

2.1 Single-crystal, powder, and surface diffraction

Scattering Block Course 12.-13.02.2024

University of Zurich^{uz}^H

Prof. Philip Willmott

Types of crystalline samples

Images: Creative Commons

Laue and Bragg diffraction geometries

Laue (transmission) geometry / Br

Bragg (reflection) geometry

 k_{hkl}

 \hat{n}

 k_0

 ${
m Bragg-Brentano\ geometry:} \hat{n}$ perpendicular to sample surface

Single-crystal diffraction – the Laue method

Max von Laue

Friedrich and Knipping's setup

copper sulfate pentahydrate

zinc sulfide

See also: <u>https://www.iucr.org/___data/assets/pdf_file/0010/721/chap4.pdf</u> and <u>https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.19133461004</u>

Max von Laue

Tungsten x-ray spectrum

copper sulfate pentahydrate

zinc sulfide

See also: <u>https://www.iucr.org/___data/assets/pdf_file/0010/721/chap4.pdf</u> and <u>https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.19133461004</u>

		•	•	•	•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	٠	٠	٠	٠	•	•	•	•	•
•	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	(00	00)	٠	٠	٠	•	•
•	•	•	•	٠	•	٠	٠	٠	•	•	•	•
•	•	•	•	٠	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•		

$$\lambda_{hkl} = 2d_{hkl}\sin\theta_{hkl}$$

Laue diffraction in 3D

$$n_{\text{Laue}} = \frac{\frac{4}{3}\pi \left(k_{\text{max}}^3 - k_{\text{min}}^3\right)}{8\pi^3/V}$$

$$=\frac{4\pi V}{3} \left(\frac{\lambda_{\max}^3 - \lambda_{\min}^3}{(\lambda_{\max}\lambda_{\min})^3}\right)$$

In Laue (forward-scattering) geometry

Laue diffraction and the overlap problem

$$\lambda_{hkl} = 2d_{hkl}\sin\theta_{hkl}$$

Families (mh mk ml) for integral m that lie within the Ewald volume will precisely overlap on a detector

How does one extract their individual Bragg-peak intensities?

Laue diffraction and modern detectors

 $h
u_2$,

 $h\nu_1$

Applications of Laue diffraction

Image courtesy of S. Falco *et al.*, Comp. Mat. Sci. **136** 20-28 (2017)

- Laue diffraction traditionally for single crystals, unsuitable for powder samples
 - Many randomly oriented crystallites simultaneously illuminated ⇒ extremely dense ring pattern: unsolvable
- DLSRs: focus can be made to be smaller than crystallites (limit ~ 100 nm)
 - Scan and rotate sample ⇒ diffraction tomogram "µLaue diffraction tomography", e.g. @ BM32 beamline, ESRF

https://www.esrf.fr/UsersAndScience/Experiments/CRG/BM32/Microdiffraction http://scripts.iucr.org/cgi-bin/paper?S1600576715002447

Applications of Laue diffraction

Time-Resolved Photolysis of CO-Haemoglobin V. Šrajer *et al.*, Biochemistry **40** 13802 (2001)

Single-crystal diffraction – the rotation method

The rotation method

- Monochromatic radiation
- Rotate sample
 - Signal lights up as Bragg peaks pass through the Ewald sphere
 - Signal at angle 20 relative to direct beam (000)
 - Record at high frame rates ("fine phislicing") to capture passage of Bragg peak through Ewald sphere ⇒ obtain Bragg-peak profile

M. Müller et al., https://doi.org/10.1107/S0907444911049833

The rotation method

The rotation method

- Rotate around $\boldsymbol{\phi}$
- Data close to φ-axis ("cusp", or "blind" region) not recorded
- High-symmetry unit cells require reduced range of φ-rotation (90°, 120°, 180°)

The selected Bragg peak method

Magnetic order in multiferroic LuMnO₃ produces a weak Bragg peak close to (0 ½ 0), enhanced using 643-eV radiation tuned to the L-edge of Mn

> Y.W. Windsor *et al.*, Phys. Rev. Lett.113 167202 (2014)

- Follow specific Bragg points
 - Observe physical phenomena through structural changes
 - e.g., change in symmetry and/or unit cell dimensions with...
 - temperature
 - pressure
 - applied magnetic field
 - ...
- Signal often weak
- SR needed
- Used in
 - resonant soft x-ray scattering
 - surface x-ray diffraction

Pole figures

Pole figure of an icosahedral Ti-Ni-Zr quasicrystal film grown on Al₂O₃(0001) mapped on a spherical surface. A fivefold symmetry axis points perpendicularly out of the film, while the five other fivefold axes at 63.435" relative to each other and the outof-plane axis, produce the ring feature. This texturing is induced by the 5-fold planes having the lowest surface energy

> P.R. Willmott *et al.*, Phys. Rev. B **71** 094203 (2005)

Pole figure acquired over a range of Q = 2.25 to 2.35 Å⁻¹ and at a photon energy of 16.49 keV of heteroepitaxial β -Fe₂O₃ thin film. The pattern encompasses three families of reflections associated with the film.

J.D. Emery *et al.*, ACS Appl. Mater. Interf. **6**, 21894–21900 (2014)

- Fix θ-2θ
- Rotate sample
 - azimuthally (ϕ) by up to 2π
 - polar coordinate (χ) up to π
- Modern detectors can record range of 2θ
 - Vary θ and obtain multiple pole figures in one image
- Suitable for single-crystal and some textured samples

Powder diffraction

Symmetry axis of the Bragg condition

Generating Debye-Scherrer rings

Generating Debye-Scherrer rings

• h or k = 0, h = k: M = 4

 (hk) = (50) and (43) have same d_{hk} = d₁₀/5, M = 12

Powder diffraction – the whys and wherefores

Silicon single crystal to powder pattern

- 3D information collapsed to 1D
 - e.g. silicon single crystal
 - (h² + k² + l²)^{1/2} ≤ 7
 246 Bragg peaks in 3D reduced to 12 in 1D
 - Rapid data acquisition
 - Time-resolved studies even down to µs regime
 - Reduced radiation damage
 - Overlapping signal X
 - Density of peaks increases with decreasing symmetry (unit cell, basis)

Powder diffraction – the whys and wherefores

- Materials that only produce micro- or nanocrystals of sufficient quality – PXRD!
- Identification of composite parts in multicomponent mixtures – PXRD!
 - Pharmaceuticals, earth sciences, minerology, archaeology, catalysis...
- Extreme environmental studies, phase changes as function of temperature and/or pressure – PXRD!
 - Information often only extractable from powder samples
 - Microcrystallites' large surface area-tovolume ratio accommodates phase changes by relaxation and propagation of crystallographic faults to surface

Eds. R.E. Dinnebier & S.J.L. Billinge (RSC, 2008)

Common sample configurations

- Capillary
 - Transmission (Debye-Scherrer) geometry
 - Diameter typically between 0.2 and 1 mm
 - Requires good transmission
 - Quartz, sapphire capillaries
 - Normally true powder/randomly oriented crystallites
 - Option to spin capillary
- Diamond anvil cell
 - High-pressure experiments up to 200 GPa (2 million atmospheres)
 - Insert small ruby crystal to calibrate pressure via its fluorescence lines
 - Geology/deep-earth simulations
 - Up to 600 GPa, 5000 K
 - Inner core conditions
 - See e.g., S. Anzellini *et al.*, Science DOI: 10.1126/science.1233514

- Flat plate
 - Reflection geometry
 - Often Bragg-Brentano geometry (θ-2θ)
 - Often high-Z materials
 - Thin heteroepitaxial films
 - Often textured sample
 - Option to spin plate around sample normal

Multisample plate

- Survey experiments
- Rapid exchange of samples via rastering of plate in xand y-directions
- 100s of samples/plate possible

Typical sample sizes

- u.c. linear dimensions ~ 10 Å
- 1000 u.c./μm; 10⁹/μm³
 - SR @ DLSRs: $l_c^{(l)} \sim 10 \ \mu m$, $l_c^{(t)} \sim 100 \ \mu m$
 - ⇒ linear crystallite size ~ 5 µm should be coherently illuminated ≡ 10¹¹ u.c.
- - ~ 10⁶ crystallites illuminated
 - Spin sample to get larger fraction of these in Bragg condition
 - Factor = $2\pi/(BP \text{ width}) \sim 2 \times 10^4$
- Radiation damage?
 - Shift capillary along its own axis

The Scherrer equation

$$\tau = \frac{K\lambda}{\beta\cos\theta}$$

- T = crystallite size (same units as λ)
- K = form factor \simeq unity
- λ = x-ray wavelength
- β = 2 θ -FWHM of Bragg peak in radians
- θ = Bragg angle

- Only valid if crystallite size < coherence volume l_c^(I) · l_c^(t,x) · l_c^(t,y) and quasi monodisperse
- 3^{rd} generation: crystallites ~ 0.1 μ m
 - Scherrer eqn. unsuitable for single-crystal diffraction
- DLSRs: 1 5 μm

Intrinsic Si(111) peak @ 10 keV for spherical crystallites between 9 and 201 unit-cell diameter

See also e.g.: http://prism.mit.edu/XRAY/oldsite/CrystalSizeAnalysis.pdf

Angular resolution in powder diffraction

sample, size S

Example: Mythen microstrip detector Each element has a width (\equiv slit width, W) = 50 µm (0.05 mm) Sample, S = 0.5-mm capillary. L = 70 cm Resolution = (0.5+0.05)/700 = 7.9 x 10⁻⁴ rad (0.045°)

Crystal analyzers – getting the best angular resolution

See also: https://www.chess.cornell.edu/users/calculators/x-ray-calculations-darwin-width

Crystal analyzers – Nature's slits

See also: https://www.chess.cornell.edu/users/calculators/x-ray-calculations-darwin-width

Crystal analyzers – nice but slow

sample, size S

- Advantages
 - Very high resolution, independent of sample size S

-2θ

- Signal from entire illuminated part of sample
- Fluorescence suppressed through analyzer crystal
- Disadvantages
 - Very slow! Minutes to hours

Powder diffraction – 1-D and 2-D detectors

See B. Schmitt et al., https://doi.org/10.1016/S0168-9002(02)02045-4

Powder diffraction – 1-D and 2-D detectors

"Pilatus" 6M 2-D HPAD
 2463 x 2527 pixels
 172 μm pixel size
 Best suited for ultrafast experiments

"Mythen" 1-D strip detector
 30720 elements over 120°
 50 μm element width
 Best suited for high-Q experiments

Materials Science beamline, SLS

Solving the structure in PXRD – model building

- Indexing yields
 - Lattice constants
 - Space group symmetry
- Stoichiometry normally known
 - Apply constraint of physical bond lengths and volume typically occupied by an atom
- Other physical properties
 - e.g. piezoelectric ⇒ noncentrosymmetric
- Known motifs?
 - e.g. oxygen octahedra
 - Apply rigid-body translations and rotations
- Simulated annealing
- Rietveld refinement

Charge flipping

See also: http://www.crystal.mat.ethz.ch/research/ZeolitesPowderDiffraction/ChargeFlipping.html

Example I – radiation damage testing pharmaceuticals

See also: A. Bergamaschi et al., https://doi.org/10.1107/S0909049510026051

Example II – Ultrafast diffraction in real time

See also: T. Neuhauser et al., https://doi.org/10.1016/j.actamat.2020.05.035

- Runaway exothermic alloying reaction in Al/Ni multilayers
 - H: 10'000 K/s heat rate up to 500°C
 - Ignition occurs @ ~ 400 500°C
 - Runaway reaction up to 10⁶ K/s takes over
 - Experiment ca. 0.1 s long!
- Eiger 500k detector
 - 4-bit/pixel ⇒ accelerated frame rate
 - 20 kHz frame rate
 (50 μs exposure 4 μs dead time)
 - Max 2θ ≃ 30°
 - Integrate Debye-Scherrer ring signals azimuthally

Surface diffraction

Goals of SXRD

- Study of crystalline surfaces and interfaces
 - Surfaces/interfaces different from bulk
 - "Dangling" bonds
 - Polar discontinuities
 - Surface energy minimization relaxations and reconstructions
 - Interesting and unexpected new physical properties
 - See e.g., LaAlO₃/SrTiO₃ interface S.A. Pauli *et al.*, DOI:10.1103/PhysRevLett.106.036101

Signal from surfaces or interfaces

- How does one find out the structure of a surface or interface using scattering methods?
- Surfaces and interfaces different from bulk
- Very small scattering volume
 - ~ 1 5 ML, or 1 5 nm depth
 - c.f. extinction length ~ 10 μ m
- Go to positions in reciprocal space where bulk signal is weak...
- Let's discuss this in more detail

Crystal truncation rods – the signal that keeps on giving

• The "LEED/RHEED" explanation

Crystal truncation rods – the signal that keeps on giving

The "LEED/RHEED" explanation

Continuous signal, but modulated

CTRs – a better description

- Why?
 - LEED, RHEED: surface sensitive (~ nm)
 - X-rays: bulk (~ 100 nm)
- X-rays
 - n < 1
 - Total external reflection
 - Evanescent standing wave below α_{c}
 - Enhanced surface sensitivity
 - BUT: normally $\alpha > \alpha_c$
- Why?
 - Buried interfaces
 - Experimental stability

CTRs explained via the convolution theory

• $FT(f x g) = FT(f) \otimes FT(g)$

See also: Supplementary Material "Fourier transforms and convolutions made simple"

Why don't we see CTRs all the time?

- Why do you not always see CTRs?
 - After all, every crystal has a surface...
- But how flat is that surface?
 - Atomically flat "shape function" quite broad in k-space
 - Rough, nobbly surface (on atomic scale)
 - Real-space: large depth variations
 - k-space: "shape function" very narrow
- Nanocrystals have CTRs with modulations that reveal their size

Why don't we see CTRs all the time?

- Why do you not always see CTRs?
 - After all, every crystal has a surface...
- But how flat is that surface?
 - Atomically flat "shape function" quite broad in k-space
 - Rough, nobbly surface (on atomic scale)
 - Real-space: large depth variations
 - k-space: "shape function" very narrow
- Nanocrystals have CTRs with modulations that reveal their size

See e.g., A. Pryor Jr. et al., Scientific Reports DOI:10.1038/s41598-018-26182-1

Intensity variations along CTRs

Relaxations and reconstructions

Relaxations and reconstructions

See D. Martoccia et al., PRL (2008) DOI: 10.1103/PhysRevLett.101.126102

- Example: surface of Ru(0001)
 - Hexagonal close packed (hcp) u.c.
 - Bulk interatomic layer separation = 2.141 Å
 - Top layer: (2.080±0.003) Å
 - Contraction of 2.8%

Relaxations and reconstructions

Superstructure rods

See R. Herger et al., https://doi.org/10.1103/PhysRevLett.98.076102

 $SrTiO_3 2x2$ surface Ti: red, O: blue, Sr: yellow

- Sometimes called fractional-order rods
- Different in-plane periodicity than bulk structure
- No bulk contribution ⇒ no intense Bragg peaks
 - Intensities similar to minima of CTRs
- Intensity fluctuations much more modest than in CTRs
- Provide information exclusively about superstructure and not bulk

Image of nanoparticle on graphene from M. D. Jiménez-Sánchez *et al.*, Carbon https://doi.org/10.1016/j.carbon.2020.11.086

- Graphene on ruthenium(0001)
 - Corrugated moiré pattern
 - Literature 2007
 - 13x13 on 12x12?
 or
 12x12 on 11x11?
 - LEED and STM analysis ambiguous

See D. Martoccia et al., PRL (2008) DOI: 10.1103/PhysRevLett.101.126102

- Experiment
 - Glancing-incident beam
 - Alignment calibrated to bulk Ru-substrate diffraction signal
 - Accuracy 0.0002 r.l.u.
 - In-plane position of superstructure rods

See D. Martoccia et al., PRL (2008) DOI: 10.1103/PhysRevLett.101.126102

In-plane data (scans at a constant out-of-plane scattering vector Q₁)

See D. Martoccia et al., PRL (2008) DOI: 10.1103/PhysRevLett.101.126102

- Out-of-plane data (scans along the I direction for fixed h and k)
 - Probes out-of-plane positions of top Ru layer and graphene
 - (0 25/23 L) and (0 21/23 L) rods
 - Model to data indicates corrugation amplitude ~ 1.4 Å

See D. Martoccia et al., PRL (2008) DOI: 10.1103/PhysRevLett.101.126102

