

Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136-Xe

Patricia Sanchez-Lucas, Universität Zürich

Postdoc in the Astroparticle Physics Group

EXPERIMENTAL PARTICLE AND ASTRO-PARTICLE PHYSICS SEMINAR 27 April 2020

Deneutrino axion al file direct dark and neutrino axion al file groups collaboration wimp detector DARWIN detector DARWIN universe tree wimp detector DARWIN detector axion al file groups collaboration wimp detector DARWIN universe al file tree wimp attraction al file scale wimp detector DARWIN attraction al file scale wimp detector DARWIN attraction al file tree wimp tree wimp attraction al file tree wimp tree wimp tree wimp tree wimp tree wimp tree wimp tree aspects

www.darwin-observatory.org

WIMP DETECTION LANDSCAPE TODAY

- The best sensitivity above 5 GeV/c² comes from experiments using liquid noble gases as target (Xe, Ar). (heavy target and easy scalability)
- DARWIN, the ultimate LXe WIMP detector, with 50t of total target, plans to increase 100-fold the current sensitivity.

WIMP DETECTION LANDSCAPE TODAY

- The best sensitivity above 5 GeV/c² comes from experiments using liquid noble gases as target (Xe, Ar). (heavy target and easy scalability)
- DARWIN, the ultimate LXe WIMP detector, with 50t of total target, plans to increase 100-fold the current sensitivity.

DARWIN BASELINE DESIGN

baseline design with PMTs but several alternatives under consideration

- Dual-phase Time Projection Chamber (TPC).
- 50t total (40 t active) of liquid xenon (LXe).
- Dimensions: 2.6 m diameter and 2.6 m height.
- Two arrays of photosensors (top and bottom).
- 1800 PMTs of 3" diameter (~1000 of 4").
- Low-background double-wall cryostat.
- PTFE reflector panels & copper shaping rings.
- Outer shield filled with water (12 m diameter).

Possible realization of DARWIN inside the water tank

DUAL-PHASE XENON TPC

Particle interactions Dual phase TPC working principle Detection of the scintillation light (S1) and the delayed electron recoil gammas & escintillation light proportional to the charge (S2) (**ER**) WIMPs or GXe neutrons electron recoil time nuclear Top array of photosensors (ER) recoil (NR) (+) anode le **S2** nuclear gate recoil (NR) ╧ The ratio S2/S1 depends on the Ēd drift time interacting particle. (depth) ∣ e⁻e⁻ e⁻ Particle type discrimination K S1 S1 cathode ER (β,γ) Bottom array of photosensors LXe NR (WIMP, n) **S1 S2**

The dual-phase TPC allows a 3D position reconstruction.

x-y from the light sensors, z from the drift time

DUAL-PHASE XENON TPC

Dual phase TPC working principle Particle interactions Detection of the scintillation light (S1) and the delayed electron recoil gammas & e scintillation light proportional to the charge (S2) (ER) WIMPs or GXe neutrons electron recoil time nuclear Top array of photosensors (ER) recoil (NR) + anode **S**2 nuclear gate recoil (NR) The ratio S2/S1 depends on the Ēd drift time interacting particle. (depth) e^{-e-}e-Particle type discrimination S1 KS1 8000 **ER-events** 4000 cathode 200 Corrected S2 [PE] Bottom array of photosensors 100 LXe **NR-events**

The dual-phase TPC allows a 3D position reconstruction.

x-y from the light sensors, z from the drift time

DARWIN IN THE CONTEXT OF THE XENON PROJECT

Two-Neutrinos double beta decay $(2\nu\beta\beta)$

Extremely rare nuclear process, but allowed in the Standard Model

$$\Delta L = 0$$

Observed in more that 10 nuclei: $\longrightarrow T_{1/2} > 10^{18}$ years

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U

DOUBLE BETA DECAYS: SOME THEORY

Extremely rare nuclear process, NEVER OBSERVED BEFORE

> Lepton number violation

> Neutrinos are their own anti-particle (Majorana fermions)

Sharp peak at the end of the $2 u\beta\beta$ energy spectrum, Q-value

DARWIN offers the possibility of looking for this process for FREE !!

Q-value = 2.458 MeV

SIGNAL TOPOLOGY IN LIQUID XENON

Treat the 0vbb signal as a single-site (SS) events

- Not always true if e- emits Bremsstrahlung photons that travel some distance
- Events misidentified as MS and rejected
- We use $\varepsilon = 15$ mm for SS/MS identification
 - 90% efficiency for 0vbb events (equal share)

DEDICATED SIMULATIONS: DARWIN GEOMETRY

Detailed detector geometry in Geant4 following the baseline design

all the major components have been included

 Critical components for the BG → Fully simulated in detail example: Double wall cryostat

Simulation criteria

Based on engineering studies at Nikhef

MATERIAL/EXTERNAL BACKGROUNDS:

all the major components have been included

		Element	Material	\mathbf{Mass}
	top sensor array	Outer cryostat	Ti	$3.04\mathrm{t}$
	(955 PMTs, electronics,	Inner cryostat	Ti	$2.10\mathrm{t}$
outer cryostat	copper + PTFE pariets)	Bottom pressure vessel	Ti	$0.38\mathrm{t}$
inner cryostat —	top electrode	LXe instrumented target	LXe	$39.3\mathrm{t}$
	frames (Titanium)	LXe buffer outside the TPC	LXe	$9.00\mathrm{t}$
field cage		LXe around pressure vessel	LXe	$0.27\mathrm{t}$
(copper, 92 rings)	TPC reflector	GXe in top dome + TPC top	GXe	$30\mathrm{kg}$
support structure	(PTFE, 24 panels)	TPC reflector (3mm thickness)	PTFE	$146\mathrm{kg}$
(PTFE, 24 pillars)		Structural support pillars (24 units)	PTFE	$84\mathrm{kg}$
	bottom electrode	Electrode frames	Ti	$120\mathrm{kg}$
	frames (Titanium)	Field shaping rings (92 units)	Copper	$680\mathrm{kg}$
		Photosensor arrays (2 disks):		
	bottom sensor array	Disk structural support	Copper	$520\mathrm{kg}$
DIDIDIDI		Reflector $+$ sliding panels	PTFE	$70\mathrm{kg}$
	pressure vessel	Photosensors: 3"PMTs (1910 Units)	$\operatorname{composite}$	$363\mathrm{kg}$
		Sensor electronics (1910 Units)	$\operatorname{composite}$	$5.7\mathrm{kg}$

Assumed activity levels → Conservative

upper limits as detection values

- LZ: Astropart. Phys. **96** (2017) 01 - XENON: Eur. Phys. J. C **77** (2017) 12 890

Material	Unit	$^{238}\mathrm{U}$	226 Ra	$^{232}\mathrm{Th}$	$^{228}\mathrm{Th}$	$^{60}\mathrm{Co}$	$^{44}\mathrm{Ti}$	Reference
Titanium	$\mathrm{mBq/kg}$	<1.6	< 0.09	0.28	0.25	< 0.02	<1.16	LZ
PTFE	$\mathrm{mBq/kg}$	< 1.2	0.07	$<\!0.07$	0.06	0.027	-	XENON
Copper	$\mathrm{mBq/kg}$	< 1.0	$<\!0.035$	< 0.033	< 0.026	< 0.019	-	XENON
\mathbf{PMT}	$\mathrm{mBq/unit}$	8.0	0.6	0.7	0.6	0.84	-	XENON
Electronics	$\mathrm{mBq/unit}$	1.10	0.34	0.16	0.16	< 0.008	-	XENON

COMPONENTS OF THE MATERIAL BACKGROUNDS

ER background spectra (single site events) for some materials with no fiducialization

DARWIN

➢ long-lived radiogenic nuclei, ²³⁸U, ²³²Th, ²³⁵U, ⁶⁰Co, ¹³⁷Cs, ⁴⁴Ti

DEFINITION OF A FIDUCIAL VOLUME

Distribution of the external background events in the detector volume

100 years of DARWIN run time, events with energy in the ROI

MATERIAL BACKGROUND: ZOOM AROUND Q-value

INTRINSIC BACKGROUNDS:

- ²²²Rn in the LXe:
 - Assumption: 0.1 μ Bq/kg
 - 10 times lower than XENONnT
 - 99.8 % BiPo tagging efficiency
- Irreducible ⁸B solar neutrinos ($v-e \rightarrow v-e$):
- 2vbb decay of ¹³⁶Xe.
 - Subdominant due to the energy resolution
- ¹³⁷Xe from cosmogenic activation underground:

n + ¹³⁶Xe -> ¹³⁷Xe

- Beta decay, Q_{-value} = 4173 keV
- Half-life 3.82 min
- Potential background for a depth of 3500 m.w.e

HOW IS ¹³⁷Xe PRODUCED?

¹³⁷Xe is mainly produced when **muon-induced neutrons** are captured by ¹³⁶Xe.

Radiogenic neutrons can also contribute (negligible contribution)

Cosmic Muons \Rightarrow Fast Neutrons \Rightarrow Thermalize by collision \Rightarrow Neutron Capture

- Muon flux reduction underground: 10⁶ times (LNGS).
- High energy muons (GeV) can reach the lab.
- Muons produce neutrons when they travel through the rock, the shields, the cryostat and the detector itself.
- Once thermalized by collisions, the neutrons are captured in LXe.

Neutron capture gammas are not a problem because they occur in coincidence with a tag muon

SIMULATION OF THE ¹³⁷Xe PRODUCTION RATE

Simulations of the muon-induced neutrons in the DARWIN materials

- Input (1): muon simulations for the LNGS depth
- Input (2): muon-induced neutrons distributions for the different materials
- Neutrons following a power law energy spectrum.
- Simulation of the neutrons and propagate them until the LXe active volume.
- Count number of ¹³⁶Xe neutron captures.

Material	Volume in DARWIN [m³]	n Production Rate in DARWIN [n/year]	Sim. Events	¹³⁷ Xe isotopes	¹³⁷ Xe Production Rate [atoms/kg/year]
Copper	0.076	1.12×104	10 ⁶	234 ± 15	(6.7 ± 0.4)×10 ⁻⁵
Cryostat	1.076	1.32×10⁵	10 ⁶	89 ± 9	(2.9 ± 0.3)×10 ⁻⁴
LXe	19.976	1.02×10 ⁶	10 ⁶	252 ± 16	(6.5 ± 0.4)×10 ⁻³
Total		1.16×10 ⁶			(6.9 ± 0.4)×10 ⁻³

INTRINSIC BACKGROUNDS: ZOOM AROUND Q-value

Sitting DARWIN at LNGS, the intrinsic backgrounds will be dominated by the ¹³⁷Xe

30

Looking for the optimal fiducial mass:

Minimize background without penalizing the exposure

TOTAL BACKGROUND FOR 5t FV

The hypothetical $0\nu\beta\beta$ signal in the plot has a strength of 0.5 events/y (T_{1/2}~2×10²⁷ years)

Less than 1 event per year in the ROI !!

EXPECTED SENSITIVITY FOR THE BASELINE DESIGN

Profile likelihood analysis for the sensitivity:

DARWIN will reach a sensitivity at 90% C.L of 2.4×10²⁷ years for a 5t × 10 year exposure

⁻ EXO-200 Collaboration, Phys. Rev. Lett. 120, 072701 (2018)

⁻ KamLAND-Zen Collaboration, Phys. Rev. Lett. 117, 082503 (2016)

IMPROVED SCENARIOS

- Baseline scenario not optimised for 0vbb
- Pre-achieved radio-purity of materials

What could be improved?

- Reduce external background
 - top array of SiPMs
 - bottom array of cleaner PMTs
 - identify cleaner materials (PTFE, Ti)
 - cleaner electronics

2) Reduce internal background

- time veto for the ¹³⁷Xe
- deeper lab

3

- better BiPo tagging technics

Improve SS/MS discrimination

ROOM FOR IMPROVEMENT !!

DARWIN could reach a sensitivity of 6×10²⁷ years

IMPROVED SCENARIOS

- Baseline scenario not optimised for 0vbb
- Pre-achieved radio-purity of materials

What could be improved?

- Reduce external background
 - top array of SiPMs
 - bottom array of cleaner PMTs
 - identify cleaner materials (PTFE, Ti)
 - cleaner electronics

2) Reduce internal background

- time veto for the ¹³⁷Xe
- deeper lab

3

- better BiPo tagging technics

Improve SS/MS discrimination

ROOM FOR IMPROVEMENT !!

DARWIN could reach a sensitivity of 6×10²⁷ years

- DARWIN will be a dark matter detector, but its large mass and low background allow for an excellent detector to look for the $0v\beta\beta$ decay of ¹³⁶Xe.
- Expected energy resolution of ~0.8% at 2.5 MeV (already proved by XENON1T)
- Dedicated simulations of the material and intrinsic background.
- A statistical analysis provides a sensitivity at 90% C.L of 2.4×10²⁷ years for 5t ×10 year exposure for the baseline design.
- With the baseline scenario DARWIN will be competitive to fully dedicated experiments.
 Still room for improvement: cleaner materials, different photosensors ...

- DARWIN will be a dark matter detector, but its large mass and low background allow for an excellent detector to look for the 0vββ decay of ¹³⁶Xe.
- Expected energy resolution of ~0.8% at 2.5 MeV (already proved by XENON1T)
- Dedicated simulations of the material and intrinsic background.
- A statistical analysis provides a sensitivity at 90% C.L of 2.4×10²⁷ years for 5t ×10 year exposure for the baseline design.
- With the baseline scenario DARWIN will be competitive to fully dedicated experiments.
 Still room for improvement: cleaner materials, different photosensors ...

