbital loops20 or stripes28—
cause a Fermi surface reconstruction along some critical line in the
(p, T) phase diagram? Given the excellent agreement between dHvA
and ARPES results evident in overdoped Tl2201, combined measure-
ments on the same underdoped compound seem to be essential to
help resolve this long-standing controversy.

Received 4 June; accepted 28 July 2008.
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Figure 2 | Features of the oscillation data. a, Fast Fourier transform (FFT)
of the data shown in Fig. 1c (field range 50–58.8 T), revealing a single, sharp
dHvA frequency of F 5 18,100 6 50 T, corresponding to an average Fermi
surface radius kF 5 7.42 6 0.05 nm21. Inset, a cross-section of the Fermi
surface topology of overdoped Tl2201 (Tc 5 15 K) deduced from ADMR6,14.
The area of this tubular Fermi surface is in excellent agreement with our
measured dHvA frequency. b, Temperature dependence of the
Shubnikov–de Haas amplitude. According to the standard
Lifshitz–Kosevich expression for the oscillatory magnetization29, the
thermal damping factor RT 5 X/sinh(X), where X 5 (2p2kB/"e)m*T/B and
m* is the quasiparticle effective mass that is enhanced over the band-mass by

many-body interactions. Error bars, 1s. c, Field dependence of the
amplitude of the dHvA oscillations shown in Fig. 1c, divided by RT. Each
point represents a fit of 1.5 oscillations to A/(RTB) sin(2pF/B 1 w). From the
fit to the exponential decay, we tentatively estimate a mean-free-path of
l 5 320 Å. The actual mean-free-path may be up to a factor of two longer
than this, because the limited field range of our measurements does not
allow us to rule out a low frequency beat with another close frequency, as
expected for a quasi-two-dimensional Fermi surface such as this30. The
transport mean-free-path in the best crystals, as estimated from in-plane
resistivity measurements11, is of the order l 5 670 Å. Error bars are deduced
from a combination of systematic error and standard deviation.
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(c)	Fourier	Transform
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Fermi	surface:	Tl2Ba2CuO6+y (Tl2201)
ARPES	vs	Quantum	Oscillations

Angle-resolved	Photo-Emission	Spectroscopy
(ARPES)

Quantum	Oscillation	(QO)	experiments

Band	Structure	Calculations
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QUANTUM	OSCILLATIONS:	

F ¼ 530 T correspond to an extremal area, AF ¼ 5.1 nm"2, which represents only 1.9% of
the first Brillouin zone. This is in sharp contrast with the high frequency of quantum oscillations
found in overdoped Tl2Ba2CuO6þd at p$ 0.30, assuming a similar phase diagram in the different
families of hole-doped cuprates (see inset of Figure 3), where F ¼ 18,100 T corresponds to
a Fermi surface cross-section area,AF¼ 172.8 nm"2, which represents 65%of the first Brillouin
zone (28).

Quantum oscillations have been observed in a wide range of doping of YBa2Cu3O6þd, from
p $ 0.09 up to p $ 0.16, over which the quantum oscillation frequency exhibits a subtle increase
with doping (39–41). Besides underdoped YBa2Cu3O6þd, quantum oscillations have also been
observed in the related compoundYBa2Cu4O8 (Tc¼ 81K corresponding to p$ 0.14) (42, 43) and
more recently in another family of cuprates, namely HgBa2CuO4þd (Tc ¼ 72 K corresponding
to p $ 0.09) (44), as shown in Figure 3. For the latter, the frequency of quantum oscillations F ¼
840 T corresponds to a Fermi surface cross-section area, AF ¼ 8.0 nm"2, which represents 3% of
the first Brillouin zone.

2.2. Multiple Quantum Oscillation Frequencies

Understanding the origin of the small Fermi surface pocket revealed by quantum oscillations is
challenging for multiple reasons. Firstly, it is unclear as to whether the traditional theory
of quantum oscillations in quasi-two-dimensional materials can be applied to these materials.
Secondly, discerning the correct electronic structure associated with the observed quantum

In
-p

la
ne

 re
si

st
iv

ity
 (a

.u
.)

ĉ-
ax

is
 re

si
st

iv
ity

 (a
.u

.)

B (T) B (T)

M
ag

ne
tic

 to
rq

ue
 (a

.u
.)

Co
nt

ac
tle

ss
 re

si
st

iv
ity

 (a
.u

.)

a

bb

c

d

ρxx
–ρxy

10

5

0

2

0

1

0

–1

–1.4

–1.3

0 10 20 30 40 50 60 20 40 60 80 100

B (T) B (T)
0 10 20 30 40 50 60 20 40 60 80 100

T = 4.2 K, p = 0.108

T = 1.5 K, p = 0.108T = 1.5 K, p = 0.104

T = 4.2 K, p = 0.10

Figure 2

Quantum oscillations measured in underdoped YBa2Cu3O6þd by a variety of experimental techniques,
including (a) in-plane four contact resistivity (data from 32), (b) magnetic torque (data from 45), (c) ĉ-axis four
contact resistivity (data from 39), and (d) contactless resistivitymeasured using a resonant proximity detection
oscillator (data from 35).
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Resistivity	measurement	of	a	high-temperature	superconductor:	YBa2Cu3O6.51	(YBCO)

OSCILLATION	AMPLITUDE

∝ 	𝑒(
%&ℏ()
*+ℓ )

Where	ℓ =mean	free	path



Fermi	surface	- Dimension
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Fermi	Surface

3D	spherical	
Fermi	Surface
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some	structure
Fermi	Surface



Fermi	surface	– Gold	and	Copper



QUANTUM	OSCILLATIONS:	Gold	
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QUANTUM	OSCILLATIONS:	
Temperature	dependence

ℏ𝜔0 > 𝑘+	𝑇

Thermal	Condition:

Landau	level	splitting	>	thermal	energy

𝜔0 = 	
𝑒𝐵
𝑚

Temperature	dependence	of	the	oscillatory	
amplitude	yield	information	about	the	electronic	
mass.

electron-like character of the small Fermi surface pocket (53, 59) and (b) quantum oscillations
with similar frequency have been detected in underdoped HgBa2CuO4þd, a compound free of
CuO chains (44). In the second set of proposals, which are more relevant in explaining the

a c

b

1.0

0.5 0

0.0

f FD
(ε

)

| f ' FD(ε)|

|f
'(z

)|ε – εF

ħωc

Co
nt

ac
tle

ss
 re

si
st

iv
ity

 (a
.u

.)

B (T)

T = 1.1K – 16K12

6

0

–6

–12

40 44 48 52

0.24

0.16

0.08

0.00
0 2 4 6 8

z = (ε – εF)/kBT

Experiment
Fermi-Dirac

g (ε)
~

Lower
temperature
Higher
temperature

Figure 6

(a) Schematic of the Fermi-Dirac distribution fFD ¼ ð1þ ezÞ%1 [where z¼ (ɛ% ɛF)/kBT)]. TheT-dependent step
in occupation number (lines, dotted for higher temperatures) causes the oscillatory density of states
~g ¼ g0ei2pɛ=Zvc (assuming that g0 is approximately constant on the scale of the cyclotron energy Zvc¼ ZeB/m&)
shown by the sinusoidal line (blue) to be thermally smeared by the derivative of the probability distribution
jf FD0 ðzÞj ¼ 1=2ð1þ cosh zÞ (shaded regions). The consequent reduction in amplitude is equivalent to a
Fourier transform of jf FD0 ðzÞj, yielding oscillations } ei(2pF/B) periodic in 1/B modulated by a T-dependent
prefactor a(T) ¼ a0ph/sinhph (where h ¼ 2pkBTm&/eB and a0 is a constant). The quantum oscillatory
magnetization and resistivity can be expressed in terms of the above thermally averaged density of states, hence
the same thermal amplitude factor a(T). (b) Magnetic quantum oscillations (after background polynomial
subtraction) measured in YBa2Cu3O6.56 (p ' 0.108). This restricted interval in B ¼ jBj furnishes a dynamic
range of'50 dB over the range of measured temperatures of 1.1, 1.2, 1.4, 1.7, 1.8, 2.0, 2.1, 2.2, 2.6, 3.0, 3.5,
3.9, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 14.0, 15.0, and 16.0 K. (c) Inverse Fourier
transform (red diamonds) of the amplitude of the oscillations versus z. Its comparison with the Fermi-Dirac
distribution (black line) shows excellent agreement. Adapted from Reference 52.
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(1)	Quantum	Oscillation	experiments:	

Electronic	Mass

carried out in a standard 4He cryostat at the LNCMP pulsed field
facility in Toulouse using the same contact configuration. For the
torque measurements, small pieces of the same crystals were attached
to sensitive piezoresistive cantilevers and mounted in a dilution refri-
gerator in a second magnet cell at LNCMP.

Figure 1a, b shows interlayer resistance (RH) data and magnetic
torque (t) data with the field oriented close to the c axis for two
different Tl2201 crystals at temperatures below their zero-field super-
conducting transitions (Tc < 10 K). For both sets of data, an
expanded view near the field maxima reveals clear oscillations whose
amplitude grows with increasing field strength. Figure 1c shows the
oscillatory part of the magnetization Dt/B plotted versus inverse
magnetic field 1/B. The observation of oscillations, periodic in 1/B,
in both the magnetization and the resistivity, at fields well above the
upper critical field Bc2, confirm these as quantum oscillations.
Strikingly, as shown in Fig. 1c, these oscillations are more than one
order of magnitude faster than those found in underdoped
YBa2Cu4O8.

The frequency (F) of the oscillations is directly related to the
extremal cross-sectional area A of the Fermi surface normal to the
field orientation, via the Onsager relation, A 5 2peF/". Figure 2a
shows the fast Fourier transform of the data in Fig. 1c. A single, sharp
dHvA frequency of 18,100 6 50 T is obtained, corresponding to a
Fermi surface extremal cross-sectional area A of 172.8 6 0.5 nm22

and average kF of 7.42 6 0.05 nm21
. The temperature dependence of

the Shubnikov–de Haas amplitude is shown in Fig. 2b. Fitting this
with the standard Lifshitz–Kosevich theory, we obtain a cyclotron
effective mass m*5 4.1 6 1.0 me, where me is the free electron mass.
Finally, Fig. 2c shows that the field dependence of the amplitude of
the dHvA oscillations follows the expected exponential decay, from
which we estimate l 5 320 Å.

All these numbers are in excellent agreement with those deduced
from other measurements in the same material with similar doping
levels. The Fermi surface topology deduced from ADMR6,14 is repro-
duced as a solid black line in Fig. 2a inset. Its area agrees extremely
well with the measured dHvA frequency, and corresponds to ,65%
of the Brillouin zone of Tl2201 and a doping level p 5 0.30. In addi-
tion, given that for a two-dimensional Fermi surface, the electronic
specific heat (Sommerfeld coefficient) is cel 5 (pNAkB

2a2/3"2)m*
(where kB is the Boltzmann constant, NA is Avogadro’s number,
and a 5 3.86 Å is the in-plane lattice constant15), our value of m*
corresponds to cel < 6.0 6 1.0 mJ mol21 K22, in excellent agreement
with that measured directly16 for overdoped polycrystalline Tl2201
(7 6 2 mJ mol21 K22). Hence, in contrast to the previous work2–5, we
can make quantitative comparisons between quasiparticle properties
derived from quantum oscillations at high fields and those measured
directly by transport and thermodynamics at zero field. This good
overall consistency suggests that the Fermi surface is composed
entirely of the single quasi-two-dimensional sheet that we observe.
DFT calculations predict that the bare band mass in stoichiometric
Tl2201 is ,1.2me (ref. 9). The difference between the measured and
calculated masses implies strong electron-correlation-driven renor-
malization, even at this elevated doping level.

Despite strong electron–electron interactions, the observation of
quantum oscillations implies that quasiparticles exist at all points on
the Fermi surface of overdoped Tl2201. The observation of genuine
quantum oscillations in Tl2201 supports the recognized idea that
generalized Fermi-liquid theory can be applied on the overdoped
side of the phase diagram. Moreover, the observation of quantum
oscillations on both sides of optimal doping, albeit with very different
frequencies, suggests that the quantum oscillations observed in
underdoped copper oxides directly probe the Fermi surface there,
rather than some anomalous vortex physics17, and raises the intri-
guing prospect that quasiparticle states may survive, at least at some
loci on the Fermi surface, across the entire doping range, from the
insulating/superconducting boundary to the non-superconducting
metal on the heavily overdoped side.
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Figure 1 | Quantum oscillations in Tl2201. a, Raw data on interlayer
resistance (RH) with B//c for a Tl2201 single crystal at T 5 2.8 6 0.1 K.
RH(B) rises rapidly above the irreversibility field Birr, passes through a small
plateau, then grows quasi-quadratically with field up to 60 T. Inset,
magnified view of the high-field region of the down sweep. Small but well-
defined oscillations are clearly resolved in the raw data, with an amplitude
that grows with increasing field strength. The maximum amplitude of the
oscillations is only 0.5 mV. b, Averaged magnetic torque data (from five
sweeps at temperatures between 0.6 K and 0.8 K) with B close to the c axis for
a different Tl2201 crystal. The temperatures of the torque sweeps are subject
to an additional uncertainty of 150 mK due to the weak thermal link inside
the dilution refrigerator5 and the high currents needed to observe the
oscillations. Below B 5 14 T, the torque shows hysteretic behaviour due to
flux trapping and expulsion in the superconducting mixed state. Again, well-
defined oscillations are clearly resolved in the expanded region shown in the
inset. The value of Tc for both crystals is 10 K (defined by their zero-resistive
state), compared with the maximal Tc in Tl2201 of 92 K. The torque crystal
showed a very small kink in the zero-field rH data around 20 K, suggesting
that some fraction of the crystal, presumably the surface layer, had a higher
Tc value. Note that the difference in Birr exhibited by both crystals is
amplified in the pulsed magnetic field because the sweep rate dB/dt for the
higher Birr sample is greater. a.u., arbitrary units. c, The oscillatory
component of the torque data shown in b plotted as green dots against 1/B
(the corresponding B values are shown at the top of the panel), after a
monotonic background has been subtracted. The black line superimposed
on the data is a fit to the Lifshitz–Kosevich expression for dHvA oscillations
in a two-dimensional metal29. Also shown (blue), for comparison, is the
oscillatory component in the torque signal on underdoped YBa2Cu4O8.
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(a)	RAW	DATA

Another noteworthy feature of this result is that quantum oscillations
have been observed in a metal for which one key signature of a Landau
Fermi-liquid, namely a purely quadratic temperature dependence of the
electrical resistivity at low temperatures, is absent. According to ADMR
experiments on overdoped Tl2201 crystals with comparable Tc values,
the scattering rate contains two temperature-dependent components; a
dominant isotropic component, which varies quadratically with tem-
perature and is characteristic of fermionic quasiparticle scattering, and
an anisotropic component, maximal near the Brillouin zone boundaries
and varying linearly with temperature down to very low temperatures14,
consistent with the observed form of the in-plane resistivity11,18. This
unusual form of the scattering rate has been associated with proximity
to a quantum critical point19,20 or to the Mott insulating state21, but its
origin is as yet unknown. The fact that quasiparticles arise, despite there
being a linear-in-T contribution to the scattering rate, is in agreement
with theoretical predictions22,23. However, to actually see the effect of the
anomalous contribution to the self energy in the temperature depen-
dence of the oscillations would require following them to much lower
temperature23,24.

Finally, our measurements offer strong support for the scenario25

that beyond a critical doping level within the superconducting dome,
the pseudogap vanishes—that is, that the pseudogap and the super-
conducting gap are not coincident in the overdoped regime. We
stress here that closure of the pseudogap is not field-induced, as
the Fermi surface parameters we derive are entirely consistent with
zero-field transport11, thermodynamic17 and spectroscopic7 data. The
task now is to determine whether this large Fermi surface evolves into
a collection of small pockets or into a series of disconnected arcs at
low doping. In other words, does the carrier density decrease
smoothly from 1 1 p to p, or does a competing order—such as anti-
ferromagnetism26, d-density-wave27, orbital loops20 or stripes28—
cause a Fermi surface reconstruction along some critical line in the
(p, T) phase diagram? Given the excellent agreement between dHvA
and ARPES results evident in overdoped Tl2201, combined measure-
ments on the same underdoped compound seem to be essential to
help resolve this long-standing controversy.

Received 4 June; accepted 28 July 2008.
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Figure 2 | Features of the oscillation data. a, Fast Fourier transform (FFT)
of the data shown in Fig. 1c (field range 50–58.8 T), revealing a single, sharp
dHvA frequency of F 5 18,100 6 50 T, corresponding to an average Fermi
surface radius kF 5 7.42 6 0.05 nm21. Inset, a cross-section of the Fermi
surface topology of overdoped Tl2201 (Tc 5 15 K) deduced from ADMR6,14.
The area of this tubular Fermi surface is in excellent agreement with our
measured dHvA frequency. b, Temperature dependence of the
Shubnikov–de Haas amplitude. According to the standard
Lifshitz–Kosevich expression for the oscillatory magnetization29, the
thermal damping factor RT 5 X/sinh(X), where X 5 (2p2kB/"e)m*T/B and
m* is the quasiparticle effective mass that is enhanced over the band-mass by

many-body interactions. Error bars, 1s. c, Field dependence of the
amplitude of the dHvA oscillations shown in Fig. 1c, divided by RT. Each
point represents a fit of 1.5 oscillations to A/(RTB) sin(2pF/B 1 w). From the
fit to the exponential decay, we tentatively estimate a mean-free-path of
l 5 320 Å. The actual mean-free-path may be up to a factor of two longer
than this, because the limited field range of our measurements does not
allow us to rule out a low frequency beat with another close frequency, as
expected for a quasi-two-dimensional Fermi surface such as this30. The
transport mean-free-path in the best crystals, as estimated from in-plane
resistivity measurements11, is of the order l 5 670 Å. Error bars are deduced
from a combination of systematic error and standard deviation.
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(b)	Fourier	Transform	 12
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Figure 4. Temperature dependence of the oscillatory torque amplitudes A(T )
for the samples (a) Tl10Ka (field range: 40–45 T), (b) Tl10Kb (field range:
42–45 T) and (c) Tl26K (field range: 43–45 T). Solid lines are fits to the Lifshitz-
Kosevich form of RT (equation (9)). For ease of comparison, all panels have been
normalized to their respective zero-temperature fit values A(0).

From our fits, we find that m⇤
therm = 5.8(3)me for Tl10Ka (' ⇠ 0�), m⇤

therm = 4.9(3)me for
Tl10Kb (' ⇠ 45�) and m⇤

therm = 5.0(3)me for Tl26K (' ⇠ 45�). While the masses obtained for
the two Tc = 10 K samples are further apart than might be expected given the high quality of the
fits, a deviation in temperature of the lowest temperature data points beyond our estimated error
could influence the results.

To check for consistency and any field dependence of the dHvA mass (common in heavy
Fermion systems, where m⇤

therm is strongly enhanced by spin fluctuations), we compare our
effective mass values to the zero-field electronic specific heat. For a 2D metal, the Sommerfeld
coefficient is [34]

� =
✓

⇡k2
B NAa2

3h̄2

◆
m⇤

therm, (25)

where NA is Avogadro’s constant. Taking the average m⇤
therm = 5.2(4)me, we obtain

� = 7.6(6) mJ mol�1 K�2 in excellent agreement with the almost p-independent value of
7(1) mJ mol�1 K�2 found from direct measurement of polycrystalline Tl2201 [35].

Comparison with the band mass mb ⇠ 1.7me, given by density functional theory band-
structure calculations (see section 6), reveals a significant enhancement due to electron
correlation effects (m⇤

therm/mb ⇡ 3) that is constant (within our uncertainty) up to at least
⇠ 0.3 T max

c . ARPES measurements showed that the band energies of Tl2201 (Tc = 30 K) [37]
are renormalized by a similar factor over a large energy range of the order of several eV. In
fact, using the tight binding parametrization of the ARPES data given in [36], we calculate an

New Journal of Physics 12 (2010) 105009 (http://www.njp.org/)

(c)	T-dependence



Electronic	Mass:	Specific	heat
Solid State Physics

Exercise Sheet 9

FS16
Prof. Dr. Johan Chang

Discussion on 27th April Due on 4th May

Exercise 1 Electronic specific heat in two dimensions

Layered crystal structures often have electronic structures that can approximately be considered
two-dimensional. The high-temperature superconductor Tl

2

Ba
2

CuO
6+� is one such example.

(a) The electronic heat capacity is give by C
el

= �T . Show that in two dimensions the Som-
merfeld parameter � can be written as � =

A⇡k2B
3~2 m where m is the electronic mass and A is the

total area. What is the unit of C
el

? Hint: Use C
el

= 1

3

⇡2D(✏
F

)k2

B

T and derive the density of
state (DOS) in two dimensions.

(b) The crystal structure of Tl
2

Ba
2

CuO
6+� consists of stacked layers of CuO

2

. Within a layer,
the CuO

2

forms a square lattice with a Cu-O lattice distance of a = 3.8Å. The sample area can
thus be written as A = a2N where N is the number of Cu-O squares. The electronic specific

heat capacity is measured in units Jmol�1 K�1. Show that � =
NAa2⇡k2B

3~2 m where N
A

is the
Avogadro number.

(c) Tl
2

Ba
2

CuO
6+� is observed to have the Sommerfeld parameter � = 6mJmol�1 K�2. Using

the result of (b), what is the electronic mass m for Tl
2

Ba
2

CuO
6+�? How does it compare to

the free electron mass?

Exercise 2 Extraction of electronic and phononic specific heat

In figure 1 the data from a specific heat experiment on Sr
2

RuO
4

is shown (adapted from Macken-
zie et al. JPSJ 67, 385 (1998)).

(a) Extract the electronic Sommerfeld parameter � and the phonon coeffiecient ↵ in C
ph

= ↵T 3.

(b) The crystal structure of Sr
2

RuO
4

is similar to the one of Tl
2

Ba
2

CuO
6+�. Which of the

systems would have the larger electronic mass m.

(c) What is the Debye temperature for Sr
2

RuO
4

?
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Multi	– band	metals:	Sr2RuO4

Figure 1: The total specific heat divided by temperature of Sr
2

RuO
4

between T
c

and 14K in
zero field (filled squares) and a magnetic field of 14T (open circles) applied parallel to the
c-axis.

Exercise 3 Specific heat of copper

Copper has a density of ⇢ = 8.94 g cm�3 and a molar mass of m
mol

= 63.55 gmol�1. Use the
measured values for the specific heat of copper given below to:

(a) determine the electron mass. Remember that this is a three dimensional electronic system.
Compare this value to the literature value for a free electron.

(b) determine the Debye temperature of copper.

T [K] =

0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.50

C
V

[mJmol�1 K�1] =

0.17, 0.35, 0.54, 0.74, 0.96, 1.21, 1.47, 1.78, 2.11, 2.50, 2.91, 3.35, 3.91, 4.46, 5.15, 5.87, 7.49

Heat	Capacity

A.P.	Mackenzie	et	al,
RMP	75,	657	(2003)
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Hall	effect:	



with the N2 partial pressure dependence of Tc reported by
other groups.5,6

Figure 3 shows the Hall resistivity !!xy" as a function of
magnetic field for all the films measured at 17 K. The Hall
coefficient !RH=!xy /H" is determined from the slope of the
!xy-H curve. It is interesting to note that the carrier density
!n=1 /RHe" extracted from RH for the film with Tc
#16.11 K !1-NbN-200", n=1.97"1029 e /m3, is close to
the theoretical estimate19 of 2.39"1029 e /m3. This agree-
ment is remarkably good considering that the theoretical es-
timate was obtained by counting the number of electrons
outside the closed shell of Nb under the assumption that the
nitrogen atoms do not contribute. However, for films with
lower Tc, n decreases significantly reaching a value n=6.47
"1028 e /m3 for the films with Tc#9.99 K !2-NbN-30".

Figure 4!a" shows the representative !!T ,H"-T plots for
the 1-NbN-200 films measured in different magnetic fields.
Tc!H" at different magnetic fields is determined from the
temperature where !!T" drops to 10% of the normal state
value. The upper critical field !Hc2" as a function of tempera-
ture is plotted in Fig. 4!b" by inverting the Tc!H" data for
different films. The values of a, Tc, !n, n, and Hc2!T /Tc
=0.9" for all the films are listed in Table I.

IV. DISCUSSION

Table II lists the Fermi wave vector !kF", the Fermi veloc-
ity !vF", the electronic mean free path !l", the density of

states at the Fermi level $N!0"%, the Ioffe-Regel parameter
kFl, the upper critical field at T=0 $Hc2!0"%, and the
Ginzburg–Landau coherence length !#GL" for all the films.
kF, vF, l, and N!0" are calculated from the free electron re-
lations kF= !3$2n"1/3, vF=%kF /m, !=m /ne2&=mvF /ne2l,
and N!0"=m /%2$2!3$2n"1/3, where m is the mass of the
electron and & is the relaxation time. To check the reliability
of the parameters obtained from the free electron relations,
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Figure 4 | Normal-state Hall coefficient.  

Hall coefficient RH(T) of Nd-LSCO as a function of temperature for p = 0.20 and 

0.24, measured in a magnetic field of 15 T. Below 12 K, the 0.20 data are in 33 

T, a magnetic field strong enough to fully suppress superconductivity [see 

Supplementary Information]. The dashed blue horizontal line is the value of RH 

calculated for a large cylindrical Fermi surface enclosing 1 + p holes, namely RH 

= V / e (1 + p), at p = 0.24. At p = 0.20, the rise in RH(T) at low temperature 

signals a modification of that large Fermi surface. The upturn is seen to coincide 

with a simultaneous upturn in r(T) (reproduced in grey from Fig. 1) and with the 

onset of charge order at TNQR as detected by NQR (see text and ref. 21). 

Hall	effect:	Temperature	dependence	

Daou et	al.,	Nature	Physics	2009
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FIG. 3: Upper panel: Nernst coefficient divided by magnetic
field as a function of temperature at H=0 and H=5T. The in-
sert compares the field-dependence of the Nernst coefficient at
three different temperatures. Lower panel: The temperature-
dependence of the Hall coefficient measured at H=5T. Insert:
A schematic plot of the three-band Fermi surface in NBSe2

as observed by ARPES[13].

of the predicted FS [11, 13].
Now, in presence of such a complicated FS, a finite

Nernst signal is not unexpected. Following Wang et

al.[2], we define the Peltier conductivity tensor α with

equations
−→
J = σ

−→
E −α

−→
∇T and

−→
Jq = αT

−→
E −κ

−→
∇T . Here,

−→
J and

−→
Jq are charge and heat current densities.

−→
E and

∇T are is the electric field and the thermal gradient. σ
and κ are electric and thermal conductivity tensors. As-
suming σxy ≪ σxx and neglecting the transverse thermal
gradient produced by a finite κxy, the Nernst coefficient
is easily obtained as[2]:

N =
Ey

∂T
∂x

= S(
αxy

αxx
−

σxy

σxx
) (1)

Where S = αxx

σxx
is the thermopower. For a single band,

and if σ is not energy-dependent, one has:

σxy

σxx
=

αxy

αxx
(2)

and the two terms in Eq.1 cancel out (“Sondheimer
cancellation”)[2]. Now, let us assume that the metal is
not single band and there are two FS sheets with domi-
nant carriers of opposite signs. Then Eq.1 becomes:

N = S(
α+

xy + α−
xy

α+
xx + α−

xx

−
σ+

xy + σ−
xy

σ+
xx + σ−

xx

) (3)

Where the superscript designates the sign of the dom-
inant carriers. Now, obviously, the validity of Eq.2 for
each band does not lead to the cancellation of the two
terms in the right side of Eq.3. We can readily see that in
a compensated two-band system, i.e. in the case of σ−

xy=-
σ+

xy, the second term on the right side of Eq.3 vanishes.
But, since α−

xx and α+
xx are expected to have different

signs, Eq.2 implies the same sign for α±
xy. Therefore, the

first term does not vanish and would yield a finite Nernst
signal.

As recalled above, NbSe2 is a multi-band metal and
becomes compensated at T=21K. Therefore, the finite
size and the temperature dependence of the Nernst signal
found in our study can safely be attributed to the coun-
terflow of carriers with opposite sign. In semiconductors,
this phenomenon, known as the ambipolar Nernst effect,
has been known since a long time ago[14]. However, to
our knowledge, this is the first case of a metal displaying
the effect.

Using the experimental data and Eq.1, one can com-
pute the temperature dependence of the two components
of the Peltier conductivity tensor α[12]. Fig. 4 compares
the two ratios σxy

σxx
and αxy

αxx
. As seen in the figure, at

the onset of the CDW transition, the two angles display
opposite signs and the absolute magnitude of αxy

αxx
is five

times larger than σxy

σxx
. Below 27K, the two angles begin

to gradually converge to a comparable negative magni-
tude. Now, α ∝ ∂σ

∂ϵ
|ϵ=Ef

, for each band. Therefore, the
contrasting behavior observed here indicates that the en-
ergy dependence of σxy and σxx is substantially different
on various bands.

These results provide fresh input for the ongoing effort
to identify the driving mechanism of the CDW instability
in NbSe2. Surprisingly, even the recent high-resolution
ARPES study which successfully probed the anisotropy
of the superconducting gap[13] failed to detect a CDW
gap. Moreover, the slightly incommensurate CDW vec-
tor, revealed by neutron scattering [7], can not be as-
sociated in any obvious way with a nesting vector of the
known FS [11, 15]. The observation of a FS in good agree-
ment with the theoretically-predicted one as well as the
absence of any detectable gap indicates that the CDW
transition is not accompanied by any substantial mod-
ification of the Fermi surface[11]. The temperature de-
pendence of specific heat close to the CDW instability[9]
confirms that the change in the density of states is small.
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5.2 Symmetry of f(E) around EF

It can easily be shown that
f(EF + E) = 1� f(EF � E) (10)

5.3 Fermi Level in Intrinsic and Extrinsic Semiconductors

In an intrinsic semiconductor, n = p. If we use the band-symmetry approximation, which assumes that
there are equal number of states in equal-sized energy bands at the edges of the conduction and valence
bands, n = p implies that there is an equal chance of finding an electron at the conduction band edge as
there is of finding a hole at the valence band edge:

f(EC) = 1� f(EV ) (11)

From Eqn. 10 we can deduce that the Fermi level EF must be in the middle of the bandgap for an
intrinsic semiconductor, as seen in Figure 4. In fact, this level is called the “intrinsic Fermi level” and
shown by Ei:

Ei = EC � Eg/2 = EV + Eg/2 (12)

where Eg is the bandgap energy.
For an n-type semiconductor, there are more electrons in the conduction band than there are holes in

the valence band. This also implies that the probability of finding an electron near the conduction band
edge is larger than the probability of finding a hole at the valence band edge. Therefore, the Fermi level is
closer to the conduction band in an n-type semiconductor:

Figure 4:

6

Semiconductor	gaps	versus	kBT





Electronic	masses

Text	added	after	the	lecture.

Reading	Kittel more	careful,	it	seems	that	
following	notation	is	adopted.	
m	=	is	the	free	electron	mass.
me	=	effective	crystal	electron	mass

The	fact	that	the	electron	mass	is	lighter
in	semiconductors	is	confirmed	on	the	
following	link.

https://www.youtube.com/watch?v=cdirek91Hto
http://ecee.colorado.edu/~bart/book/effmass.htm
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