
Physik-Institut

Programmieren in C++
FS 2022

Lecture 1: Introduction to programming

1 Introduction to linux environment

The first Linux operating systems was developed by Linus Torvald in 1991 August 25. It was
originally named ”Freeix” as ”Free Unix” operating system. Since its first introduction there
are now many different variations of Linux operating systems.
The physics institute if University of Zurich uses the OpenSUSE linux operating system.
CERN mainly uses CENTOS7, the most popular distribution is Ubuntu.
This block course will be dedicated to introduce you on how to program in a Linux environ-
ment.

1.1 Bourne again shell (bash)

In 1970 Bourne again shell was developed by Ken Thompson and since then all Unix distri-
bution is built on a Bourne again shell or ”bash”. Bash is a command line shell which can be
accessed as ”terminal” or ”console” (The KDE version of console is called konsole). Each time
when Bourne again shell is loaded, it runs the commands written in the ”bash run command
(bashrc)” file

$HOME/.bashrc

once. The dot in front of bashrc denotes ”hidden” files. From your home directory, to see all of
these hidden files using command. Note that some of your accounts on spinorX.physik.uzh.ch
may be using the ”z” shell instead of bash. You can check this by running the command

ps -p $$

PID TTY TIME CMD

5436 pts/3 00:00:00 bash

If you see the above, you are using bash and you can follow the rest of the instructions exactly.
If you see below, you are using zsh.

ps -p $$

PID TTY TIME CMD

7952 pts/0 00:00:00 zsh

If you are on zsh, you need to replace all instances of ”.bashrc” with ”.zshrc”. Otherwise the
remainder of the instructions will be the same.

ls -a

list subcomponents -all.
Any customization you would like to have can be added into the following run command file:

$HOME/.bashrc

Programmieren in C++ Lecture 1: Introduction to programming

Some of the customization include alias (to run multiple commands in one single command)
and re-defining existing shell environments (such as the location of home directory). It’s
important to note that you can very easily break your shell environment with a small typo,
or any changes you make. You should always try to make a backup in a manner similar to
this command:

cp $HOME/.bashrc $HOME/.bashrc_backup

Be aware however that if you use the above command, you will replace the existing backup of
your .bashrc with a new one. It would be best if you can make multiple backups indicating
when you made the backup. We will later go on creating a ”time-stamp”. For now, it is
important to note that there are a two environment variables that are most important:

– PATH: Path to your programs and scripts.
If you define this wrong, your system will break.

– LD LIBRARY PATH: Path to your library to load on default.
If you define this wrong, your system will not be able to compile and/or execute some
of the features.

You can modify these variables by declaring as such:

export PATH =$PATH:./

The above command will tell your shell environment to keep the existing PATH defined by
your operating system and to also look at your current directory (./). ”Adding” is denoted
with seperator (:). Now Add this line to your text editor (kate, gedit, emacs or etc.)

$HOME/.bashrc

Similarly, an alias can be defined in the following manner:

alias superclear="clear; clear; clear; clear; clear"

the command ”clear” is a default command in the bash environment. If you try using this
command now, you will realize that while your terminal is cleared when you scroll up in your
terminal session, you will see your previous command input and output. If you don’t want
to see any of your previous works in your terminal session, you must execute the command
”clear” multiple times. You can also tell your environment to instead ”clear many times”
you can define a new command (alias) to do so. Here the semi-colon(;) denotes ”end of one
command”. Alias can also be added into your

$HOME/.bashrc

so that you don’t have to define the aliases everytime when you start a new shell environment.

1.2 Scripting

Outside of $HOME/.bashrc, you can execute any number of commands in sequence by writing
the commands into a file. This file is called a script. However you need to tell your Bourne
again shell ”this is a script” before you can use as a script. Please see ”Script” below:

1 #!/bin/sh

2 #The above tells your shell that this is a script and anything below other

than comments→֒

3 #Should be treated as a command.

4 echo "This is a script"

1 INTRODUCTION TO LINUX ENVIRONMENT 2

Programmieren in C++ Lecture 1: Introduction to programming

The above script can be saved anything. Let’s call it ”Script1” and save it. If you try to
execute Script1 you will get a permission denied error.

> Script1

bash: ./Script1: Permission denied

This is because you haven’t told your file system that you have a permission to execute Script.
You can give yourself permission by using the following command:

chmod u+x Script1

Now you can run it using the command:

Script1

1.3 C programming language

Scripting is considered as ”light-weight” programming which allows you to use the computer
in many different ways easily but it is limited in features and speed. Since 1972 Dennis Ritchie
has been a new programming that is ”better than B programming language” and he named
C. C may not be as simple and easy as a simple bash script, it is much more powerful than
B and has many more features. ”Power” in context of programming is the amount of control
that your language gives you over the computer.
The main difference between C programming language from bash scripting language is that
when you write a bash script, it can be executed as soon as you give your environment
permission. For a C code, you must compile it with libraries so that the computer can
understand your command and execute it.

2 Compiling

Compiling allows your computer to assemble your code and all the necessary tools required
within the operating system and build a program. One of the best advantage of the compila-
tion is that a proper program can be compiled in any platform (Linux, Windows or MacOS)
using local systems libraries. This means your code can be compiled in any computer and can
be executed.
There are many options of compilers available to many different operating systems. Some
examples are:

– VisualStudio has a built-in C/C++ compiler for Microsoft Windows.

– gcc/g++ are C/C++ compilers used by Unix environment.

– cmake is a cross platform compiler.

For this block course, we will only use gcc and g++ in a linux environment.

2.1 Command line and script compiling

Simplest way to compile is from command line using gcc/g++ as seen below:

g++ source_code.cxx -o compiled_program.exe

#Here, g++ will take the source_code.cxx and

#output a program (-o) specified as compiled_program.exe

2 COMPILING 3

Programmieren in C++ Lecture 1: Introduction to programming

This is as simple it can gets. To test a small program quickly, this is a perfect. However most
program will have more than one source code, and need to include external libraries. See the
example below:

1 g++ -c source_code2.cxx -o source_code2.cxx.o

2 #-c compile the source file source_code2.cxx by itself knowing that it is

missing components.→֒

3 #-o output the partially compiled output as source_code2.cxx.o

4 g++ -c source_component.cxx -o source_component.cxx.o

5 #Compile the partial source code and its component together into

compiled_program.exe→֒

6 g++ -o compiled_program.exe source_component.cxx.o source_code2.cxx.o

Obviously all of the above command lines can be called from a script. You can create and
save ”compilescript” and activate it to compile your packages.

1 #!/bin/sh

2 g++ -c source_code2.cxx -o source_code2.cxx.o

3 g++ -c source_component.cxx -o source_component.cxx.o

4 g++ -o compiled_program.exe source_component.cxx.o source_code2.cxx.o

In fact, programmers used a script to compile their code so often, there is a default compiling
capability built into B-shell and you can invoke it by stating

make

make: *** No targets specified and no makefile found. Stop.

Of course you need to build your makefile before you can use this feature.

2.2 Makefile

The built-in make function is impressive, it can compile all codes within all directories and
subdirectories from where make is called if it has been programmed properly. It also has a
built-in parallel compilation function.
When make is invoked, B-shell will look for a file named ”Makefile” it at the current directory.
Below is an example of a Makefile.

1 #This is the directory of YOUR source code.

2 sourcedirectory=./

3

4 #These are your source codes and components

5 first_part=source_code.cxx

6 second_part=source_code2.cxx

7 component=source_component.cxx

8

9 #Here, we're defining the compilers.

10 CC=gcc

11 CPP=g++

12 NVCC=nvcc

13

14 #We're defining systems variable such as "remove" from system and

"timestamp"→֒

15 RM=rm

16 TIMESTAMP=$(shell date +"%Y_%m_%d_T-%H_%M")

17

2 COMPILING 4

Programmieren in C++ Lecture 1: Introduction to programming

18 #When a Makefile is executed, by default it tries the option "all"

19 all: clean first second third

20 #We will tell the makefile to clean, compile the first component, second

then the third component.→֒

21

22 #Let's define what the first one is

23 first:

24 #Here, we define what "first_one" will do.

25 #At sign @ will silence the command appering in the terminal

26 @echo Compiling $(sourcedirectory)$(first_part)

27 @$(CPP) -o $(first_part).exe $(sourcedirectory)$(first_part)

28 @echo Successfully compiled $(sourcedirectory)$(first_part)

29 @echo The executable is $(first_part).exe

30 second:

31 #Let's now compile the second part.

32 @echo Compiling $(sourcedirectory)$(second_part)

33 @$(CPP) -c -o $(second_part).o $(sourcedirectory)$(second_part)

34 @echo Successfully compiled $(sourcedirectory)$(second_part)

35 @echo The unliked compiled code is $(second_part).o

36

37 @echo Compiling $(sourcedirectory)$(component)

38 @$(CPP) -c -o $(component).o $(sourcedirectory)$(component)

39 @echo Successfully compiled $(sourcedirectory)$(component)

40 @echo The unliked compiled code is $(component).o

41 third:

42 #Let's link the second part

43 @echo Linking $(component).o and $(second_part).o

44 @$(CPP) -o compiled_program.exe $(sourcedirectory)$(component).o

$(sourcedirectory)$(second_part).o→֒

45 @echo Successfully compiled $(sourcedirectory)$(component)

46 @echo Everything is linked and compiled into compiled_program.exe

47 clean:

48 @echo $(TIMESTAMP)

49 @echo "Making old/$(TIMESTAMP) directory"

50 $(shell mkdir -p old/$(TIMESTAMP))

51 @echo "Copying the source to the old directory"

52 $(shell cp -r $(sourcedirectory)/*.h old/$(TIMESTAMP))

53 $(shell cp -r $(sourcedirectory)/*.cxx old/$(TIMESTAMP))

54 @echo "Moving all .exe to the old directory"

55 $(shell mv *.exe old/$(TIMESTAMP))

56 $(shell mv *.o old/$(TIMESTAMP))

57 @echo "Copying the Makefile to the old directory"

58 $(shell cp Makefile old/$(TIMESTAMP))

Please inspect the above materials for the practical programming session. Please do not copy
and paste, as that defeats the purpose of the practical session. The first practical part of the
course will be on getting familiar with Bourne again shell and compiling a given code. Please
do type everything from scratch.

2 COMPILING 5

Programmieren in C++ Lecture 1: Introduction to programming

= The practical programming part of this
course will now begin for 60 minutes. =

2 COMPILING 6

Programmieren in C++ Lecture 1: Introduction to programming

3 Compile one.cxx in three different ways

Create a file called ”one.cxx” and write in the following lines:

1 //one.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 using namespace std; //using standard namespace, otherwise every instances

of command such as cout need the prefix std:cout or std:endl.→֒

5 int main (){ //Beginning of the function "integer" main

6 string name="You";

7 cout<<"Hello "<<name<<endl;

8 return 0; //Return and completing the function.

9 }

This is a C code that uses C++ namespace and C++ library. C++ is really a large repository
of functions created for C language.

3.1 First exercise

1. Compile one.cxx into one.exe from command line using g++.

2. Execute one.exe and if it runs, delete one.exe

3. Write a bash script to compile one.cxx as s one.exe and compile.

4. Create a Makefile that will have the following options:

– install: Compile one.cxx with standard c++ flags and creates an executable called
m one.exe

– clean: Create a directory called ”old” then create a sub directory with time stamp
(yyyy-mm-dd-hh-mm-ss) and copy one.cxx and Makefile into the new sub directory.
Clean must also remove m one.exe if it exists.

– all: performs clean then install

4 Compile two.cxx with three.cxx

Inspect the file ”two.cxx”

1 //two.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 #include "three.h"//This time, you are including a local package called

"three.h"→֒

5 using namespace std; //using standard namespace, otherwise every instances

of command such as cout need the prefix std:cout or std:endl.→֒

6 int main (){ //Beginning of the function "integer" main

7 string name="You";

8 cout<<"Hello "<<name<<endl;

9 greet(name);

10 return 0; //Return and completing the function.

11 }

Inspect the file ”three.h”

4 COMPILE TWO.CXX WITH THREE.CXX 7

Programmieren in C++ Lecture 1: Introduction to programming

1 //three.h

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 using namespace std;

5 void greet(string input);

”three.h” is a ”header” file which will be read ahead of three.cxx. the name of the header files
must same as the cxx package. Now, let’s inspect ”three.cxx”.

1 //three.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 #include "three.h"//This time, you are including a local package called

"three.h"→֒

5 using namespace std;

6 void greet(string input){

7 cout<<"Hi "<<input<<endl;

8 }

Note that ”three.h” has an ”empty” version of ”greet” function. The empty version is called
a constructor in object oriented programming. Also note that all three files must include
”three.h” but no header is required for two.cxx. The lecture part will explain further. For
now, let’s compile them.

4.1 Second exercise

1. Compile two.cxx with three.cxx from command line using g++ as four.exe.

2. Execute four.exe and if it runs, delete four.exe

3. Write a bash script to compile two.cxx with three.cxx as s four.exe and compile.

4. Create a Makefile that will have the following options:

– install: Compile two.cxx with three.cxx and standard c++ flags then creates an
executable called m four.exe

– clean: Create a directory called ”old” then create a sub directory with time stamp
(yyyy-mm-dd-hh-mm-ss) and copy two.cxx, three.cxx, three.h and Makefile into
the new sub directory. Clean must also remove m four.exe if it exists.

– all: performs clean then install

4.2 Third exercise

1. Compile three.cxx as linker three.cxx.o then compile three.cxx.o with one.cxx as five.exe
using g++

2. Execute five.exe and if it runs, delete five.exe

3. Do the same using bash script as s five.exe and compile.

4. Create a Makefile that will have the following options:

– linker: Creates three.cxx.o linker.

– assemble: Compiles three.cxx.o with one.cxx

– clean: Create a directory called ”old” then create a sub directory with time stamp
(yyyy-mm-dd-hh-mm-ss) and copy one.cxx, three.cxx, three.h and Makefile into
the new sub directory. Clean must also remove m five.exe if it exists.

– all: performs clean, linker then assemble

4 COMPILE TWO.CXX WITH THREE.CXX 8

Programmieren in C++ Lecture 1: Introduction to programming

= The theoretical lecture part of this course
will now continue for 15 minutes. =

4 COMPILE TWO.CXX WITH THREE.CXX 9

Programmieren in C++ Lecture 1: Introduction to programming

5 Programming in C language

Until now, you have been really working in Bourne again shell to compile a couple of C++
codes. We will now go over programming in C. You may be wondering why we are starting
with C. The simple answer is that there is no difference between C and C++. The C++
project is an on-going effort to add new features and improve on existing C language. With
C, you have the capability of building any new objects or functions into a packages and you can
use them in any of your future works. C++ are literally additional packages (++) available
for C.
We will program in C language, but we will be using C++ packages. In a simpler way, we
will program in C++.

5.1 Main

As you may have noticed in previous works, there is a basic structure you must follow in a C
program. First you must have a main code. Inspect below a simple main.cxx code.

1 //main.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h>

4 int main (){

5 return 0;

6 }

main.cxx will do the following: when the program is executed, it will return an integer 0.
In C world, ”return” means, return to command line. However, no one tells the computer
what ”int” or ”return means, so we must tell the computer to make sure it reads ”standard
input/output (stdio)” ahead of the main code. In many cases this header file is located in:

/usr/include/stdio.h

This is because your Bourne again shell is looking at the PATH

/usr/bin/

and from there, your shell gets an instruction to look at:

/usr/include/

whenever you write

1 #include

You should also note that you need to tell computer ”I am giving you a stream of input and
I expect an output.” To do so, you need to include the input/output stream (iostream) by
placing

1 #include <iostream>

at the top of your code. Also notice that while all functions inside your ”main” code ends
with a semicolon(;), they are not present for the ”include” lines this is because your computer
is not reading these codes as ”C” code yet. Now, let’s continue and look at another simple
code.
Now, let’s inspect Helloworld1.cxx below:

5 PROGRAMMING IN C LANGUAGE 10

Programmieren in C++ Lecture 1: Introduction to programming

1 //Helloworld1.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 int main (){

5 std::cout<<"Hello World"<<std::endl;

6 return 0;

7 }

Notice that a standard syntax for ”c out” and ”end line” need to have prefix std:: You can
avoid typing std:: everytime by declaring that you will be using names from c++ std name
package. Inspect Helloworld2.cxx below:

1 //Helloworld2.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 using namespace std;

5 int main (){

6 cout<<"Hello World"<<endl;

7 return 0;

8 }

By using the namespace provided by standard package, we no longer have to declare std:: for
many simple functions.

5.2 Methods

You do not have to code everything in main. It is also not advisable because the reason
we program is to get the computer to do the same task many times and quickly. If we write
everything in main, we have to write the section of code everytime we need to. We can instead
write this subsection of code somewhere else. Inspect Helloworld3.cxx below:

1 //Helloworld3.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 using namespace std;

5 void sayhello(){

6 cout<<"Hello world"<<endl;

7 }

8 int main (){

9 sayhello();

10 return 0;

11 }

We can also make sure that the method will take an input.

1 //Helloworld4.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 using namespace std;

5 void sayhelloto(string input){

6 cout<<"Hello "<<input<<endl;

7 }

8 int main (){

9 sayhelloto("world");

5 PROGRAMMING IN C LANGUAGE 11

Programmieren in C++ Lecture 1: Introduction to programming

10 sayhelloto("Steven");

11 return 0;

12 }

You can also expect a return.

1 //adding.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 using namespace std;

5 int add(int first, int second){

6 return first+second;

7 }

8 int main (){

9 cout<<add(2,4)<<endl;

10 return 0;

11 }

This can get very messy very quickly. You can also choose to put the functions below main.

1 //Helloworld5.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 using namespace std;

5 void sayhelloto(string input);

6 int main (){

7 sayhelloto("world");

8 sayhelloto("Steven");

9 return 0;

10 }

11 void sayhelloto(string input){

12 cout<<"Hello "<<input<<endl;

13 }

You may notice that before main

1 void sayhelloto(string input);

is declared. This is called a ”constructor”. The constructor tells the computer that, ”Hey,
there is a function within this code called sayhelloto, which takes in a string as an input. If
you see sayhelloto, don’t panic and look for it first.

5.3 Package building

Obviously writing everything into a single main code gets messy quickly. Furthermore, no
function you build will be accessible by any other programs. You can fix these problems
quickly by writing the function somewhere else separately.
You need to make sure you compile the external function with the main function and also
make sure that the compiler is aware that there are external functions. Your main code must
look as the following

1 //Helloworld6.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h> //"including" headers from default library directory

4 #include "myfunctions.h" // " is to used to denote "local" library.

5 PROGRAMMING IN C LANGUAGE 12

Programmieren in C++ Lecture 1: Introduction to programming

5 using namespace std;

6 int main (){

7 sayhelloto("world");

8 sayhelloto("Steven");

9 return 0;

10 }

Of course you need to build your myfunctions.h

1 //myfunctions.h

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h>

4 using namespace std;

5 void sayhelloto(string input);

and your myfunctions.cxx

1 //myfunctions.cxx

2 #include <iostream> //"including" input/output stream.

3 #include <stdio.h>

4 #include "myfunctions.h"

5 using namespace std;

6 void sayhelloto(string input){

7 cout<<"Hello "<<input<<endl;

8 }

This concludes the theory section for today. Now, let’s practice.

5 PROGRAMMING IN C LANGUAGE 13

Programmieren in C++ Lecture 1: Introduction to programming

= The practical programming part of this
course will now begin for 60 minutes. =

5 PROGRAMMING IN C LANGUAGE 14

Programmieren in C++ Lecture 1: Introduction to programming

6 Hello world

1. Reproduce, compile and run all of the codes shown from theory section.

2. Create a main function that accepts a string by

1 std::cin

and uses myfunctions.cxx to print

1 "hello " inputstring.

3. Create a new functions package that performs simple add and subtraction operations
for 2 integers each.

4. Compile myfunctions.cxx, the new function and main together and to return values of
2+3, then returns the value of 4-7 and then says hello to you.

5. Modify your code such that your program takes 10 integers and returns the sum of all
of them.

6. Research and read about input and output arguments for the main function.

1 main (int argc, char *argv[])

7 Conclusion

You have now learned and programmed some basic codes that will come useful for all of your
future works in C++. As part of homework, I strongly recommend you to try to impement
in argc and char* argv[] in your code such that you can execute your program with a number
of arguments.

~>addintegers.exe 2 3 4

9

Steven J. Lee, Roland Bernet 22. August 2022

7 CONCLUSION 15

	Introduction to linux environment
	Bourne again shell (bash)
	Scripting
	C programming language

	Compiling
	Command line and script compiling
	Makefile

	Compile one.cxx in three different ways
	First exercise

	Compile two.cxx with three.cxx
	Second exercise
	Third exercise

	Programming in C language
	Main
	Methods
	Package building

	Hello world
	Conclusion

