
Achievements

Lecture	1:	VESTA	plotting	of	crystal	structures
Lecture	2:	How	to	describe	a	crystal	structure
-- Crystal	lattice
-- Basis

Lecture	3	+4:	How	to	resolve	crystal	structures
-- Reciprocal	space
-- Scattering	theory	(Form	and	Structure	Factor)
-- Resolving	the	crystal	structure	of	a	superconductor

Lecture	5:	How	to	crystals	bind	together
-- van	der	Waals,	ionic,	covalent	crystal	bindings

Lecture	6-7:	Crystal	vibrations	(phonons)
-- Tasks
-- Why	is	phonons	important
-- Theory	&	concepts
-- How	to	measure	phonons



Tasks

(1) Read	chapter	5
-- Phonon	heat	capacity	(12	pages)
-- Anharmonic crystal	interactions	(2	pages)
-- Thermal	conductivity	(5	pages)

(3)	Solve	exercise	sheet	5

(2)	Who	is	summarizing	next	week?



Exercises



Achievements

Lecture	1:	VESTA	plotting	of	crystal	structures
Lecture	2:	How	to	describe	a	crystal	structure
-- Crystal	lattice
-- Basis

Lecture	3	+4:	How	to	resolve	crystal	structures
-- Reciprocal	space
-- Scattering	theory	(Form	and	Structure	Factor)
-- Resolving	the	crystal	structure	of	a	superconductor

Lecture	5:	How	to	crystals	bind	together
-- van	der	Waals,	ionic,	covalent	crystal	bindings

Lecture	6-7:	Crystal	vibrations	(phonons)
-- Tasks
-- Why	is	phonons	important
-- Theory	&	concepts
-- How	to	measure	phonons



http://www.chm.bris.ac.uk/
webprojects2000/igrant/theory.htmlE. Maxwell, Phys. Rev. 86, 235 (1952) and 

B. Serin et al., Phys. Rev. B 86 162 (1952))

Phonons	can	make	superconductivity



Phonons	can	conduct	heat
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-- Resolving	the	crystal	structure	of	a	superconductor

Lecture	5:	How	to	crystals	bind	together
-- van	der	Waals,	ionic,	covalent	crystal	bindings

Lecture	6-7:	Crystal	vibrations	(phonons)
-- Tasks
-- Why	is	phonons	important
-- Theory	&	concepts
-- How	to	measure	phonons



Linear	chain	-Models

Structure	factor:	S	=	∑ 𝒆#𝒊𝒒𝒓𝒊�
𝒊

Madelungs	constant:	𝜶 = 𝟐	𝒍𝒏(𝟐)
Distortion	Energy :	𝑬 = 𝟎. 𝟓	 ∗ 	𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕	 ∗ 	𝜹𝟐		

Phonon	dispersion:	𝛚 =



LA	=	Longitudinal	Acoustic	
LO	=	Longitudinal	Optical	
TA	=	Transversal	Acoustic	
TO	=	Transversal	Optical	

Longitudinal	and	Transverse	Phonons



LA	=	Longitudinal	Acoustic	
LO	=	Longitudinal	Optical	
TA	=	Transversal	Acoustic	
TO	=	Transversal	Optical	

Acoustic	and	optical	modes

https://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5/phonons/



LA	=	Longitudinal	Acoustic	
LO	=	Longitudinal	Optical	
TA	=	Transversal	Acoustic	
TO	=	Transversal	Optical	

Number	of	phonon	branches

p	=	number	of	atoms	in	the	primitive	cell

3	acoustic	branches
3p-3	optical	branches
Total	3p	phonon	branches
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Figure 3. Influence of temperature on phonons. (a) Phonon dispersion of aluminium at 80 K as in figure 2. (b) Comparison between the
various temperature dependences of the phonon frequency at the LL point (indicated by a red arrow in (a)): the explicitly anharmonic (ah)
shift (see text), the shift due to electronic (el) excitations and the shift due to quasiharmonicity (qh), i.e. influence of thermal expansion [24].

Figure 4. Correlation between the deviation from experiment for
the lattice constants and the bulk moduli. The results for the three
different exchange–correlation functionals LDA, GGA–PBE and
GGA–PBEsol are shown in blue, orange and green, respectively.
Reproduced with permission from [25]. Copyright 2011 Springer
Science + Business Media.

explicit anharmonicities usually impact thermodynamic data
particularly at high temperatures, the influence of non-
adiabatic interactions is very much system-dependent. A few
examples of this currently intensively investigated topic [26]
will be mentioned below; several others can be found in the
literature, e.g. [27].

In order to ensure a high numerical precision when
computing the various free energy contributions, great care
needs to be taken to sufficiently converge the results. Since
a large number of parameters need to be optimized, efficient
scaling procedures can be applied for this purpose [21]. Some
of the most important aspects for phonon calculations are:

• For some elements (e.g. Cu) the grid size of the
augmentation charges needs to be increased well beyond
standard values in order to obtain a convergence of
the Grüneisen parameter (volume dependence of phonon
energies) to less than 1%.

• For some elements (e.g. Al) extraordinary high k-point
meshes for the electronic integration are necessary.

Inappropriate k-point meshes can even yield unphysical
imaginary phonons in the vicinity of the 0-point.

• In the direct force constant method the supercell size
is a critical parameter. In order to resolve the phonon
dispersion with sufficiently high precision (e.g. Pb) or to
identify small (Kohn) anomalies in the phonon spectra (e.g.
Pt), the supercell size needs to be sufficiently large.

A high precision enforced in the phonon calculations
allows us to unambiguously assign the remaining errors
to (i) missing free energy contributions such as non-
adiabatic contributions mentioned before and (ii) the xc
functionals providing unique information regarding sources
of their failing. Figure 2 shows that LDA overestimates the
experimental data in most cases, while GGA underestimates
it. This behaviour is surprisingly systematic [21] and
consistent with the performance of these functionals already
at T = 0 K (see figure 4): The overbinding of LDA and the
corresponding too-small lattice constant leads to a prediction
of a stiffer material with a bulk modulus that is too large
as compared to experiments. The opposite correlation is
observed for GGA. The situation cannot simply be resolved
by using the experimental value for the lattice constant, since
this results in an artificial inner pressure of the system. Even
if the same (experimental) lattice constant is used for both xc
functionals, the corresponding difference in phonon energies
remains almost the same and only their order is reversed, i.e.
LDA/GGA under/overestimates the experimental phonons,
respectively. The only way out of this dilemma is the
development of improved xc functionals. As can be seen
in figure 4, PBEsol [28] is significantly reducing the
over-/underbinding of LDA/GGA for non-magnetic metals.
Since PBEsol, however, does not improve the description
of magnetic materials, which are the main objective of this
paper, we will not consider this xc functional in upcoming
discussions.

The systematic behaviour of the xc functionals becomes
even more apparent in the heat capacities. They are obtained
from a second derivative of the free energy (calculated with
equation (1)), which is most often the target quantity for
materials research. The heat capacity, however, provides a
more sensitive response to even tiny errors in the free energy.

5

http://iopscience.iop.org/article/10.1088/0953-
8984/24/5/053202

Phonons	in	aluminium



1	THz	=	4.14… meV

Phonons	in	diamond

p =	number	of	atoms	in	the	basis	of	the	primitive	cell
3xp phonon	branches	
3	Acoustic	branches	and	3p-3	optical	branches



Triple	axis	spectrometer

The Nobel Prize in Physics 1994
Bertram N. Brockhouse, Clifford G. Shull

Neutron	Source

Monochromater

Sample	/	Crystal
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Detector

https://www.helmholtz-berlin.de/forschung/oe/em/transport-phenomena/flex/index_en.html
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Figure 4: Schematic layout of a neutron triple-axis spectrometer. 
 
 

As already mentioned, the main advantage of a triple-axis spectrometer is that experimental data 
can be acquired at any pre-determined point in the reciprocal space (Q) for a selected energy 
transfer ħω. Practically, data is recorded by scanning one or both of the variables along a chosen 
direction. One usually chooses between � Constant-Q scans where ħω is scanned while keeping Q 
fixed or � Constant-energy scans where ħω is kept at a fixed value and Q is scanned along a selected 
direction in reciprocal space (see Fig. 5). By performing one or both these types of scans the 
dispersion relation ħω(Q) for a single crystal sample can be extracted in a very controlled manner. Of 
course also more complicated scans are possible where Q and ħω are scanned simultaneously. Since 

on a TAS all quantities (ki, kf, ψ) that defines the momentum and energy transfers are in principle 
variable, there are many different ways to measure the intensity at the same selected [Q,ħω] point. 
The most common method, and also the one we will use in this practicum, is however to keep kf 
fixed. 
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Figure 5: (a) Schematic view of how two points of the phonon dispersion curve can be 
measured using either (b) constant-energy scan or (c) constant-Q scan. By performing 
multiple scans it is possible to map out the complete dispersion (see below). 

Triple	axis	spectrometer

https://www.psi.ch/lns/TrainingEN/INS_Student_Practicum_PSI.pdf



E. BLACKBURN et al. PHYSICAL REVIEW B 88, 054506 (2013)
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FIG. 5. (Color online) [(a)–(h)] IXS E scans of the low-energy phonons for wave vectors along the (0,k,6.5) line. Solid lines are fits to a
sum of Gaussian functions. Data have been multiplied by 1 − exp[−E/(kBT )] to correct for the Bose factor. The horizontal bar in panel (a) is
the instrumental resolution. [(i) and (j)] Phonon dispersion curves along the (0,k,6.5) line for T = 55 and 155 K. The solid circles represent
the phonon peak positions determined from fitting data such as that in (a)–(h); the dashed lines are guides to the eye for the different branches.
The resolution-deconvolved phonons widths are represented by vertical bars. The vertical dotted line is the CDW ordering wave vector.

In most cases, the widths are less than the point size. However,
the big increase in width near q2 at low temperature is obvious.

Figure 6 shows fits of the data in Figs. 5(b) and 5(f) to a
damped harmonic oscillator response (for each phonon mode),

χ ′′ ∝ ωγ
(
ω2 − ω2

0

)2 + (ωγ )2

∝ 1
2ω1

[
γ /2

(ω − ω1)2 + (γ /2)2
− γ /2

(ω + ω1)2 + (γ /2)2

]
,

(1)

where ω2
1 = ω2

0 − (γ /2)2. For T = 155 K, we find the intrinsic
phonon widths are zero within the experimental resolution (i.e.,
γ = 0) and the phonon frequencies, h̄ω0,i , are h̄ω0,1 = 8.7 ±
0.1 and h̄ω0,2 = 10.6 ± 0.3 meV. Setting the damping factor γ
for the two modes to be equal, the response at T = 55 K can be
explained (see Fig. 6) with γ = 4.2 ± 0.8 meV and unchanged
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FIG. 6. (Color online) IXS E scan of the low-energy phonons at
Q = (0,1.672,6.5) for T = 55 and 155 K. Phonons are fitted to a
damped harmonic oscillator (DHO) response function (solid lines).
Fits are convolved with the instrumental resolution.

values for h̄ω0,1 and h̄ω0,2. Within this phenomenology, the
damping introduces a small shift in the peak of the response
[Eq. (1)], $ω ≈ −γ 2/(8ω) ≈ 0.3 meV which is not directly
discernible within the resolution of with experiment.

V. DISCUSSION

A. Charge ordering

Charge-density waves have rather unique dynamical prop-
erties. It is well known15 that CDWs can be easily unpinned
from the crystal lattice by the application of an electric field
leading to so-called sliding charge-density waves (SCDW).15

In the case of ortho-II YBCO, the “charge-ordering” anomalies
seen in NMR8,9 and ultrasound10 occur at lower temperatures
and higher magnetic fields (Table I) than observed with
100-keV x-ray diffraction.

TABLE I. Charge-ordering (CO) temperatures in ortho-II YBCO
observed by various probes and the energy scale on which the charge
correlations are probed (Eprobe). In the case of NMR and ultrasound
Eprobe is taken as the energy at which the charge response is probed.
For the diffraction measurements, it is the energy range of integration,
i.e., the energy resolution of the instrument.

Probe Eprobe TCO (K) B(T )

NMR8 1.5 µeV 50 28.5
NMR9 0.5 µeV 60 10.4
Ultrasound10 0.6 µeV 44.8 26.4
0.931-keV resonant x-ray 130 meV 150 0

diffraction1,28

100-keV x-ray diffraction2 1 keV 155(10) 0
IXS (this work) 1.5 meV 150(40) 0

054506-4

Triple	axis	spectrometer	with	x-rays
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Figure 3. Influence of temperature on phonons. (a) Phonon dispersion of aluminium at 80 K as in figure 2. (b) Comparison between the
various temperature dependences of the phonon frequency at the LL point (indicated by a red arrow in (a)): the explicitly anharmonic (ah)
shift (see text), the shift due to electronic (el) excitations and the shift due to quasiharmonicity (qh), i.e. influence of thermal expansion [24].

Figure 4. Correlation between the deviation from experiment for
the lattice constants and the bulk moduli. The results for the three
different exchange–correlation functionals LDA, GGA–PBE and
GGA–PBEsol are shown in blue, orange and green, respectively.
Reproduced with permission from [25]. Copyright 2011 Springer
Science + Business Media.

explicit anharmonicities usually impact thermodynamic data
particularly at high temperatures, the influence of non-
adiabatic interactions is very much system-dependent. A few
examples of this currently intensively investigated topic [26]
will be mentioned below; several others can be found in the
literature, e.g. [27].

In order to ensure a high numerical precision when
computing the various free energy contributions, great care
needs to be taken to sufficiently converge the results. Since
a large number of parameters need to be optimized, efficient
scaling procedures can be applied for this purpose [21]. Some
of the most important aspects for phonon calculations are:

• For some elements (e.g. Cu) the grid size of the
augmentation charges needs to be increased well beyond
standard values in order to obtain a convergence of
the Grüneisen parameter (volume dependence of phonon
energies) to less than 1%.

• For some elements (e.g. Al) extraordinary high k-point
meshes for the electronic integration are necessary.

Inappropriate k-point meshes can even yield unphysical
imaginary phonons in the vicinity of the 0-point.

• In the direct force constant method the supercell size
is a critical parameter. In order to resolve the phonon
dispersion with sufficiently high precision (e.g. Pb) or to
identify small (Kohn) anomalies in the phonon spectra (e.g.
Pt), the supercell size needs to be sufficiently large.

A high precision enforced in the phonon calculations
allows us to unambiguously assign the remaining errors
to (i) missing free energy contributions such as non-
adiabatic contributions mentioned before and (ii) the xc
functionals providing unique information regarding sources
of their failing. Figure 2 shows that LDA overestimates the
experimental data in most cases, while GGA underestimates
it. This behaviour is surprisingly systematic [21] and
consistent with the performance of these functionals already
at T = 0 K (see figure 4): The overbinding of LDA and the
corresponding too-small lattice constant leads to a prediction
of a stiffer material with a bulk modulus that is too large
as compared to experiments. The opposite correlation is
observed for GGA. The situation cannot simply be resolved
by using the experimental value for the lattice constant, since
this results in an artificial inner pressure of the system. Even
if the same (experimental) lattice constant is used for both xc
functionals, the corresponding difference in phonon energies
remains almost the same and only their order is reversed, i.e.
LDA/GGA under/overestimates the experimental phonons,
respectively. The only way out of this dilemma is the
development of improved xc functionals. As can be seen
in figure 4, PBEsol [28] is significantly reducing the
over-/underbinding of LDA/GGA for non-magnetic metals.
Since PBEsol, however, does not improve the description
of magnetic materials, which are the main objective of this
paper, we will not consider this xc functional in upcoming
discussions.

The systematic behaviour of the xc functionals becomes
even more apparent in the heat capacities. They are obtained
from a second derivative of the free energy (calculated with
equation (1)), which is most often the target quantity for
materials research. The heat capacity, however, provides a
more sensitive response to even tiny errors in the free energy.

5

http://iopscience.iop.org/article/10.1088/0953-
8984/24/5/053202

Phonons	in	aluminium



Time-of-flight	spectrometry

https://www.helmholtz-berlin.de/forschung/zukunftsprojekte/neat2_en.html



Phonons in Sr2RuO4

Initial alignment scans revealed nicely “c-axis” phonons.

Reciprocal	Lattice	Units

Acoustic	Phonon	in	Sr2RuO4


