Supernova Neutrino Physics with XENON1T and Beyond

Shayne Reichard*

University of Zurich

nuEclipse 2017 August 22

R. F. Lang*, C. McCabe, M. Selvi*, and I. Tamborra *Phys. Rev. D94, arXiv:1606.09243*

*Members of the XENON collaboration

The XENON1T Experiment

- o Liquid-Gas Time Projection Chamber
- Xenon Target
- o Dark Matter (WIMPs)
- o Nuclear Recoils
- Acquiring data since November 2016

Old Idea...

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany (Received 21 November 1983)

o Benefit from coherence factor
o Equally sensitive to all flavors
o Known response to neutrinos

PHYSICAL REVIEW D 68, 023005 (2003)

Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector

C. J. Horowitz K.

K. J. Coakley

D. N. McKinsey

o A few or more neutrino events per tonne (SN@10 kpc)

... New Relevance

The era of tonne-scale dark matter experiments:

- o XENON1T (~2t): operational since April 2016
- o XENONnT & LZ (~7t): in design phase

o DARWIN (~40t): in R&D phase

What can we do with these experiments?

Supernova Burst

o Early detection

o Determine progenitor mass

o Identify equation of state

o Reconstruct the light curves

o Measure the total energy

o Measure the flux

Supernova Progenitors

Two masses (11M, 27M); two equations of state (LS220, Shen)

Event Rates

Coherent Elastic Neutrino Nucleus Scattering* in LXe

$$\frac{dR}{dE_R} \propto \frac{d\sigma}{dE_R} \propto N^2$$

o Large rate at low energies

o Push energy threshold

*2 tonnes with coherence is like 100 tonnes without coherence

Observable Signals

o First realistic detailed simulation

 \circ 0.7-keV cutoff for both light yield (L_y) and charge yield (Q_y)

o 60-PE threshold in S2 (three extracted electrons)

Results

	$27 M_{\odot}$		$11 M_{\odot}$	
	LS220 EoS	Shen EoS	LS220 EoS	Shen EoS
$S1_{th}$ [PE]				
≥ 0	26.9	21.4	15.1	12.3
> 0	13.3	9.8	6.9	5.2
1	11.0	8.0	5.6	4.1
2	7.3	5.1	3.6	2.6
$3(\star)$	5.2	3.5	2.4	1.7
$S2_{th}$ [PE]				
≥ 0	26.9	21.4	15.1	12.3
> 0	18.5	14.0	9.9	7.6
20	18.4	14.0	9.8	7.6
40	18.1	13.7	9.7	7.4
60 (*)	17.6	13.3	9.4	7.2

o **S2-only** analysis

o See 14-35 events inXENON1T, assuming...

- o 0.7-keV recoil threshold
- o 60-PE S2 threshold
- o 2-tonne target

Events/tonne for SN at **10 kpc** given S1 and S2 thresholds

Significance

o Background rate:0.1-0.2 events/tonne

o XENON1T can observe the entire Milky Way at better than 3σ

 \circ DARWIN could see the Small Magellanic Cloud at better than 5σ

Light Curves

O Discern progenitor mass at 3.8σ, 7.1σ, and 16.9σ
O Need DARWIN to reconstruct SN light curves (and EoS)

Reconstructing Neutrino Energy

$$F(E_{\nu}) = A_T \xi_T \left(\frac{E_{\nu}}{\langle E_T \rangle}\right)^{\alpha_T} \exp\left(\frac{-(1+\alpha_T)E_{\nu}}{\langle E_T \rangle}\right)$$

Use S2 spectral information

Fermi-Dirac distribution with zero chemical potential

Reconstructing the Flux

$$F(E_{\nu}) = A_T \xi_T \left(\frac{E_{\nu}}{\langle E_T \rangle}\right)^{\alpha_T} \exp\left(\frac{-(1+\alpha_T)E_{\nu}}{\langle E_T \rangle}\right)$$

Use S2 spectral information

Total Explosion Energy in Neutrinos

$$E_{tot} = 4\pi d^2 A_T \left\langle E_T \right\rangle$$

Uncertainties are propagated from flux amplitude and mean energy

XENON1T20-36%XENONnT/LZ11-20%DARWIN5-9%

Summary

	High Detection Significance	Light Curve Reconstruction	Total Neutrino Energy Reconstruction	Neutrino Spectrum Reconstruction
XENON1T			\sim	\sim
XENONnT & LZ	\bigcirc	\sim	\sim	\sim
DARWIN	\bigcirc	\bigcirc		\bigcirc

SuperNova Early Warning System

O Detectors that are sensitive to core-collapse supernovae
O Neutrinos precede photons by as much as several hours
O Alert astronomers to impending SN

Astronomically patient

Integrating XENON1T into SNEWS

o Negligible background

 \circ Detection significance better than 3σ throughout Milky Way

Equip XENON1T to receive SNEWS trigger
Measure background (also during calibration campaigns) to establish that we can provide an alarm to SNEWS

Conclusions

- XENON1T is operational with sensitivity to SN neutrinos
- o First realistic detector simulation of S1 and S2 signals
 - Optimize the signal with S2-only analysis
 - o High detection significance (> 3σ across Milky Way)
- o Integration of XENON1T into SNEWS
- o Distinguishable SN phases
- High-precision measurements of energy and flux

• Complementarity: only completely flavor-insensitive experiment

R. F. Lang, C. McCabe, S. Reichard, M. Selvi, and I. Tamborra, Phys. Rev. D94 (2016), arXiv:1606.09243

Backup

Signal Generation

o LUX emission models

o photons

o electrons

- o Statistical fluctuations
- Photon detection efficiency

o PMT response

o Electron loss from impurities

o Assume $\Delta z/\tau$ uniformly distributed on [0,2/3] mm/us

arXiv:1512.03506

Different Qy Models

 $_{\odot}$ Variations in the cutoff of Q_{y} are larger than those of the chosen model

uncertainty from our choice of Q_y 5-13%