

University of Zurich^{uz}^H

Scattering Block Course 12.-13.02.2024

Prof. Philip Willmott

Small-angle x-ray scattering

SAXS – Introduction

Technique to investigate the structure of mesoscopic objects

- Crystallinity not required
- From Bragg's law for low θ (sin $\theta \simeq \theta$)
- Object, characteristic size d
 λ = 2dθ ⇒ θ = λ/2d « 1

•
$$Q = 2\pi/d$$

• $d \sim 10 - 1000 \text{ nm}$ $Q \sim 0.05 - 0.0005 \text{ Å}^{-1}$

- Applications
 - Colloidal science
 - Polymer science
 - Cell biology
 - Surface film structures
 - Systems without long-range structure complementary to XRD

See T.D. Grant et al., Biopolymers DOI:10.1038/s41598-018-26182-1

SAXS – Introduction

- Measures Δρ, difference in electron density between object and its surroundings
 - If Δρ = 0, object appears to be transparent
 - All SAXS arises from surfaces or interfaces

- e.g., protein ρ = 0.44 e/Å³, pure water ρ = 0.33 e/Å³
- Intensity proportional to
 - (Δρ)²
 - N_p, number of scatterers

SAXS scattering vector magnitudes

 $Q = 2|k|\theta = 4\pi\theta/\lambda = 2\pi/d$

Q-regimes and what they're good for

- For a given Q, resolution = $2\pi/Q$
- Low Q
 - General size, no information on shape
 - "Guinier" regime

Q-regimes and what they're good for

Idealized shapes of particular interest

Idealized shapes of particular interest

Apoferritin protein

Red blood cells

Styrene-butadiene copolymer chain

All images: Creative Commons

Scattering curves – general comments

Scattering curves – single particle v random ensemble

Fixed orientation

Randomly oriented ensemble

$$I(\mathbf{Q}) \qquad \qquad I^{\rm ro}(Q) = \frac{n}{4\pi} \int_0^{2\pi} d\alpha \int_0^{\pi} \sin\beta \, d\beta \, I(\mathbf{Q})$$

Scattering curves – ellipsoid, fixed orientation

Scattering curves - ellipsoid, randomly oriented ensemble

Randomly oriented

Average (integrate) over both polar angles α and β between 0 and $\pi/2$

ensemble $I_{\text{ell}}^{\text{ro}}(Q) = (r_0 \Delta \rho)^2 \left(\frac{4}{3} \pi a b c\right)^2$ $\times \frac{2}{\pi} \int_0^{\pi/2} d\alpha \int_0^{\pi/2} \sin \beta \, d\beta \left(3 \frac{\sin \phi - \phi \cos \phi}{\phi^3}\right)^2$

 $\phi = Q\sqrt{(a^2\sin^2\alpha + b^2\cos^2\alpha)\sin^2\beta + c^2\cos^2\beta}$

Scattering curves – ellipsoid to sphere

If a = b = c? $\Rightarrow \phi = Qa$ $I_{\text{ell}}^{\text{ro}} = I_{\text{sph}} = (r_0 \Delta \rho)^2 \left(\frac{4}{3}\pi a^3\right)^2 \left(3\frac{\sin(Qa) - Qa\cos(Qa)}{(Qa)^3}\right)^2$

Average (integrate) over both polar angles α and β between 0 and $\pi/2$ Randomly oriented ensemble

Scattering curves – solid spheres

Scattering curves – hollow spheres

Scattering curves – rods and platelets

$$I(Q) = 4 \int_0^1 \frac{J_1^2[QR(1-x^2)^{1/2}]}{[QR(1-x^2)^{1/2}]^2} \cdot \frac{\sin^2(QHx/2)}{(QHx/2)^2} dx$$

Scattering curves – Gaussian chains

$$I(Q) = \frac{2I_0}{\phi^2} \left[\exp(-\phi) + \phi - 1 \right] \quad \text{ whereby } \phi = Q^2 a^2 n/6$$

Radius of gyration

Moment of inertia

$$I = \int \! \rho(r) r^2 \, dV$$

Radius of gyration

$$I = MR_G^2$$

$$\Rightarrow R_G = \left[\left(\int \rho(r) r^2 \, dV \right) / \left(\int \rho(r) \, dV \right) \right]^{1/2}$$

 $\begin{array}{l} \mbox{Hollow shell,} \\ \mbox{mass M, radius } R_{G} \end{array}$

Radius of gyration

Object	R_G^2
Solid sphere radius r	$\frac{3}{5}r^2$
Hollow sphere radii r_1 and $r_2 > r_1$	$\frac{3}{5} \frac{r_2^5 - r_1^5}{r_2^3 - r_1^3}$
Solid cylindrical rod radius r, height L	$\frac{r^2}{2} + \frac{L^2}{12}$
Solid rectangular beam width W, height H, length L	$\frac{W^2 + H^2 + L^2}{12}$
Hollow tube radii r_1 , r_2 , height L	$\frac{r_1^2 + r_2^2}{2} + \frac{L^2}{12}$
Solid ellipsoid semi-axes a, b, c	$\frac{a^2 + b^2 + c^2}{5}$
Hollow ellipsoid outer semi-axes <i>a</i> , <i>b</i> , <i>c</i> , inner semi-axes αa , βb , γc	$\frac{(1-\alpha^{3}\beta\gamma)a^{2}+(1-\alpha\beta^{3}\gamma)b^{2}+(1-\alpha\beta\gamma^{3})c^{2}}{5(1-\alpha\beta\gamma)}$
Solid elliptical cylinder semi-axes a, b, height L	$\frac{a^2+b^2}{4}+\frac{L^2}{12}$
Hollow elliptical cylinder outer semi-axes <i>a</i> , <i>b</i> , outer height <i>L</i> , inner semi-axes αa , βb , inner height γL	$\frac{3(1-\alpha^{3}\beta\gamma)a^{2}+3(1-\alpha\beta^{3}\gamma)b^{2}+(1-\alpha\beta\gamma^{3})L^{2}}{12(1-\alpha\beta\gamma)}$
Randomly folded polymer chain, n monomers of length a	$\frac{a^2n}{6}$

Guinier regime

- Q << 2π/a
 - a = characteristic length of scattering object
 - Details of object shape excluded
 - Only information on overall size
 - i.e., radius of gyration
- Goal: simple expression for I(Q) for $Q \ll 2\pi/a$
 - Choose particle type with I(Q) that lends itself to simplification
 - Sphere!

$$I_{\rm sph} = I_0 \left(\frac{3\left[\sin(Qa) - Qa\cos(Qa)\right]}{(Qa)^3} \right)^2$$

Use

$$\sin(x) \approx x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots$$

 $\cos(x) \approx 1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots$

Guinier regime

$$\begin{split} I_{\rm sph}(x \equiv Qr \ll 1) &\approx I_0 \left(\frac{3 \left[\cancel{x} - x^3/6 + x^5/120 \cdots - \cancel{x} + x^3/2 - x^5/24 + \cdots \right]}{x^3} \right)^2 \\ &= I_0 \left(\frac{3 \left[x^3/3 - x^5/30 \right]}{x^3} \right)^2 \\ &= I_0 \left(1 - x^2/10 \right)^2 \approx I_0 \left(1 - x^2/5 \right) \end{split}$$

But for a sphere of radius r,

$$R_G^2 = \frac{3}{5}r^2$$
$$\Rightarrow I_{\rm sph}(Qr \ll 1) = I_0 \left(1 - Q^2 R_G^2 / 3\right)$$

 $\approx I_0 \exp(-Q^2 R_G^2/3)$

- Plot ln[l(Q)] v Q²
 - Gradient = $-R_G^2/3$

Guinier regime

- Plot ln[l(Q)] v Q²
 - Valid for
 - $Q \ll 1/200 \text{ Å}^{-1}$
 - $Q^2 \ll 2.5 \times 10^{-5} \text{ Å}^{-2}$
 - Gradient = $-R_G^2/3$
 - R_G²/3 = (0.20115/2.5 x 10⁻⁵) Å² = 8.0459 x 10³ Å²

 $R_{G}^{2}/3 = r^{2}/5 \Rightarrow r = 200.6 \text{ Å}$

Extended Guinier regime for rods

Gaussian chains – Guinier regime

 Polymers consisting of a single chain of monomers with the orientation of each monomer entirely random

n links, each length a, random orientation "Gaussian chain"

$$\begin{split} I(Q) = & \frac{2I_0}{\phi^2} \left[\exp(-\phi) + \phi - 1 \right], \\ \text{whereby } \phi = Q^2 a^2 n/6 \end{split}$$

• Small Q: $I(Q) \approx \frac{2I_0}{\phi^2} \left(\underbrace{1 - \phi + \phi^2/2 - \phi^3/6 + \cdots}_{\approx \exp(-\phi)} + \phi - 1 \right)$ $= I_0 (1 - \phi/3) \approx \exp(-\phi/3) = \exp(-a^2 n Q^2 / 18)$ $\Rightarrow R_G^2 = a^2 n / 6$

Plot I(Q) v Q² to determine R_G

Gaussian chains – Kratky plots

Plot of Q²I(Q) v Q

- Provides information on compactness of polymer chains
- Open "Gaussian" chain?
- Closed ellipsoidal structure?
- Gaussian chain (e.g., unfolded protein)

$$I(Q) = \frac{2I_0}{\phi^2} \left[\exp(-\phi) + \phi - 1 \right]$$
$$\Rightarrow \phi I(Q) = 2I_0 \frac{\left[\exp(-\phi) + \phi - 1 \right]}{\phi}$$

- Larger Q: $\phi I(Q) pprox 2I_0$
- Compact ellipsoid (e.g., globular protein)
 - Large Q: $\phi I(Q) \thickapprox 0$

PROVIDES IMPORTANT INFORMATION ABOUT DEGREE OF PROTEIN FOLDING!!

Porod regime, Porod's law, and the Porod plot

- Q ≫ 2π/a
 - a = characteristic length of scattering object
 - Probes local features at surface
 - i.e., interfaces with $\Delta \rho$ across boundary
 - If Q large enough, surface is smooth at that scale (Fresnel equations for reflectivity, see following video on x-ray reflectivity)
- Remember:

$$I(Q) = NV^2 (\Delta \rho)^2 [\mathcal{F}(Q)]^2$$

• For spheres and high Q:

$$\left[\mathcal{F}(Q)\right]^2 = \frac{3}{2R^3} \left(\frac{S}{V}\right) \frac{1}{Q^4}$$

Porod's law

$$\left(S = 4\pi r^2 \quad V = \frac{4}{3}\pi r^3\right)$$

$$\Rightarrow I(Q) = 2\pi N (\Delta \rho)^2 \frac{S}{Q^4}$$

Porod regime, Porod's law, and the Porod plot

- Porod plot: high Q
- Gradient -n
- n = ...
 - 1: rigid thin rods (1D)
 - 2: Gaussian chain
 - 3 4: rough interfaces
 - 4: smooth surface (c.f. x-ray reflectivity)

Polydispersity

Experimental details

Background subtraction

X-ray reflectometry

Introductory comments

Image taken from:

https://psec.uchicago.edu/blogs/photocathode_development/wpcontent/uploads/2013/03/Introduction-of-X-ray-Reflectivity11.pdf

- Determination of properties of surfaces, interfaces, thin films, multilayers
 - Thickness
 - Roughness
 - Density profiles
- XRR measures specularly reflected x-ray intensity as a function of α, the grazing incidence angle, typically up to approximately 2°
 - Intensity drops $\propto \alpha^{-4} \Rightarrow$ need for SR
 - Start measurement a little below α_c

The Fresnel equations for reflectivity

$$a_i = a_r + a_t$$

$$\frac{\cos\alpha}{\cos\alpha'} = 1 - \delta$$

Snell's law

$$\cos x \approx 1 - x^2/2 \text{ (for } x \ll 1)$$

$$\Rightarrow \frac{1 - \alpha^2/2}{1 - \alpha'^2/2} = 1 - \delta$$

$$\Rightarrow 1 - \alpha^2/2 = 1 - \alpha'^2/2 - \delta + \delta \alpha'^2/2$$

$$\Rightarrow \alpha^2 \approx \alpha'^2 + 2\delta$$

The Fresnel equations for reflectivity

 $r = a_r/a_i$

$$a_i = a_r + a_t$$

- Reflection amplitude

$$r = \frac{\alpha - \alpha'}{\alpha + \alpha'}$$

$$= \frac{\alpha - \sqrt{\alpha^2 - 2\delta}}{\alpha + \sqrt{\alpha^2 - 2\delta}}$$

$$= \frac{1 - \sqrt{1 - 2\delta/\alpha^2}}{1 + \sqrt{1 - 2\delta/\alpha^2}}$$

$$(1-x)^{n} \approx 1 - nx$$

$$\Rightarrow r = \frac{1 - (1 - \delta/\alpha^{2})}{1 + (1 - \delta/\alpha^{2})}$$

$$= \frac{\delta}{2\alpha^{2}}$$

$$R = r^{2} = \frac{\delta^{2}}{4\alpha^{4}}$$

The Fresnel equations for reflectivity

Reflectivity (perfectly smooth surface)

$$R = r^2 = \frac{\delta^2}{4\alpha^4}$$

- But $\alpha_c = \sqrt{2\delta}$ $\Rightarrow R = \left(\frac{\alpha_c}{2\alpha}\right)^4; \ \alpha \gg \alpha_c$
- $\alpha_c \Rightarrow$ electron density, material type $\alpha_c = \lambda \sqrt{rac{
 ho r_0}{\pi}}$
- Rule of thumb: $\alpha_c \; [\text{deg.}] = \left(\frac{Z^{1/2}}{30}\right) \lambda \; [\text{Å}]$

Surface and interface roughness

- Roughness $\gtrsim \lambda$?
 - Reflectivity impacted

Thin films and Kiessig fringes

Thin film example – quasicrystal TiNiZr on AI_2O_3

- TiNiZr alloy icosahedral quasicrystal thin film deposited on sapphire(0001)
 - 120 nm thick
 - 1-Å radiation
 - Slow oscillation: $\Delta \theta = 0.72^{\circ}$
 - $\Delta = \lambda/(2\Delta\theta) = 3.98 \text{ nm}$
 - Oxidized in air \Rightarrow 4 nm QC-oxide

Multilayers

- ML defined by:
 - Two sublayers of differing electron density
 - One low density ρ_1 , thickness t_1
 - One high density ρ_2 , thickness t_2
 - Periodicity $\Lambda = t_1 + t_2$
 - Ratio of t_1 sublayer thickness to $\Lambda = \Gamma$
 - Number of periods N
 - Substrate type
 - Interfacial interdiffusivity/roughness

Monitoring thin film growth with XRR

Two effects

- Roughness oscillations reflectivity changes cyclically as each monolayer is deposited
 - Roughest for 50% monolayer coverage (see next slide)
 - Smoothest when monolayer complete
 - Full cycle for each ML grown
- Kiessig fringes
 - Position detector @ (0 0 ¹/₂) along specular CTR
 - From Bragg's law, maximum to be expected every two monolayers

Monitoring thin film growth with XRR

Monitoring thin film growth with XRR

12 ML growth of La_{1-x}Sr_xMnO₃

Movie of YBCO HTSC growth in-situ

