Achievements

Lecture 1: VESTA plotting of crystal structures

Lecture 2: How to describe a crystal structure

- -- Crystal lattice
- -- Basis

Lecture 3 +4: How to resolve crystal structures

- -- Reciprocal space
- -- Scattering theory (Form and Structure Factor)
- -- Resolving the crystal structure of a superconductor

Lecture 5: How to crystals bind together

-- van der Waals, ionic, covalent crystal bindings

Lecture 6-7: Crystal vibrations (phonons)

- -- Tasks
- -- Why is phonons important
- -- Theory & concepts
- -- How to measure phonons

Tasks

(1) Read chapter 5

- -- Phonon heat capacity (12 pages)
- -- Anharmonic crystal interactions (2 pages)
- -- Thermal conductivity (5 pages)

(2) Who is summarizing next week?

(3) Solve exercise sheet 5

Exercises

Exercise 1 Elastic waves in lattices and continuous media In continuous media the 1D wave equation reads

$$\frac{\partial^2 \xi(x,t)}{\partial t^2} = v^2 \frac{\partial^2 \xi(x,t)}{\partial x^2},\tag{1}$$

with the speed of sound $v = \sqrt{E/\rho}$, elastic modulus E, and density ρ . For a linear chain of atoms with distance a, mass m, and spring constant C we get

$$m\frac{\partial^2 \xi_n}{\partial t^2} = C \left(\xi_{n+1} + \xi_{n-1} - 2\xi_n\right).$$
 (2)

Show that in the limit of continuous media $(\lambda \gg a)$ equation (2) transitions into equation (1). Calculate *E* as a function of *C*, *m*, and *a*.

Exercise 2 Linear chain of atoms with different spring constants

Calculate the dispersion relation $\omega(k)$ for a linear chain of identical atoms of mass m, distance between atoms d = a/2, and alternating spring constants C_1 and C_2 . (The unit cell with two identical atoms has thus a lattice constant of a.) Draw $\omega(k)$ for $C_1/C_2 = 1.0, 0.6, 0.3, and 0.1$.

Exercise 3 Acoustic and optic waves in 2D

Sketch the longitudinal and transverse waves for optic and acoustic modes in a 2D NaCl structure with lattice constant a. The wavevector with $\lambda = 4a$ is in the [1 0] direction.

Achievements

Lecture 1: VESTA plotting of crystal structures

Lecture 2: How to describe a crystal structure

- -- Crystal lattice
- -- Basis

Lecture 3 +4: How to resolve crystal structures

- -- Reciprocal space
- -- Scattering theory (Form and Structure Factor)
- -- Resolving the crystal structure of a superconductor

Lecture 5: How to crystals bind together

-- van der Waals, ionic, covalent crystal bindings

Lecture 6-7: Crystal vibrations (phonons)

- -- Tasks
- -- Why is phonons important
- -- Theory & concepts
- -- How to measure phonons

Phonons can make superconductivity

E. Maxwell, Phys. Rev. **86**, 235 (1952) and B. Serin et al., Phys. Rev. B **86** 162 (1952))

http://www.chm.bris.ac.uk/ webprojects2000/igrant/theory.html

Phonons can conduct heat

© 2007 Thomson Higher Education

Achievements

Lecture 1: VESTA plotting of crystal structures

Lecture 2: How to describe a crystal structure

- -- Crystal lattice
- -- Basis

Lecture 3 +4: How to resolve crystal structures

- -- Reciprocal space
- -- Scattering theory (Form and Structure Factor)
- -- Resolving the crystal structure of a superconductor

Lecture 5: How to crystals bind together

-- van der Waals, ionic, covalent crystal bindings

Lecture 6-7: Crystal vibrations (phonons)

- -- Tasks
- -- Why is phonons important
- -- Theory & concepts
- -- How to measure phonons

Linear chain - Models

Madelungs constant: $\alpha = 2 ln(2)$

Distortion Energy : $E = 0.5 * constant * \delta^2$

Phonon dispersion: $\omega =$

Longitudinal and Transverse Phonons

LA = Longitudinal Acoustic LO = Longitudinal Optical TA = Transversal Acoustic TO = Transversal Optical

Acoustic and optical modes

LA = Longitudinal Acoustic LO = Longitudinal Optical TA = Transversal Acoustic TO = Transversal Optical

https://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/phonons/

Number of phonon branches

p = number of atoms in the primitive cell

3 acoustic branches3p-3 optical branchesTotal 3p phonon branches

Phonons in aluminium

http://iopscience.iop.org/article/10.1088/0953-8984/24/5/053202

Phonons in diamond

FCC path: Γ-X-W-K-Γ-L-U-W-L-K|U-X [Setyawan & Curtarolo, DOI: 10.1016].commatsci.2010.05.010]

p = number of atoms in the basis of the primitive cell
3xp phonon branches
3 Acoustic branches and 3p-3 optical branches

Triple axis spectrometer

Neutron Source

https://www.helmholtz-berlin.de/forschung/oe/em/transport-phenomena/flex/index en.html

The Nobel Prize in Physics 1994 Bertram N. Brockhouse, Clifford G. Shull

Triple axis spectrometer

Figure 5: (a) Schematic view of how two points of the phonon dispersion curve can be measured using either (b) constant-energy scan or (c) constant-**Q** scan. By performing multiple scans it is possible to map out the complete dispersion (see below). https://www.psi.ch/Ins/TrainingEN/INS_Student_Practicum_PSI.pdf

Triple axis spectrometer with x-rays

FIG. 5. (Color online) [(a)–(h)] IXS *E* scans of the low-energy phonons for wave vectors along the (0,k,6.5) line. Solid lines are fits to a sum of Gaussian functions. Data have been multiplied by $1 - \exp[-E/(k_BT)]$ to correct for the Bose factor. The horizontal bar in panel (a) is the instrumental resolution. [(i) and (j)] Phonon dispersion curves along the (0,k,6.5) line for T = 55 and 155 K. The solid circles represent the phonon peak positions determined from fitting data such as that in (a)–(h); the dashed lines are guides to the eye for the different branches. The resolution-deconvolved phonons widths are represented by vertical bars. The vertical dotted line is the CDW ordering wave vector.

Phonons in aluminium

http://iopscience.iop.org/article/10.1088/0953-8984/24/5/053202

Time-of-flight spectrometry

Flugzeitspektrometer NEAT II

Infografik: E. Strickert

https://www.helmholtz-berlin.de/forschung/zukunftsprojekte/neat2_en.html

Acoustic Phonon in Sr₂RuO₄

