



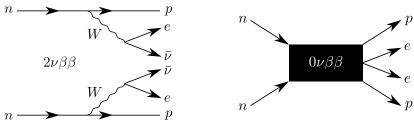




# The search for neutrinoless double beta decay with GERDA

Chloe Ransom

University of Zurich


11th July 2018



C. Ransom (UZH)

**GERDA** experiment

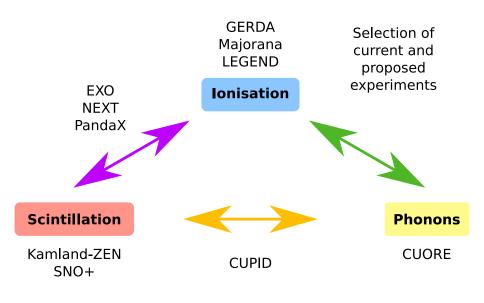
### Neutrinoless double-beta decay $(0\nu\beta\beta)$



- Can explain mass of neutrino with small Majorana mass component
- Hypothetical lepton number violating process
- ullet Potentially allowed for even-even nuclei with 2
  uetaeta decay
- ullet  $\mathcal{O}(10)$  experimentally interesting nuclei o but no clear winner

$$T_{1/2}^{-1} = G|M|^2 m_{\beta\beta}^2$$

for simple light Majorana neutrino exchange (G is phase-space factor, M is nuclear matrix element),  $\sim$ const. between isotopes


C. Ransom (UZH) GERDA experiment 11th July 2018 2 / 43

#### $0\nu\beta\beta$ : isotopes

- Different isotope choice for different experimental approaches
- Various considerations: natural abundance/ enrichment, detector technology, resolution etc.
- If signal, potential complementarity between experiments for determining process mechanism

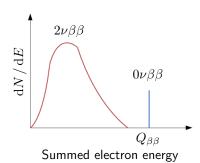
| Isotope          | Natural abundance | $Q_{etaeta}$ (keV) |  |
|------------------|-------------------|--------------------|--|
| <sup>48</sup> Ca | 0.2%              | 4263               |  |
| $^{76}Ge$        | 7.6%              | 2039               |  |
| $^{82}Se$        | 9.2%              | 2998               |  |
| $^{96}Zr$        | 2.8%              | 3348               |  |
| $^{100}Mo$       | 9.6%              | 3035               |  |
| $^{116}Cd$       | 7.6%              | 2813               |  |
| $^{130}Te$       | 34.1%             | 2527               |  |
| $^{136}Xe$       | 8.9%              | 2459               |  |
| $^{150}Nd$       | 5.6%              | 3371               |  |

### Experimental techniques

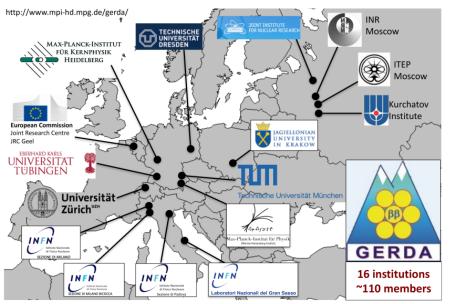


#### Detecting $0\nu\beta\beta$

- Signature in calorimeters would be monoenergetic line,  $Q_{\beta\beta}$ , in energy spectrum of emitted electrons
- Sensitivity to half-life of decay depends on background
- Background limited:


$$T_{1/2}^{0\nu} \propto \epsilon \sqrt{\frac{Mt}{BI \cdot \Delta E}}$$

Background free:


$$T_{1/2}^{0\nu} \propto \epsilon M t$$

where  $\epsilon$ : efficiency; Mt: exposure; BI: background events per kg·yr·keV;

 $\Delta E$ : resolution

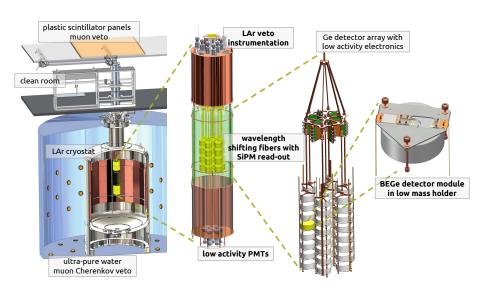


#### GERDA collaboration



6 / 43

- I GERDA working principle
- II Energy scale and resolution
- III Background reduction
- IV Final analysis and results
- V Towards the inverted hierarchy


#### Part I

# GERDA working principle

### Searching for $0\nu\beta\beta$ with GERDA

- GERDA searches for  $0\nu\beta\beta$  of <sup>76</sup>Ge at LNGS [The European Physical Journal C 73.3 (2013) 2330]
- 3500 m.w.e., muons flux reduction  $10^6 \rightarrow 1 \text{ per } m^2 h$
- $Q_{\beta\beta} = 2039 \text{ keV}$
- Diodes isotopically enriched up to 88%, act as both source and detector
- Ge detectors have high intrinsic purity, excellent energy resolution (3-4 keV FWHM,  $\sim$ 0.2% at  $Q_{\beta\beta}$ )
- Well established, commercially available technology

#### GERDA experiment

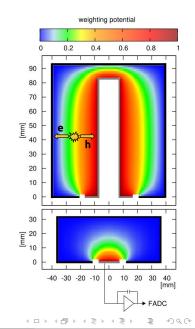


#### Detector types

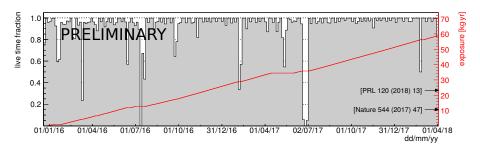
#### Semi-coaxial Ge detector (Coax)

- 7 enriched detectors
- 3 non-enriched detectors
- Total enriched mass 15.6 kg


#### Broad Energy Ge detector (BEGe) [The European Physical Journal C 75.2 (2015): 39.]


- 30 enriched detectors
- Superior pulse shape discrimination (PSD), energy resolution
- Total enriched mass 20.0 kg




#### Ge detector signals

- lonising radiation... ionises!
- Number of charge carriers proportional to energy deposition
- Electron/hole pairs drift in electric field
- Shockley-Ramo theorem gives charge/current at readout electrode
- Different electric field for Coax/BEGe detectors





#### Data taking



Phase II data taking since December 2015

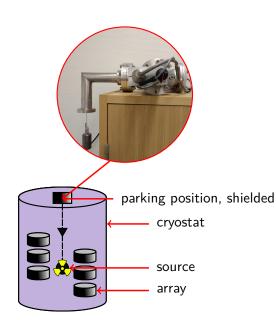
Events with energy  $Q_{\beta\beta}\pm25$  keV 'blinded' before analysis and cuts finalised

June 2016: 10.8 kg· yr ("PhIIa")

• Published in **Nature 554 (2017)** 

June 2017:  $23.2 \,\mathrm{kg} \cdot \mathrm{yr} \, (\mathrm{"PhIIa} + \mathrm{PhIIb"})$ 

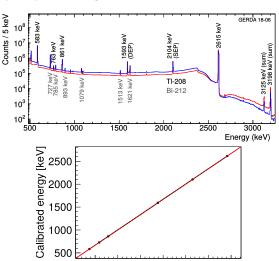
Published in PRL 120 (2018)


June 2018 (this presentation): 58.9 kg· yr

#### Part II

Energy scale and resolution

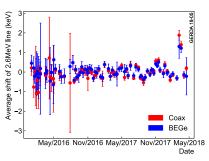
### Energy scale calibration

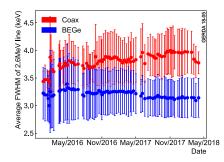

- Knowledge of energy scale, resolution vital for all physics analyses
- Energy scale calibrated by <sup>228</sup>Th sources ea.
   7-10 days
- Remotely lowered to three positions from above cryostat for  $\approx 2h$   $\rightarrow$  all detectors exposed
- Source Insertion System (SIS): two independent measurement systems determine position of source to ±1 mm



#### Energy calibration sources

[Journal of Instrumentation 10.12 (2015): P12005.]


- 3 low neutron emission  $^{228}$ Th sources  $\sim 10^{-6} \text{ n/(s·Bq)}$
- Half-life 1.9 yr
   → new sources in production
- Strong peaks at 2615 keV, 583 keV, range of peaks between for accurate calibration

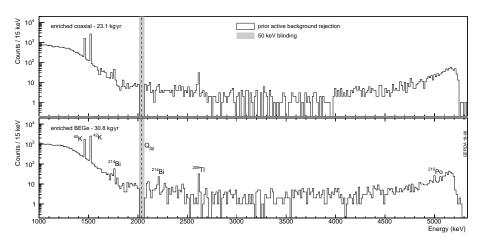



4 D > 4 B > 4 E > 4 E > E 990

Uncalibrated energy [a.u.]

#### Energy scale stability

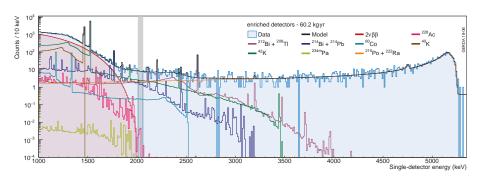





- Stability monitored via 2.6 MeV <sup>208</sup>TI line
- Between calibrations, stability monitored via pulser
- If detector shifts beyond its resolution, excluded from analysis dataset
- Resolution stable for more than two years

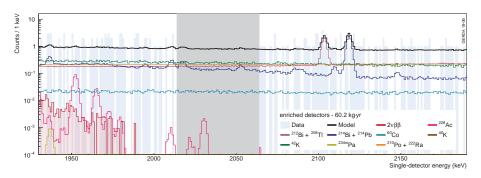
### Part III

# Background reduction


### Physics spectrum



• After muon veto, detector anti-coincidence cuts

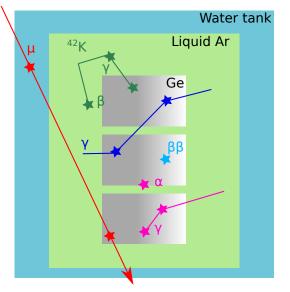

#### Background model

[The European Physical Journal C 74.4 (2014): 2764.]



- Spectrum before LAr and PSD cuts
- Fitted using screening measurements as priors
- ullet Low energy region dominated by 2
  uetaeta continuum

## Background model: predictions at $Q_{\beta\beta}$

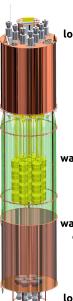



- Predicted flat background in  $Q_{\beta\beta}$  region
- $\bullet$  Even contributions from  $\alpha,~^{42}{\rm K}~\beta^-,~\gamma$  from  $^{232}{\rm Th}$  and  $^{238}{\rm U}$  chains

21 / 43

C. Ransom (UZH) GERDA experiment 11th July 2018

### Background reduction techniques



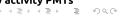

- ★ Signal! Single-site event
- ★ Cherenkov water veto for muons
- $\bigstar$  LAr scintillation veto for  $\gamma$ ,  $\beta$
- ★ Detector anti-coincidence cut
- $\bigstar$  Pulse shape discrimination (PSD) for multi-site and surface  $\alpha$  events

#### LAr veto

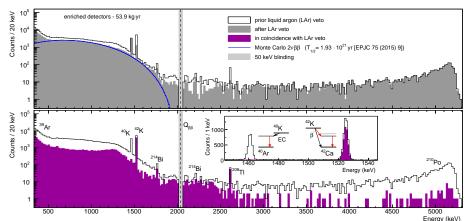
- Background  $\gamma$ s and  $\beta$ s deposit energy in LAr  $\rightarrow$  scintillation
- Scintillation light wavelength shifted:  $128 \, \text{nm} \rightarrow 430 \, \text{nm}$
- Light observed by PMTs, SiPMs






low activity PMTs

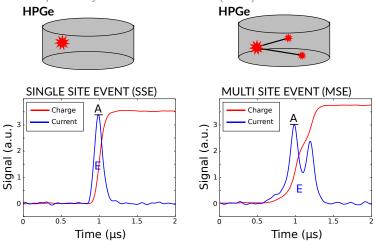
SiPM array


wavelength shifter coated fibre shroud

wavelength shifter coated copper shroud

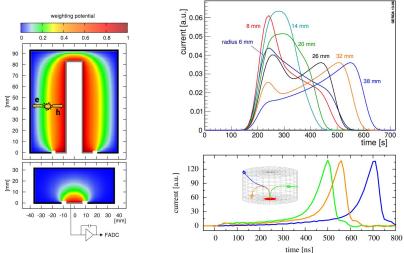
low activity PMTs




### LAr veto: suppression



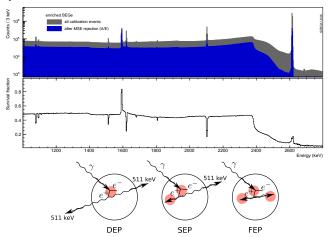
- Suppression of  $^{42}$ K  $\beta$  peak observed  $\rightarrow$  factor of 5 suppression [The European Physical Journal C, 78(5), 388]
- Acceptance calculated through pulser events  $(97.7\pm0.1)\%$


#### Pulse shape discrimination

Reject multi-site events by pulse shape differences
 [The European Physical Journal C 73.10 (2013): 2583.

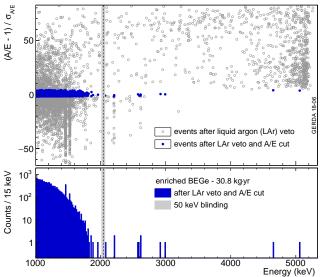


- BEGe: cut on ratio of current amplitude (A) to energy (E)


Pulse shape discrimination

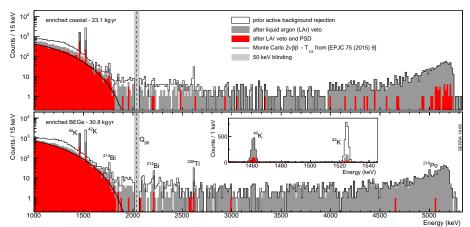


- $\bullet$  Coaxials have large p contact  $\to$  uniform field, electrons and holes contribute to signal
- ullet BEGes have point p contact o only holes contribute to signal


C. Ransom (UZH) GERDA experiment 11th July 2018 26 / 43

#### Pulse shape discrimination: calibration




- Double escape peak (DEP) from <sup>208</sup>TI: single-site sample
- Full energy peak (FEP) from <sup>212</sup>Bi: multi-site sample
- Cut value at 90% DEP survival for A/E and ANN

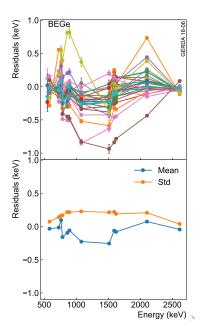
### Pulse shape discrimination: suppression



ullet Both K lines, high energy lpha events strongly suppressed

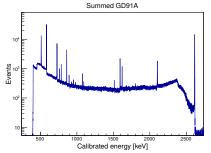
### Physics spectrum: revisited

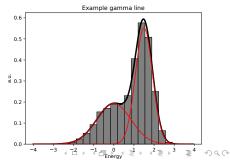



- After muon veto, detector anti-coincidence cuts
- Compton continuum suppressed
- Remaining features:  $2\nu\beta\beta$ ,  $^{40}$ K,  $^{42}$ K,  $\alpha$

#### Part IV

# Final Analysis and Results


### Deviations from linearity


- Combined calibration spectrum tests deviations from linearity: deviation of peak positions from literature positions
- Systematic uncertainty on energy scale: 0.2 keV for BEGe/Coax



#### Resolution at $Q_{\beta\beta}$ : combining detectors

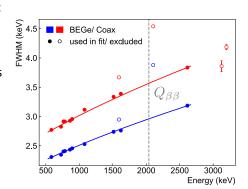
- Knowledge of resolution at  $Q_{\beta\beta}$  vital for  $0\nu\beta\beta$  analysis
- Detector resolutions measured from combined calibration spectra: best statistics
- Effective dataset resolution combines individual detectors according to individual exposures
- Combination of many Gaussians with negligible offsets:  $FWHM^2 = \frac{1}{\epsilon} \Sigma_i \epsilon_i FWHM_i^2$  with sum over detectors,  $\epsilon$  is exposure





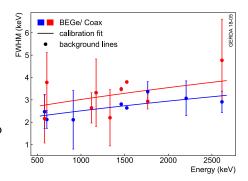
### Resolution at $Q_{\beta\beta}$

Dataset resolution curves are fit:

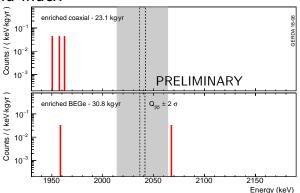

$$FWHM = \sqrt{A + BE}$$

where A accounts for electronics noise, B is fluctuations in produced charge carriers

- Some peaks excluded due to topology
- Resolution at  $Q_{\beta\beta}$  (preliminary):


BEGe: 3.0(1) keV

Coax: 3.6(1) keV



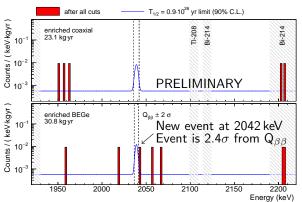

#### Resolution: cross-check with physics data

- Resolution curve from calibration data cross-checked with resolution of background peaks in physics data
- Previously, statistics too low for many background peaks
- ullet Ad-hoc constant term applied to Coax as a correction for  $^{42}{
  m K}$
- Now none, disfavoured by other lines



Background index




- Background index determined in region 1930-2190 keV, excluding two known  $\gamma$  lines and  ${\rm Q}_{\beta\beta}{\pm}5~{\rm keV}$
- Estimated background index at  $Q_{\beta\beta}$  from unblinded region:

Coax:  $0.7^{+0.5}_{-0.3} \cdot 10^{-3}$  cts/(keV·kg·yr) BEGe:  $0.6^{+0.4}_{-0.3} \cdot 10^{-3}$  cts/(keV·kg·yr)

Sensitivity is not limited by background, but by exposure

C. Ransom (UZH) GERDA experiment 11th July 2018 35 / 43

#### Unblinding



|         | Background index $10^{-4}$ cts/(keV·kg·yr) |                     | Events in 50 keV |      | Events in $Q_{etaeta}\pm2\sigma$ |      |
|---------|--------------------------------------------|---------------------|------------------|------|----------------------------------|------|
| Dataset | Expected                                   | True                | Expected         | True | Expected                         | True |
| Coax    | $7^{+5}_{-3}$                              | $5.7^{+4.1}_{-2.6}$ | 0.8              | 0    | 0.11                             | 0    |
| BEGe    | $6^{+4}_{-3}$                              | $5.6^{+3.4}_{-2.4}$ | 0.4              | 1    | 0.1                              | 0    |

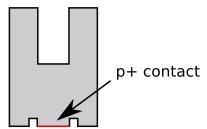
#### Statistical analysis

- Combined fit of Phases I and II
- Flat background + Gaussian signal

#### Frequentist (preliminary)

- Sensitivity for limit setting:  $1.06 \cdot 10^{26} \, \mathrm{yr} \, (90\% \, \mathrm{C.L.})$
- Best fit: no signal
- $T_{1/2}^{0\nu} > 0.90 \cdot 10^{26} \,\mathrm{yr} \; (90\% \; \mathrm{C.L.})$

#### Bayesian (preliminary)


- Sensitivity for limit setting:  $0.82 \cdot 10^{26} \, \mathrm{yr} \, (90\% \, \, \mathrm{C.l.})$
- Best fit: background only
- $T_{1/2}^{0\nu} > 0.76 \cdot 10^{26} \, \mathrm{yr} \; (90\% \; \mathrm{C.l.})$

#### Part V

# Towards the inverted hierarchy

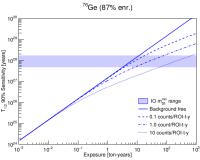
### GERDA upgrade: new detectors

- Upgrade April-May 2018
- 5 new enriched detectors (9.5 kg)
- Inverted Coaxial Point Contact (IC) detectors
- Similar energy resolution and PSD power as BEGe detectors
- Larger mass → make up loss in exposure due to upgrade time with mass increase





### GERDA upgrade: other activities






- ullet Denser fibre shroud o increase in veto efficiency
- Lower activity cables
- ullet JFET repair and exchange o improved reliability
- ullet Detector holder modification o less 'dead' material per Ge mass

#### **LEGEND**





- ullet Large Enriched Germanium Experiment for Neutrinoless etaeta Decay
- Majorana and GERDA collaborations join (among others)
- ullet Aim for discovery potential above  $10^{27}\,\mathrm{yr}$
- ullet Phased approach, 200 kg ightarrow 1 t Ge

#### LEGEND

#### LEGEND-200

- 200 kg stage at LNGS using GERDA cryostat
- Begin operation  $\sim 2021$
- Use IC detectors as tested in GERDA
- Background aim 0.2 cts/(keV·t·yr)
   → 1/5 GERDA Phase II

#### LEGEND-1T

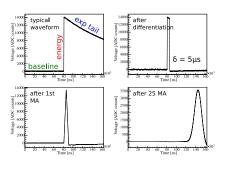
 Modular approach, deploy 200-250 kg stages



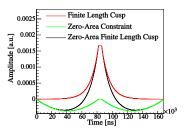
#### Conclusion

- GERDA continues to operate smoothly
- 58.9 kg· yr collected (c.f. aim of 100 kg· yr)
- New limit on half-life of  $0\nu\beta\beta$ -decay for  $^{76}$ Ge:  $T_{1/2}^{0\nu}>0.90\cdot 10^{26}\,{\rm yr}$  (90% C.L.)
- World's best sensitivity  $> 1 \cdot 10^{26} \, \mathrm{yr}$
- Upgrade will improve final sensitivity of GERDA
- Success suggests path to ton-scale experiment: LEGEND

C. R. is funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 674896.


C. Ransom (UZH) GERDA experiment 11th July 2018 43 / 43

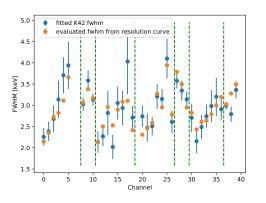
# Bonus slides

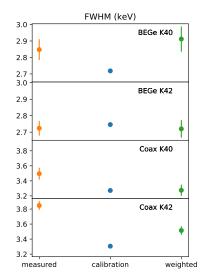

### Energy reconstruction

Two main energy filters reconstruct energy: [Physics Procedia 61 (2015) 673] Pseudo-Gaussian: Zero area cusp (ZAC):

- $25 \times 5 \,\mu$ s moving average
- Fast, robust → online processing

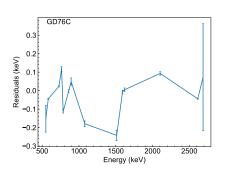


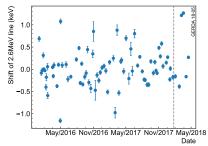

- Finite cusp with zero-area constraint
- Parameters optimised for each detector/calibration
- Improved energy resolution (Coax: 0.2-0.5 keV)
- Used for all final physics analysis

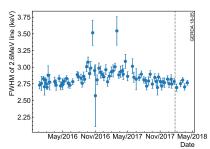



In both cases, extracted energy observable is height of filtered signal

#### K lines comparison


 Discrepancy in K lines resolution partially due to inhomogeneous exposure of detectors




### Checking of event 3 keV from $Q_{\beta\beta}$

- Waveform checked by eye
- Detector stable in energy and resolution at time of event
- No significant deviations from linearity observed







4 D > 4 B > 4 E > 4 E > E 990