Next-to-leading non-global logarithms from jet calculus

Pier Monni (CERN)
with A. Banfi, F. Dreyer
JHEP 2021, 6 (2021) [2104.06416] + [2111.02413]

UZH/ETH Theoretical Particle Physics Seminar - November 2021

Non-global logarithms

- Ubiquitous in collider observables
- use of jets and experimental fiducial cuts (e.g. jet mass, rapidity cuts, isolation, ...)

- reduction of background reactions (e.g. Higgs production in ggF vs. VBF)

[^0]
Non-global logarithms

Plot: relative deviation from exact NLL [in $\mathrm{a}_{\mathrm{s}} \rightarrow 0$ limit at fixed $\mathrm{a}_{\mathrm{s}} \mathrm{L}$]

- Their resummation is an essential ingredient for parton showers
- dipole showers needed to describe them @ LL* (failure of angular ordering designs)
- NGLs @ NLL are a building block for NNLL algorithms
[Banfi, Corcella, Dasgupta '06]
[Dasgupta, Dreyer, Hamilton, PM, Salam, Soyez '20]

Non-global logarithms

- Stereographic projection relates NGL evolution equation (BMS) to saturation dynamics in high-energy forward scattering (BK/JIMWLK) at all orders
[Weigert '03; Hatta '08; Caron-Huot '15]

$$
\vec{x}_{a} \vec{x}_{k} \quad \vec{x}_{b}
$$

$\cos \theta=\frac{1-|\vec{x}|^{2}}{1+|\vec{x}|^{2}}, \quad \sin \theta=\frac{2|\vec{x}|}{1+|\vec{x}|^{2}}, \quad \cos \phi=\frac{x^{1}}{|\vec{x}|}, \quad \sin \phi=\frac{x^{2}}{|\vec{x}|}$
i.e. distribution of small-x gluons in the transverse plane is equivalent to angular distribution of soft gluons on the sphere at infinity

Non-global logarithms

- Resummation of LL corrections known for a long time and studied in depth
[Dasgupta, Salam '01-'02; Banfi, Marchesini, Smye '02]
[Forshaw, Kyrieleis, Seymour '06; Forshaw, Keates, Marzani '09] Full Nc in: [Weigert '03; Hatta, Ueda '13-'20 (+Hagiwara '15)] .
- Revived interest more recently and new formulations with modern QFT techniques
e.g. [Becher, Neubert, Rothen, Shao '15-'16 (+ Pecjak '16, Rahn '17,

Balsiger '18-'19, Ferroglia '20); Larkoski, Moult, Neill '15-'16; Caron-Huot
'16; Angeles Martinez, De Angelis, Forshaw, Plaetzer, Seymour '18]

- Resummation of NLL corrections remains a great technical challenge due to the complexity of the geometry and colour structure of a typical NG problem
- GOAL of this work \Rightarrow formulate the problem (in planar limit) in such a way that can be integrated numerically for a variety of observables \& processes at once

A toy model: cone-jet cross section with a veto

- A simple laboratory to study these radiative corrections is the production of two cone jets at lepton colliders, with a veto on radiation in the interjet region

Apply a veto e.g. on energy or transverse energy (scalar p_{t} sum) of the radiation in the gap.
Need to calculate distribution of soft gluons on the sphere as a function of the veto scale

A toy model: cone-jet cross section with a veto

- A simple laboratory to study these radiative corrections is the production of two cone jets at lepton colliders, with a veto on radiation in the interjet region

Apply a veto e.g. on energy or transverse energy (scalar p_{t} sum) of the radiation in the gap.
Need to calculate distribution of soft gluons on the sphere as a function of the veto scale

A toy model: cone-jet cross section with a veto

- A simple laboratory to study these radiative corrections is the production of two cone jets at lepton colliders, with a veto on radiation in the interjet region

Apply a veto e.g. on energy or transverse energy (scalar p_{t} sum) of the radiation in the gap.
Need to calculate distribution of soft gluons on the sphere as a function of the veto scale

A toy model: cone-jet cross section with a veto

- A simple laboratory to study these radiative corrections is the production of two cone jets at lepton colliders, with a veto on radiation in the interjet region

Apply a veto e.g. on energy or transverse energy (scalar $p_{i} s u m$) of the radiation in the gap.
Need to calculate distribution of soft gluons on the sphere as a function of the veto scale

The toolkit: generating functional (GF) method

- Introduce generating functionals $Z_{12}[Q:\{u\}]$: distribution of soft radiation within the $\{12\}$ dipole
symmetry factor

$$
d P_{n}^{\{12\}}=\left.\stackrel{y}{=}(n)\left(\prod_{i=1}^{n}\left[d k_{i}\right] \frac{\delta}{\delta u\left(k_{i}\right)}\right) Z_{12}(Q,\{u\})\right|_{\{u\}=0}
$$

see e.g. [Konishi, Ukawa, Veneziano '79; Dokshitzer, Khoze, Mueller, Troyan '91]

$$
\frac{\delta}{\delta u\left(k_{i}\right)} u(k) \equiv \bar{\delta}\left(k-k_{i}\right)
$$

"probing functions"

- E.g. global observables at LL: in $\mathrm{e}^{+} \mathrm{e}^{-}$case (e.g. thrust)

Angular ordering

$$
\begin{aligned}
& Z_{q}(Q,\{u\})=u(Q) \Delta_{q}(Q)+\int^{Q}[d k] \bar{\alpha} w^{(0)}(k) \frac{\Delta_{q}(Q)}{\Delta_{q}(k)} Z_{q} \underbrace{(Q-k,\{u\})} \underbrace{Z_{g}(k,\{u\})} \Theta_{\mathrm{AO}}^{\downarrow} \quad \rightarrow \quad Z_{q}(Q,\{u\})=u(Q) \exp \left\{\int^{Q}[d k] \bar{\alpha} w^{(0)}(k)(u(k)-1)\right\} \\
& \text { Eikonal squared amp. } \\
& \simeq Q \quad \simeq u(k) \\
& \sum_{n} d P_{n}=\left.\sum_{n} \frac{1}{n!} \frac{d^{n}}{d u^{n}} Z_{q}(Q, u)\right|_{u=0} ^{\sim} \Delta_{q}(Q)\left(1+\bar{\alpha} w^{(0)}\left(k_{1}\right)+\frac{\bar{\alpha}^{2}}{2!} w^{(0)}\left(k_{1}\right) w^{(0)}\left(k_{2}\right)\right. \\
& \left.+\frac{\bar{\alpha}^{3}}{3!} w^{(0)}\left(k_{1}\right) w^{(0)}\left(k_{2}\right) w^{(0)}\left(k_{3}\right)+\ldots\right) .
\end{aligned}
$$

(non-linear) Evolution of the non-global GF

- Complexity growth of colour structure with any new emission: take large- N_{c}
e.g. O(a_{s}) evolution (LL)

$$
\mathcal{A}_{12}^{2}=\bar{\alpha}^{n}(\mu)(2 \pi)^{2 n}\left(\mu^{2 \epsilon}\right)^{n} \sum_{\pi_{n}} \frac{\left(p_{1} \cdot p_{2}\right)}{\left(p_{1} \cdot k_{i_{1}}\right)\left(k_{i_{1}} \cdot k_{i_{2}}\right) \ldots\left(k_{i_{n}} \cdot p_{2}\right)}
$$

[Bassetto, Ciafaloni, Marchesini '83; Fiorani, Marchesini, Reina '88]

> In the 't Hooft planar limit ($N_{c} \gg 1, a_{s} N_{c}$ fixed) the evolution can be expressed as a closed equation at the level of the squared amplitude (i.e. colour dipoles) - treatable !

(non-linear) Evolution of the non-global GF

- Dependence on geometry cannot be handled analytically: use Markov chain Monte Carlo
e.g. O(a_{s}) evolution (LL)

$$
\begin{aligned}
Z_{12}[Q ;\{u\}]=\Delta_{12}(Q) & +\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{aligned}
$$

Symmetries of squared amplitude allow for an iterative reconstruction (strongly) ordered in dipole k_{t}

Sudakov: no-emission probability (defined by $Z_{12}[Q ;\{u=1\}]=1$)

Factorisation of the cross section

- Cross section receives contributions from hard configurations with different multiplicity

Convolutions defined over solid angles in 4 D (Hard and Soft factors are separately IRC finite)

$$
\mathcal{H}_{n} \otimes S_{n}(v)=\int\left(\prod_{i=1}^{n} d^{2} \Omega_{i}\right) \mathcal{H}_{1 \ldots n} \times S_{1 \ldots n}(v)
$$

Factorisation of the cross section

- Cross section receives contributions from hard configurations with different multiplicity

Factorisation of the cross section

- Factorisation theorem simplifies in the planar limit (in GFs language)

$$
\begin{aligned}
& \Sigma(v)=\mathcal{H}_{2} \otimes\left[\sum_{i=0}^{\infty} \int d P_{i}^{\{12\}} \Theta\left(v-V\left(\left\{k_{i}\right\}\right)\right)\right] \\
& \quad+\mathcal{H}_{3} \otimes\left[\left(\sum_{i=0}^{\infty} \int d P_{i}^{\{13\}}\right)\left(\sum_{j=0}^{\infty} \int d P_{j}^{\{23\}}\right) \Theta\left(v-V\left(\left\{k_{i}\right\},\left\{k_{j}\right\}\right)\right)\right]+\mathcal{O}(\mathrm{NNLL})
\end{aligned}
$$

Reall:
$\mathcal{H}_{n} \otimes S_{n}(v)=\int\left(\prod_{i=1}^{n} d^{2} \Omega_{i}\right) \mathcal{H}_{1 \ldots n} \times S_{1 \ldots n}(v)$

- Computed by matching the soft theory to full QCD
- Cancellation of collinear divergences between H_{2} and H_{3} (only combination is scheme indep.!) e.g. H_{3}

Subtract counter-term (2-jet kinematics) with full ME, requiring all partons to be outside the slice. Thrust axis along the hardest parton

Subtract soft counter-term, requiring the soft gluon to be outside the slice. Thrust axis along q (qbar) direction

Recall:
$\mathcal{H}_{n} \otimes S_{n}(v)=\int\left(\prod_{i=1}^{n} d^{2} \Omega_{i}\right) \mathcal{H}_{1 \ldots n} \times S_{1 \ldots n}(v)$

- Computed by matching the soft theory to full QCD
- Cancellation of collinear divergences between H_{2} and H_{3} (only combination is scheme indep.!) e.g. H_{3}

- Event and counter-event are then dressed by the soft factors S_{3} and S_{2}, respectively

$$
\mathcal{H}_{3} \otimes S_{3}(v)=\Sigma^{(3), \text { sub }}(v)-\Sigma_{\mathrm{soft}}^{(3), \text { sub }}(v)
$$

All-order formulation of Projection-to-Born subtraction

$$
\Delta \eta:=\ln \frac{1+c}{1-c}, \quad c=\cos \theta_{\mathrm{jet}}
$$

- Computed by matching the soft theory to full QCD
- Cancellation of collinear divergences between H_{2} and H_{3} (only combination is scheme indep.!) e.g. H_{2} :

$$
\begin{aligned}
\Leftrightarrow \quad \mathcal{H}_{2} & =\delta^{(2)}\left(\Omega_{1}-\Omega_{q}\right) \delta^{(2)}\left(\Omega_{2}-\Omega_{\bar{q}}\right)\left(1+\frac{\alpha_{s}}{2 \pi} \mathcal{H}_{2}^{(1)}\right) \\
\mathcal{H}_{2}^{(1)} & =\frac{C_{F}}{2\left(1-c^{2}\right)^{2}}\left(4\left(1-c^{2}\right)^{2}\left(\operatorname{Li}_{2}\left(\frac{1+c}{2}\right)-\operatorname{Li}_{2}\left(\frac{1-c}{2}\right)\right)\right. \\
& -2\left(1-c^{2}\right)^{2} \log ^{2}(1+c)+16 c\left(3+c^{2}\right) \ln (2)-\left(1-c^{2}\right)(c(16+3 c)-3) \\
& +2 \ln (1-c)\left(-2\left(1+c^{4}\right) \log (2)-4 c\left(3+c^{2}\right)+\left(1-c^{2}\right)^{2} \ln (1-c)\right) \\
& \left.+\left(4\left(1+c^{4}\right) \ln (2)-8 c\left(3+c^{2}\right)\right) \ln (1+c)-4\left(-3 c^{4}+2 c^{2}(9+2 \ln (2))+1\right) \tanh ^{-1}(c)\right)_{18}
\end{aligned}
$$

Second-order (planar) corrections to evolution kernel

- NLL evolution kernel describes $0\left(\mathrm{as}^{2}\right)$ soft gluon exchanges within each colour dipole

$$
\begin{aligned}
Z_{12}[Q ;\{u\}]=\Delta_{12}(Q) & +\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{aligned}
$$

\Downarrow

$$
Z_{12}[Q ;\{u\}]=\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}}+\mathrm{VV}[Z[Q ; u], u]+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u]
$$

Second-order (planar) corrections to evolution kernel

\because subtraction of iteration of LL kernel (no double counting)
two unordered real gluons

Second-order (planar) corrections to evolution kernel

two unordered real gluons

- local counter-term

Introduce IRC counter-term to make the NLL kernel calculable in 4 dimensions

+ integrated counter-terms

Second-order (planar) corrections to evolution kernel

$$
\begin{gathered}
Z_{12}[Q ;\{u\}]=\begin{array}{l}
=\mathbb{K} \mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}}[Z[Q ; u], u], 1+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u] \\
\text { two-loop cusp anomalous dimension }
\end{array} \\
\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}^{2}}[Z[Q ; u], u]=\Delta_{12}(Q)+\int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right)\left(1+\bar{\alpha}\left(k_{t a}\right) \bar{K}^{(1)}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
\times Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right)
\end{gathered}
$$

Same structure as LL kernel
 ($1 \rightarrow 2$ dipole hranching) Easy to iterate in a MCMC

Second-order (planar) corrections to evolution kernel

$$
\begin{gathered}
Z_{12}[Q ;\{u\}]=\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}^{2}[Z[Q ; u], u]+\mathbb{K} \mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]^{\mathrm{I}}-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u]} \begin{aligned}
& \mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]=\int\left[d k_{a}\right] \int\left[d k_{b}\right] \bar{\alpha}^{2}\left(k_{t(a b)}\right) \Theta\left(Q-k_{t(a b)}\right) \Theta\left(k_{t a}-k_{t b}^{\prime}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t(a b)}\right)} \\
& \times\left[\bar{w}_{12}^{(g g)}\left(k_{b}, k_{a}\right) Z_{1 b}\left[k_{t(a b)} ;\{u\}\right] Z_{b a}\left[k_{t(a b)} ;\{u\}\right] Z_{a 2}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right)\right. \\
&+\bar{w}_{12}^{(g g)}\left(k_{a}, k_{b}\right) Z_{1 a}\left[k_{t(a b)} ;\{u\}\right] Z_{a b}\left[k_{t(a b)} ;\{u\}\right] Z_{b 2}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right) \\
&\left.-\left(\bar{w}_{12}^{(g g)}\left(k_{b}, k_{a}\right)+\bar{w}_{12}^{(g g)}\left(k_{a}, k_{b}\right)\right) Z_{1(a b)}\left[k_{t(a b)} ;\{u\}\right] Z_{(a b) 2}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{(a b)}\right)\right]
\end{aligned}
\end{gathered}
$$

New structure of real radiation
$(1 \rightarrow 3$ dipole branching)
Hard to iterate in a MCMC

Perturbative solution of NLL evolution equation

- All-order solution can be formulated in a perturbative form, i.e.

$$
Z_{12}[Q ;\{u\}]=Z_{12}^{(0)}[Q ;\{u\}]+Z_{12}^{(1)}[Q ;\{u\}]^{1} \quad \text { with } \quad Z_{12}^{(0)}[Q ;\{u\}]=\mathbb{K}_{\mathrm{int}}^{\left.\mathrm{RV}+\mathrm{VV}^{(0)}[Q ; u], u\right],{ }^{(0)}[Q===0}
$$

- Linearise evolution equation in $Z^{(1)}$ by neglecting $\left(Z^{(1)}\right)^{2}$ corrections (NNLL and higher)

Fixed order expansion \& checks

- $0\left(\right.$ as $\left.^{2}\right)$ expansion expected to reproduce the logarithmic structure of QCD

$$
\Delta(L):=\frac{1}{\sigma_{0}}\left(\frac{d \Sigma^{\mathrm{NLO}}}{d L}-\frac{d \Sigma^{\mathrm{EXP} .}}{d L}\right) \quad \text { expect } \quad \lim _{L \rightarrow \infty} \Delta(L)=0
$$

OK for different jet-cone sizes

All-order results at NLL: narrow jets

All-order results at NLL: fat jets

Outlook: applications to LHC phenomenology

- Leading- N_{c} method can be applied to hadronic collisions (subleading Nc sensitive to Glauber modes / superleading logarithms). Several applications at the LHC, e.g.

- Higgs VBF vs. ggF discrimination via a 3rd jet veto
- Study of Mueller-Navelet jets
see also [CMS+TOTEM 2102.06945]
-Also jet mass, substructure observables, isolation, ...
Survival probability in $q \uparrow \rightarrow q q \mid H$ (octet)

Outlook: aspects of a NNLL (soft) shower

- Technology relevant for description of soft radiation at wide angles in dipole showers (current algorithms reach at best LL for NGLs)
- NLL evolution equations provide guidance towards a NNLL algorithm (NGLs start at NLL in general)

- Problem is well defined, but several technical challenges:
- Kinematics: iteration of $Z^{(1)}$ correction, maps for collinear counter-terms \& recoil scheme
- Ordering and phase space coverage: radiation of unordered pair within $Z^{(1)}$
- Matching to NLO hard scattering (corrections to $\mathrm{H}_{2} \& \mathrm{H}_{3}$) while preserving NLL accuracy

Conclusions

- New formalism for calculation of non-global corrections at NLL in the planar limit:
- Soft evolution for GFs solvable in terms of colour dipoles with Monte Carlo methods
- First NLL resummation for final-state radiation (veto in interjet rapidity gap). NLL corrections are substantial (up to 40%), with a considerable reduction of TH errors ($\sim 50 \%$)
- In the planar approximation this technology can be applied to pp collision too, avoiding complications that would arise at sub-leading N_{c} (e.g. SLL / Glauber modes, fact. breaking)
see e.g. [Forshaw, Kyrieleis, Seymour '06-'08; Delgado, Forshaw, Marzani, Seymour '11; Becher, Neubert, Shao '21]
- Process dependence encoded in the hard factors and calculation can be made algorithmic
- MCMC algorithm closely related to a parton shower: important insight on how to resum higher-orders NGLs in future generation of algorithms

Extra material

Evolution of the soft factors in a leading- N_{c} Monte Carlo

- Symmetries of the LL squared amplitude, e.g. 2 emissions

$$
|A|^{2} \sim \underbrace{\frac{(12)}{(1 a)(a 2)} \frac{(2 a)}{(2 b)(a b)}}_{\sim \frac{1}{\left(k_{t a}^{(12)} k_{t b}^{(2 a)}\right)^{2}}}+\frac{(12)}{(1 a)(a 2)} \frac{(1 a)}{(1 b)(a b)}
$$

- Each colour flow invariant under $\left\{\hat{n}_{a} \leftrightarrow \hat{n}_{b} ; k_{t a}^{(12)} \leftrightarrow k_{t b}^{(i a)}\right\}$ (directions in the $\{12\}$ frame), i.e.

$$
\left[\begin{array}{c}
\tilde{k}_{k} \\
\tilde{k}_{b}
\end{array}\right]=\mathbb{T}^{(i)}\left[\begin{array}{c}
k_{a} \\
k_{b}
\end{array}\right] \quad \mathbb{T}^{(1)}:=\left[\begin{array}{cc}
0 & \left(\frac{(1 b)(a 2)}{(12)(a b)}\right)^{-1 / 2} \\
\left(\frac{(1 a)(b 2)}{(12)(a b)}\right)^{1 / 2} & 0
\end{array}\right], \quad \mathbb{T}^{(2)}:=\left[\begin{array}{cc}
0 & \left(\frac{(1 a)(b 2)}{(12)(a b)}\right)^{-1 / 2} \\
\left(\frac{(1 b)(a 2)}{(12)(a b)}\right)^{1 / 2} & 0
\end{array}\right]
$$

- dLIPS measures for colour flows are mapped onto each other, while sources (observable) satisfy the same symmetry ... Resum with evolution eq. ordered in dipole k_{t}

Second-order (planar) corrections to evolution kernel

$$
\begin{aligned}
& Z_{12}[Q ;\{u\}]=\mathbb{K}_{\mathrm{int}}^{\mathrm{RV}+\mathrm{VV}}[Z[Q ; u], u]+\mathbb{K}_{\mathrm{int}}^{\mathrm{RR}}[Z[Q ; u], u]-\mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u] \\
& \mathbb{K}_{\mathrm{int}}^{\mathrm{DC}}[Z[Q ; u], u]=\int\left[d k_{a}\right] \int\left[d k_{b}\right] \bar{\alpha}^{2}\left(k_{t a}\right) \Theta\left(Q-k_{t a}\right) \Theta\left(k_{t a}-k_{t b}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times\left[w_{12}^{(0)}\left(k_{a}\right)\left(w_{1 a}^{(0)}\left(k_{b}\right)-\frac{1}{2} w_{12}^{(0)}\left(k_{b}\right)\right) Z_{1 b}\left[k_{t a} ;\{u\}\right] Z_{b a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right)\right. \\
& +w_{12}^{(0)}\left(k_{a}\right)\left(w_{a 2}^{(0)}\left(k_{b}\right)-\frac{1}{2} w_{12}^{(0)}\left(k_{b}\right)\right) Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a b}\left[k_{t a} ;\{u\}\right] Z_{b 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right) \\
& \left.-w_{12}^{(0)}\left(k_{a}\right)\left(w_{1 a}^{(0)}\left(k_{b}\right)+w_{a 2}^{(0)}\left(k_{b}\right)-w_{12}^{(0)}\left(k_{b}\right)\right) Z_{1 a}\left[k_{t a} ;\{u\}\right] Z_{a 2}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right)\right]
\end{aligned}
$$

Perturbative insertion of double-real corrections

$$
\begin{aligned}
Z_{12}^{(1)}[Q ; & \{u\}] \simeq \int\left[d k_{a}\right] \bar{\alpha}\left(k_{t a}\right) w_{12}^{(0)}\left(k_{a}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times\left(Z_{1 a}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{a 2}^{(1)}\left[k_{t a} ;\{u\}\right]+Z_{1 a}^{(1)}\left[k_{t a} ;\{u\}\right] Z_{a 2}^{(0)}\left[k_{t a} ;\{u\}\right]\right) u\left(k_{a}\right) \Theta\left(Q-k_{t a}\right) \\
+ & \int\left[d k_{a}\right] \int\left[d k_{b}\right] \bar{\alpha}^{2}\left(k_{t(a b)}\right) \Theta\left(Q-k_{t(a b)}\right) \Theta\left(k_{t a}-k_{t b}^{\prime}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t(a b)}\right)} \\
& \times\left[\tilde{w}_{12}^{(0)}\left(k_{b}, k_{a}\right) Z_{1 b}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{b a}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{a 2}^{(0)}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right)\right. \\
& +\widetilde{w}_{12}^{(0)}\left(k_{a}, k_{b}\right) Z_{1 a}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{a b}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{b 2}^{(0)}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right) \\
& \left.-\left(\tilde{w}_{12}^{(0)}\left(k_{b}, k_{a}\right)+\tilde{w}_{12}^{(0)}\left(k_{a}, k_{b}\right)\right) Z_{1(a b)}^{(0)}\left[k_{t(a b)} ;\{u\}\right] Z_{(a b) 2}^{(0)}\left[k_{t(a b)} ;\{u\}\right] u\left(k_{(a b)}\right)\right] \\
- & \int\left[d k_{a}\right] \int\left[d k_{b}\right] \bar{\alpha}^{2}\left(k_{t a}\right) \Theta\left(Q-k_{t a}\right) \Theta\left(k_{t a}-k_{t b}\right) \frac{\Delta_{12}(Q)}{\Delta_{12}\left(k_{t a}\right)} \\
& \times\left[w_{12}^{(0)}\left(k_{a}\right) w_{1 a}^{(0)}\left(k_{b}\right) Z_{1 b}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{b a}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{a 2}^{(0)}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right)\right. \\
& +w_{12}^{(0)}\left(k_{a}\right) w_{a 2}^{(0)}\left(k_{b}\right) Z_{1 a}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{a b}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{b 2}^{(0)}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right) u\left(k_{b}\right) \\
& \left.-w_{12}^{(0)}\left(k_{a}\right)\left(w_{1 a}^{(0)}\left(k_{b}\right)+w_{a 2}^{(0)}\left(k_{b}\right)\right) Z_{1 a}^{(0)}\left[k_{t a} ;\{u\}\right] Z_{a 2}^{(0)}\left[k_{t a} ;\{u\}\right] u\left(k_{a}\right)\right]
\end{aligned}
$$

Fixed order expansion (full colour)

- Keep only terms up to NLL \& extend to full colour (at fixed order only) promote $\left(N_{c}\right)^{n}$ to correct Casimirs

$$
\begin{aligned}
& \left.\Sigma(v) \simeq 1+\left(\frac{\alpha_{s}}{2 \pi}\right)\left(\mathcal{H}_{2}^{(1)}-4 C_{F} \int d k\right] w_{12}^{(0)}(k) \Theta_{\mathrm{in}}(k) \Theta(v(k)-v) \Theta\left(Q-k_{t}\right)+\mathcal{H}_{3}^{(1)} \otimes \mathbb{1}\right) \\
& -4 C_{F}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int[d k] w_{12}^{(0)}(k) \Theta_{\mathrm{in}}(k) \Theta(v(k)-v) \Theta\left(k_{t}-Q\right)\left(K^{(1)}-4 \pi \beta_{0} \ln \frac{k_{t}}{Q}\right) \\
& +8 C_{F}^{2}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left(\int[d k] w_{12}^{(0)}(k) \Theta_{\text {in }}(k) \Theta(v(k)-v) \Theta\left(Q-k_{t}\right)\right)^{2} \\
& -8 C_{F}\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int\left[d k_{a}\right] \int\left[d k_{b}\right]\left[C_{A}\left(\bar{w}_{12}^{(g g)}\left(k_{a}, k_{b}\right)+\bar{w}_{12}^{(g g)}\left(k_{b}, k_{a}\right)\right)\right. \\
& { }^{\prime \prime} n_{f}\left(\bar{w}_{12}^{(q \bar{q})}\left(k_{a}, k_{b}\right)+\overline{w_{12}}\left(\bar{q} \overline{\bar{q}}\left(k_{b}, k_{a}\right)\right)\right] \\
& \times \Theta\left(Q-k_{t(a b)}\right) \Theta\left(k_{t a}-k_{t b}\right)\left\{\Theta _ { \text { out } } (k _ { (a b) }) \left[\Theta_{\text {in }}\left(k_{a}\right) \Theta_{\text {out }}\left(k_{b}\right) \Theta\left(v\left(k_{a}\right)-v\right)\right.\right. \\
& \left.\left.+\Theta_{\text {out }}\left(k_{a}\right) \Theta_{\text {in }}\left(k_{b}\right) \Theta\left(v\left(k_{b}\right)-v\right)\right]-\Theta_{\text {in }}\left(k_{(a b)}\right) \Theta_{\text {out }}\left(k_{a}\right) \Theta_{\text {out }}\left(k_{b}\right) \Theta\left(v\left(k_{(a b)}\right)-v\right)\right\} \\
& -2\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \int[d k] \Theta_{\text {in }}(k) \Theta(v(k)-v) \Theta\left(Q-k_{t}\right) \\
& \text { add subl. colour 3-jet dipole } \\
& \times\left[2 C_{F} \mathcal{H}_{2}^{(1)} w_{12}^{(0)}(k)+\mathcal{H}_{3}^{(1)} \otimes\left(C_{A}\left(w_{13}^{(0)}(k)+w_{32}^{(0)}(k)\right)+\left(2 C_{F}-C_{A}\right) w_{12}^{(k)}(k)\right] .\right.
\end{aligned}
$$

[^0]: [CMS STXS in $\mathrm{H} \rightarrow \mathrm{YY}$ '21]

