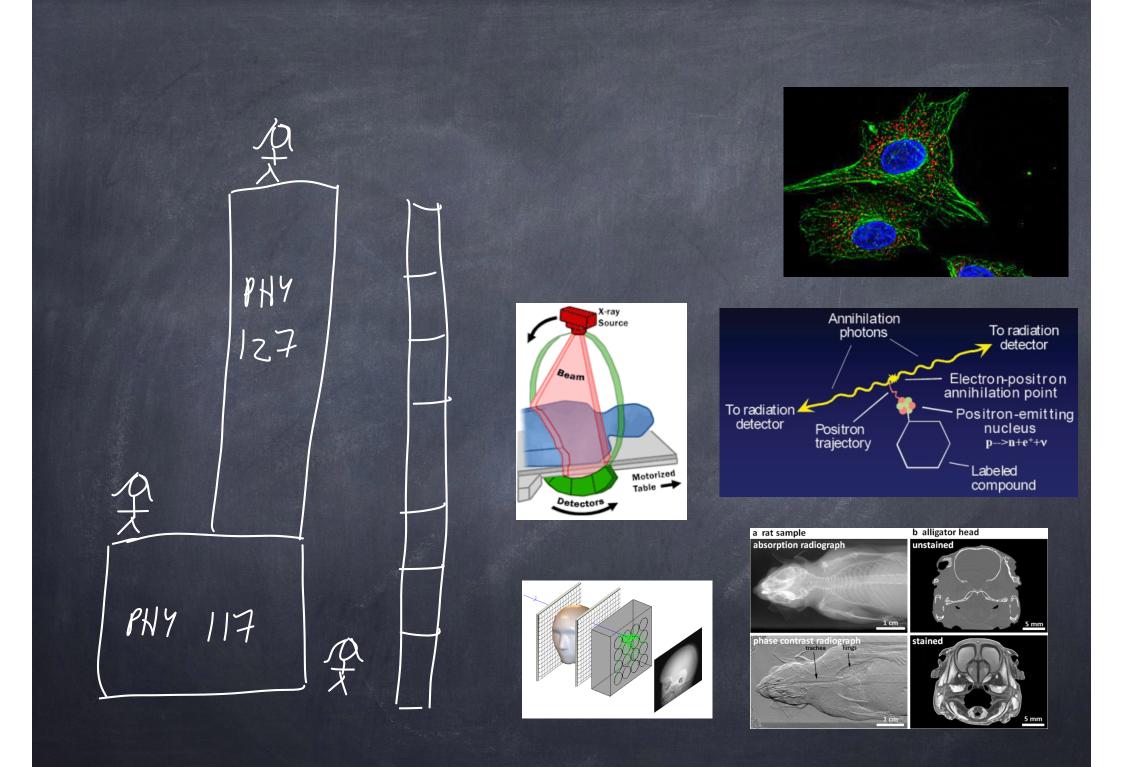
### PHY127


Prof. Ben Kilminster Lecture I Feb. 23rd, 2024

we will cover modern physics in a way that targets modern techniques in medical/ biological/chemical research.

 $\Longrightarrow$ 

physics atomic physics nuclear physics particle physics anti-matter radiation relativity quantum physics

bio-med +-rays Formography +-ray computed CT scans PET scans NMR, MRI medical dignostics treatment Imaging



### PHY 127

### FS 2023

Physics II for Biomed (Modern Physics) Lecture : Fridays 8:00-10:00, Y15-G20

Professor Ben Kilminster (Email <u>ben.kilminster@physik.uzh.ch)</u>

Prof. K's office hours : 36-J-50 Fridays 11:45 – 13:00 (or by appointment) Class page: <u>https://www.physik.uzh.ch/de/lehre/PHY127/FS2024.html</u> (user: physik-phy127, pass: maxwell5%)

### Teachers assistants :

Frau Ruth Bründler (<u>ruth.bruendler@physik.uzh.ch</u>) (English/German speaking) (In charge of exercises & sessions)

Fanqiang Meng (fanqiang.meng@physik.uzh.ch) (English/Chinese speaking) In-class TA

Exercise session groups :

| Group | Tuesday (Room)           |            | Wednesday (Room) |         |
|-------|--------------------------|------------|------------------|---------|
|       | 13:00-15:45              |            | 13:00-15:45      |         |
| 1     | Haojie Geng              | 23-G-04    | James O'Leary    | 23-G-04 |
| 2     | Elias Carl               | 21-F-70    | Roger Brunner    | 21-F-70 |
| 3     | Guillem Cucurull Llovera | 22-F-62    | Philipp Maier    | 22-F-62 |
| 4     | Loris Keller             | 22-F-68    | Alessio Tassone  | 22-F-68 |
| 5     | Yuliia Melnychuk         | 17-M-05    | Florian Leitner  | 36-J-33 |
| 6     | Jens Oppliger            | 27-H-35/36 | Mariana Rajado   | 36-K-08 |

| Alessio Tassone               | atassone@student.ethz.ch       |
|-------------------------------|--------------------------------|
| Elias Carl                    | elias.carl@protonmail.com      |
| Florian Leitner               | florian.leitner@uzh.ch         |
| Guillem Cucurull Lovera       | guillem.cucurullllovera@uzh.ch |
| Haojie Geng                   | haojie.geng@uzh.ch             |
| James O`Leary                 | james.oleary@uzh.ch            |
| Jens Oppliger                 | jens.oppliger@uzh.ch           |
| Loris Keller                  | loris.keller@uzh.ch            |
| Mariana Rajado Nunes Da Silva | mariana.rajado@physik.uzh.ch   |
| Philipp Maier                 | philippemanueljan.maier@uzh.ch |
| Roger Brunner                 | rogbrunn@student.ethz.ch       |
| Yuliia Melnychuk              | yuliia.melnychuk@uzh.ch        |
|                               |                                |

Modern physics

References: Kilminster Physics 1 & 2 scripts (available on the course web site) Introductory university physics text book. I use the following : **Tipler** (Very good explanations, main text I follow) Halliday & Resnick Young & Freedman (But these are all very similar. Find any one that explains physics well for you.)

For modern physics, I will point you to other online resources when relevant.

Assessments : Please register on OLAT: <u>https://lms.uzh.ch/</u>This is how we send you assignments Please log in to see if you can access the course. If not, check your UZH email is registered properly.

- 1) Exercise sessions: Tuesdays/Wednesdays, 13:00-16:00, starting Feb. 27th. TAs will explain homework exercises, answer questions, and go through additional exercises if time. TAs will keep an attendance list. Note: You really have to go to the exercise sessions. This is where you learn how to solve problems. In your exams, you will have to solve similar problems. One problem will be almost the same.
- 2) Written exercises: every 2 weeks. These will be assigned on Fridays, explained on the following Tuesday/Wednesday, and solutions will be presented the following week. First homework assigned Feb 24<sup>th</sup>.

### 3) Final exam. (date not known yet). UZH exam schedule

- a. Exam style :
  - 1. Similar style to written exercises
  - 2. Will be in German and English
  - 3. Expect question from exercise sessions & relating to experiments shown in lecture
  - 4. Formula sheet will be provided. (No private information allowed.)

### 4) Grade: 100% final exam

### PHY127 FS2024, Physics for Life Sciences 2

### Schedule

| Lecturer :                      | → Prof. Ben Kilminster                                      |
|---------------------------------|-------------------------------------------------------------|
| Lectures (PHY127.1):            | Friday, 08:00 - 09:45                                       |
| Exercise sessions ( PHY127.2 ): | Tuesday or Wednesday, 13:00 - 15:45 (First : 27th Feb 2024) |
| Office Hours                    | Fridays 11:45-13:00 at 36J50 or by email appointment        |

### Lecturer

- Prof. Ben Kilminster
- → Webpage
- Office: Y36 J50
- Phone: +41 44 635 58 02
- Email: → ben.kilminster@physik.uzh.ch

### **References & texts**

### References for each lecture will be added below.

A document with german/english translations of common physics quantities, as well as a reminder of the units of such quantities is available here  $\pm$  PHY127-FS2024-helper.pdf (PDF, 95 KB)

### The formula sheet for completing exercises and for the final exam:

• <u>+</u> PHY127\_Formula\_Sheet.pdf (PDF, 312 KB) (preliminary Feb. 20th, 2024)

### The following can serve as a reference for the basic physics (from PHY 117)

- Ben Kilminster, Introductory Physics 1. 🛓 Kilminster-Intro-Physics-I.pdf (PDF, 5 MB)
- Ben Kilminster, Introductory Physics 2. 🛓 Kilminster-Intro-Physics-II.pdf (PDF, 4 MB)

### Texts:

- Paul A. Tipler, Gene Mosca: Physics for scientists and engineers.
- Halliday & Resnick : Fundamentals of Physics.

### Additional resources to help with mathematics.

- MHP: <u>U</u> Mathematische Hilfsmittel (PDF, 587 KB) (in german) derivatives, integrals, series expansions, statistics, vector algebra, coordinate transformations, tensors, ...)
- C.B. Lang und N. Pucker: Mathematische Methoden der Physik, Spektrum Verlag, Heidelberg und Berlin.

yer Formelsammlung Mittelschulphysik (PDF, 396 KB) is also useful for usage of basic formulas. ↓

### Exercises

### Exercises are posted on OLAT every 2 weeks on Friday after lecture.

Exercise sessions in the following week will help you understand the terms and concepts of the exercises. Exercise sessions in the second week after the exercises are assigned will explain the solutions. It is expected that you will complete the exercises before this second exercise session.

There will be **no podcasts** of exercise classes.

### Exam schedule

### Exam guidelines :

Exams will be similar in style to the exercises. A formula sheet with all needed equations will be provided to you for use throughout the semester, and in the exams. We will provide you with paper and a calculator. The final exam will be printed in english and in german. The following are forbidden in exams :

- Any means of communication (mobile phones, smart watches, etc.)
- Any kind of calculator, laptop, or electronic storage device
- Any additional formula sheets or written notes.

Exam date: 28.06.2024, 10:00 - 12:00

Repeat exam date: 13.09.2024, 14:00 - 16:00

### Grades

Your grade is based on the following assessments :

• 100% final examination

Attendance is expected and recorded for exercise sessions. The final examination will be composed of questions similar to those presented in the lectures and the weekly exercises.

### Outline of course

The course will cover modern physics topics such as relativity, quantum physics, atomic, nuclear, and particle physics, radiation, particle-wave duality, particles interacting in matter, particle detection. These ideas will be used to explain the basics of modern radiation techniques for diagnostics and treatment, and such instruments as X-rays, CT scanners, PET scanners, NMR, MRI, etc.

### Lecture information

| Lecture<br>schedule<br>(12<br>lectures) | Topics                                                 | PDF of<br>chalkboard | Additional resources                   |
|-----------------------------------------|--------------------------------------------------------|----------------------|----------------------------------------|
| Week 1<br>(Feb.<br>23rd, 2024)          | Intro, units, reminder of forces, and force balancing. |                      | See additional resources linked above. |

### Physics I: Introduction to physics



PROF. BEN KILMINSTER INTRODUCTION TO MECHANICS, WAVES, AND FLU DYNAMICS

### 6 Laws of Motion & Forces 6.1 Momentum 6.2 Newton's laws of motion 6.2.1 Interlude: Algori ing force problems 6.3 Gravitational force . . . 6.3.1 Force fields . . . Contents 6.4 Normal force . . . . . Springs & Hooke's law 6.56.5.1 Example 1: Vertic 6.5.2 Example 2: Doub I Mechanics 9 6.6 Tension 6.6.1 Example 1: Fallin 1 Units & Dimensions 11 1.1 Fundamental definition of units . . . . 11 ancing over pulle 6.6.3 Example 3: Thi masses 6.6.4 Example 4: Block 6.7 Centripetal force . . . 6.7.1 Example: Mass or 2 Measurement & Uncertainty 15 6.8 Friction . . . . 6.8.1 Example: Frictio clined plane . . . 6.8.2 Drag . . . . . . . 7 Work & Energy 3 Vectors & Reference Frames 21 7.1 Work 63 7.2 Kinetic energy 64 3.1 Vectors in coordinate systems . . . . . 21 7.2.1 Example: Lifting a weight . . . 65 7.2.2 Work integral over a path . . . 65 7.3 Conservative & non-conservative forces 67 7.3.1Example 1: Gravity...687.3.2Example 2: $F = y\hat{\mathbf{x}} + x^2\hat{\mathbf{x}}$ ...68 Potential energy 69 7.4.1 Gravitational potential energy 69 7.43.8 Extra: Vector transformations . . . . . 26 7.5 Energy conservation . . . . . . . . . . 71 4 Motion in One Dimension 27 7.5.1 Example 1: Ramp . . . . . 7.5.2 Example 2: Pendulum . . . . . 71 4.1 Uniform motion: constant velocity . . 27 72 7.6 Energy loss due to friction . . . . . . 72 4.2.2 Negative acceleration . . . . . . 29 8 Conservation of Momentum 75 8.1 Elastic & inelastic collisions . . . . . . 76 4.3.1 Torricelli's equation . . . . . . 30 8.1.1 Example 1: Two masses collid-ing elastically in 1D . . . . . . 77 8.1.2 Example 2: Two masses collid-78 ing inelastically in 1D . . . . 5 Motion in Two Dimensions 37 8.1.3 Example 3: Walking on ice 8.1.3 Example 3: Waiking on no. 8.1.4 Example 4: Two masses collid 5.1 Parabolic motion 20

| 0.1 | I di diobite motion :                  |
|-----|----------------------------------------|
|     | 5.1.1 Example: Shooting a falling      |
|     | monkey                                 |
| 5.2 | Interlude: Radians & polar coordinates |
| 5.3 | Uniform circular motion                |
| 5.4 | Motion along a general path            |

|                      |                |    | 8.4         | Inertia | al frames of refere               |
|----------------------|----------------|----|-------------|---------|-----------------------------------|
|                      |                | _  |             |         |                                   |
|                      |                | 9  |             |         | Angular Mome                      |
|                      |                |    | 9.1         |         | e                                 |
|                      |                |    | 9.2<br>9.3  |         | ar acceleration .                 |
|                      | 1              |    | 9.3         |         | ional equilibrium                 |
|                      |                |    |             | 9.3.1   | Example 1: E                      |
|                      |                |    |             | 3.5.1   | masses on a sees                  |
|                      |                |    |             | 9.3.2   | Example 2: Mon                    |
|                      |                |    |             | 0.0.2   | of two masses .                   |
|                      |                |    |             | 9.3.3   | Example 3: Mor                    |
|                      |                |    |             | 0.010   | of a ring                         |
|                      |                |    |             | 9.3.4   | Example 4: Mor                    |
|                      |                |    |             |         | of a hollow cylin                 |
|                      |                |    |             | 9.3.5   | Example 5: Mon                    |
|                      |                |    |             |         | of a solid cylinde                |
|                      |                |    |             | 9.3.6   | Example 6: Mor                    |
|                      |                |    |             |         | of a disk                         |
|                      |                | _  |             | 9.3.7   | Example 7: Mon                    |
|                      |                |    |             |         | of a hollow sphe                  |
|                      |                | _  |             | 9.3.8   | Example 8: Mor                    |
| UID                  |                |    |             |         | of a solid sphere                 |
|                      |                |    | 0.4         | 9.3.9   | Example 9: Larg                   |
|                      |                |    | 9.4         |         | c energy of rotati                |
| STATISTICS OF STREET |                |    |             | 9.4.1   | Example: Larg<br>nected to a susp |
|                      |                |    |             | 9.4.2   | Kinetic energy of                 |
|                      |                |    |             | 3.1.2   | particles                         |
|                      |                |    | 9.5         | Parall  | el axis theorem .                 |
| 47<br>               |                |    | 010         | 9.5.1   | Extra: Alternati                  |
|                      |                |    |             | 9.5.2   | Example 1: Mor                    |
| thm to solv-         |                |    |             |         | of two masses (r                  |
| is 49                | A TRACK        |    |             | 9.5.3   | Example 2: Mon                    |
|                      |                |    |             |         | of a ring (revisit                |
| 50                   |                |    | 9.6         | Rollin  | g                                 |
| 51                   |                |    |             | 9.6.1   | Example: Rollin                   |
|                      |                |    | 9.7         |         | ar momentum .                     |
| cal spring 53        |                |    |             | 9.7.1   | Conservation of                   |
| ole spring 53        |                |    |             |         | mentum                            |
| 54                   |                |    |             | 9.7.2   | Example 1: Neu                    |
| ng mass on a         |                | _  |             | 9.7.3   | Example 2: Part                   |
| masses bal-          |                |    | 9.8         | Desser  | a straight line .                 |
|                      |                |    | 9.8         | Angli   | sion                              |
| ys 55                |                |    | 9.9<br>9.10 |         | ity                               |
| ree unequal          |                |    | 9.10        |         | Example 1: Lad                    |
|                      |                |    |             | 9.10.2  |                                   |
| x & tackle 56        |                |    |             |         | Example 3: Tigh                   |
|                      | -              |    | 9.11        |         | ary                               |
| n a string 57        |                |    |             | ~       |                                   |
|                      |                | 10 | Nor         | n-Inert | ial Reference                     |
| on on an m-          |                |    | Pse         | udo Fo  |                                   |
|                      |                |    |             |         | al reference frame:               |
| 01                   |                |    | 10.2        |         | nertial reference fr              |
| 63                   |                |    |             | 10.2.1  | Coordinate trans                  |
| 63                   |                |    |             |         |                                   |
| 64                   | And the second |    |             |         |                                   |

4

|                                                   | CONTENTS                                                     |
|---------------------------------------------------|--------------------------------------------------------------|
|                                                   | CONTENTS                                                     |
| s of reference 83                                 | 10.2 Deteting reference frames                               |
| s of reference 83                                 | 10.3 Rotating reference frames 114                           |
| ar Momentum 85                                    | 10.3.1 Centrifugal force                                     |
|                                                   | 10.3.2 Extra: Coordinate transfor-                           |
| eration                                           | mation of rotation 114<br>10.3.3 Extra: Time derivation of a |
| uilibrium & moment of                             | vector function                                              |
|                                                   | 10.3.4 Pseudo forces in a rotating sys-                      |
| ple 1: Balancing two<br>s on a seesaw             | tem                                                          |
| s on a seesaw                                     | 10.3.5 Coriolis force                                        |
| masses                                            | 10.3.6 Example 1: Throwing a ball                            |
| ple 3: Moment of inertia                          | on rotating disk                                             |
| ng                                                | 10.3.7 Example 2: A ball at rest 120                         |
| ple 4: Moment of inertia                          | 10.3.8 Example 3: Centrigufal force                          |
| ollow cylinder 91                                 | on Earth                                                     |
| ple 5: Moment of inertia                          | 10.3.9 Example 4: Coriolis force on                          |
| blid cylinder                                     | Earth                                                        |
| ple 6: Moment of inertia                          |                                                              |
| sk                                                | 11 Stress & Strain 123                                       |
| ollow sphere                                      | 11.1 Young's modulus                                         |
| ple 8: Moment of inertia                          | 11.2 Shear modulus                                           |
| lid sphere 93                                     |                                                              |
| ple 9: Large wheel/disk . 93                      |                                                              |
| y of rotation 94                                  | II Oscillations and Waves 127                                |
| ple: Large wheel con-                             |                                                              |
| to a suspended mass 95<br>c energy of a system of | 12 Harmonic Oscillations 129                                 |
| les                                               | 12.1 Interlude: Taylor expansion 129                         |
| theorem                                           | 12.1.1 Example 1: Cubic function 129                         |
| Alternative proof 97                              | 12.1.2 Example 2: Sine                                       |
| ple 1: Moment of inertia                          | 12.1.3 Example 3: Cosine                                     |
| masses (revisited) 98                             | 12.2 Simple harmonic oscillator                              |
| ple 2: Moment of inertia                          | 12.2.1 Initial conditions                                    |
| ng (revisited)                                    | 12.2.2 General solution                                      |
| ple: Rolling off a ramp . 99                      | 12.2.3 Energy of a harmonic oscillator 134                   |
| entum 100                                         | 12.2.4 Vertical harmonic oscillator 135                      |
| rvation of angular mo-                            | 12.2.5 Double spring                                         |
| m 101                                             | 12.3 Pendulum                                                |
| ple 1: Neutron star 102                           | 12.3.1 Extra: Exact solution 138                             |
| ple 2: Particle moving in                         | 12.3.2 Physical pendulum 139                                 |
| ight line 102                                     | 12.4 Damped harmonic oscillators 139                         |
|                                                   | 12.4.1 Energy loss                                           |
| Millstone                                         | 12.4.2 Quality factor                                        |
| ple 1: Ladder 106                                 | 12.4.3 Underdamping                                          |
| ple 2: Rectangular block 108                      | 12.4.4 Critical damping and over-                            |
| ple 3: Tightrope artist 109                       | damping                                                      |
| 109                                               | 12.4.5 Energy (revisited)                                    |
|                                                   | 12.5 Driven oscillation & resonance 144                      |
| leference Frames &                                | 12.5.1 Real-life examples 145                                |
| 111<br>nce frames                                 | 12.6 Extra: Phase diagrams                                   |
| reference frames                                  | 12.7 Application of simple harmonic oscil-                   |
| inate transformation 113                          | lator                                                        |
|                                                   |                                                              |

| 114            |                                                                                                                |                                                                            |
|----------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 114            |                                                                                                                |                                                                            |
| r-             | the second s |                                                                            |
| 114            |                                                                                                                |                                                                            |
| a              |                                                                                                                |                                                                            |
| 116            |                                                                                                                |                                                                            |
| S-             |                                                                                                                |                                                                            |
| 117            |                                                                                                                |                                                                            |
| 119            |                                                                                                                |                                                                            |
| 11             |                                                                                                                |                                                                            |
| 119            |                                                                                                                |                                                                            |
| 120            |                                                                                                                |                                                                            |
| e              |                                                                                                                |                                                                            |
| 120            |                                                                                                                |                                                                            |
| n              |                                                                                                                |                                                                            |
| 121            |                                                                                                                |                                                                            |
|                |                                                                                                                |                                                                            |
| 123            | CONTENTS                                                                                                       | 5                                                                          |
| 124            |                                                                                                                |                                                                            |
| 125            | 13 Waves 149                                                                                                   | 15.3.2 Any period $T$                                                      |
|                | 13.1 Transverse waves                                                                                          | 15.3.3 Example 1: Cosine                                                   |
|                | 13.1.1 Sinusoidal waves 150                                                                                    | 15.3.4 Example 2: Square wave 191                                          |
| 127            | 13.1.2 Speed of a wave on a string 152                                                                         | 15.3.5 Example 3: Square wave with                                         |
|                | 13.2 Wave equation                                                                                             | amplitude $A$ and period $T$ 192                                           |
| 129            | 13.3 Superposition & interference 154                                                                          | 15.3.6 Example 4: Square wave with                                         |
| 129            | 13.3.1 Phase difference                                                                                        | offset                                                                     |
| 129            | 13.3.2 Interference patterns in space . 155<br>13.3.3 Frequency difference & beats . 157                       | 15.3.7 Example 5: Sawtooth wave 193<br>15.3.8 Example 6: Triangle wave 193 |
| 130            | 13.4 Reflection & transmission                                                                                 | 15.3.9 Extra: Amplitude-phase form . 194                                   |
| 131            | 13.5 Longitudinal waves                                                                                        | 15.3.10 Extra: Complex form 195                                            |
| 131            | 13.5.1 Sound waves                                                                                             | 15.3.11 Example 6: Square wave (re-                                        |
| 133            | 13.5.2 Speed of sound in fluids 158                                                                            | visited)                                                                   |
|                |                                                                                                                |                                                                            |
|                | 13.5.3 Speed of sound in solids 160                                                                            | 15.3.12 Application: Spectra of music                                      |
| 134<br>tor 134 | 13.5.3 Speed of sound in solids                                                                                | 15.3.12 Application: Spectra of music<br>instruments                       |

| 13.3.3 Frequency difference & beats .                        | 157 15.3.8 Example 6: Triangle wave                                                                                      |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 13.4 Reflection & transmission                               | 157 15.3.9 Extra: Amplitude-phase form .                                                                                 |
| 13.5 Longitudinal waves                                      |                                                                                                                          |
| 13.5.1 Sound waves                                           |                                                                                                                          |
| 13.5.2 Speed of sound in fluids                              | 158 visited)                                                                                                             |
| 13.5.3 Speed of sound in solids                              |                                                                                                                          |
| 13.6 Standing waves                                          |                                                                                                                          |
| 13.6.1 On a string                                           | 162 15.4 Fourier transforms                                                                                              |
| 13.6.2 Resonant frequencies                                  |                                                                                                                          |
| 13.6.3 String instruments                                    | 164 15.4.2 Example: Rectangular pulse.                                                                                   |
| 13.6.4 Musical notes                                         | 164 15.4.3 Dirac delta function                                                                                          |
| 13.6.5 In a pipe of air                                      | 164 15.5 Summary                                                                                                         |
| 13.7 Energy transmission in a wave                           | 167                                                                                                                      |
| 13.7.1 Power of a wave on a string                           | 167                                                                                                                      |
| 13.7.2 Exciting harmonics                                    | 168 III Fluid dynamics                                                                                                   |
| 13.7.3 Energy density & intensity                            | 168                                                                                                                      |
| 13.7.4 Decibel scale                                         | 170 16 Hydrostatics & Pressure                                                                                           |
| 13.8 Doppler effect                                          |                                                                                                                          |
| 13.8.1 Moving source                                         | 171 16.2 Microscopic description                                                                                         |
| 13.8.2 Moving observer                                       | 172 16.3 Bulk modulus                                                                                                    |
| 13.8.3 General formula                                       | 172 16.4 Pressure variation with depth                                                                                   |
| 13.8.4 Sonic boom                                            | 172 16.4.1 Air pressure variation with al-                                                                               |
|                                                              | titude and weather                                                                                                       |
|                                                              | 175 16.4.2 Air pressure variation with                                                                                   |
| 14.1 Basics                                                  | 175 weather                                                                                                              |
| 14.1.1 Euler's formula                                       |                                                                                                                          |
| 14.1.2 Complex conjugate                                     | 176 16.5.1 Manometer                                                                                                     |
| 14.1.3 Complex form of goniometric                           |                                                                                                                          |
| functions                                                    |                                                                                                                          |
| 14.1.4 Extra: Angle-sum formula                              |                                                                                                                          |
| 14.2 Quadratic equations                                     | 178    16.6 Pascal's principle                                                                                           |
| 14.3 Solving second order differential equa-                 |                                                                                                                          |
| tions                                                        |                                                                                                                          |
| 14.3.1 Characteristic equation                               |                                                                                                                          |
| 14.3.2 Differential operator                                 |                                                                                                                          |
| 14.3.3 Simple harmonic oscillator                            | 180 density                                                                                                              |
| 14.3.4 Initial conditions & real solu-                       | 191 17 Fluids in Motion                                                                                                  |
| tions                                                        | 181 17.1 Continuity equation                                                                                             |
| 14.3.5 Extra: Analytic representa-                           |                                                                                                                          |
| tion and complex phase<br>14.3.6 Extra: Rotation in the com- | 182 17.2.1 Torricelli's law                                                                                              |
|                                                              |                                                                                                                          |
|                                                              | 102 17.2.2 Venturi effect                                                                                                |
| plex plane                                                   |                                                                                                                          |
| 14.4 Damped harmonic oscillator                              | 183<br>184 17.3 Current resistance & viscous flow                                                                        |
| 14.4 Damped harmonic oscillator                              | 17.3    Current resistance & viscous flow       17.4    Laminar & turbulent flow                                         |
| 14.4 Damped harmonic oscillator                              | 184    17.3 Current resistance & viscous flow       184    17.4 Laminar & turbulent flow       185    17.5 Magnus effect |

15.2 Interlude: Averaging functions . . . . 186

207 titude and weather . . . . . 16.4.2 Air pressure variation with 207 208 16.5.3 Torricelli's experiment . . . . 208 16.5.4 Drinking from a long straw . . 209 Pascal's principle . . . . . . . . . 209 16.7.3 Archimedes' trick: Measuring ids in Motion 215 17.2.1 Torricelli's law 217 18 Surface Tension 223

196

197

198

201

203

204

205

205

15.4.2 Example: Rectangular pulse . . 197

18.1 Surfactants & soap bubbles . . . . . . 224 

3

8.1.5 Example 5: Ballistic pendulum 79 
 8.2
 Impulse
 80

 8.3
 Center of mass
 81
8.3.1 Example: Two mass in 1D . . . 82



### 119 12.1 Differential form of Ampère's law & 12.1.1 Interlude: Kelvin-Stokes theo-13 Electromagnetic Waves 125 13.3.3 Light year 129 13.4 Intensity & energy density 129 13.6.2 EMF of an electromagnetic wave 131 14 Optics 14.2 Reflection and refraction of light . . . 134 14.2.1 Total internal reflection . . . . 135 14.2.3 Refraction wavelength . . . . 136 14.2.4 Dispersion & prisms . . . . . 137 14.4.1 Polarization by absorption . . . 139 14.4.2 Polarization by reflection . . . 140 14.4.3 Polarization by scattering . . . 141 14.4.4 Circular polarization . . . . . . 141 14.5.1 Interference pattern . . . . . 142 14.5.2 Double-slit interference pattern 144 14.6.1 Application: Crystallography . 148 II Thermodynamics 14915 Temperature & The Zeroth Law 151 15.1 Thermometers and temperature scales 152 16 Ideal Gas Law 155

CONTENTS

5

| al Mechanics                       | 157 | 20.2.1 Phase diagrams                        |
|------------------------------------|-----|----------------------------------------------|
| ipartition theorem                 | 157 |                                              |
| rlude: Random walks                | 159 | 21 Thermodynamic Processes 179               |
| rlude: Gaussian distributions      | 160 | 21.1 PV diagrams                             |
| well-Boltzmann distribution        | 161 | 21.2 Relation between heat capacities 180    |
| der Waals equation                 | 162 | 21.3 Adiabatic expansion                     |
| · · · · ·                          |     | 21.3.1 Adiabatic free expansion & en-        |
| The First Law                      | 165 | thalpy                                       |
| orimeters                          | 166 |                                              |
| t transfer                         | 166 | 22 Engines 187                               |
| aw of thermodynamics               | 167 | 22.1 A simple engine                         |
| t expansion of solids              | 168 | 22.2 Steam engine                            |
| .1 Thermal expansion at atomic     |     | 22.3 Internal combustion engine 188          |
| level                              | 169 | 22.4 Alpha-type Stirling engine 189          |
| .2 Strain & Young's Modulus        | 169 | 22.5 Beta-type Stirling engine               |
| ~                                  |     |                                              |
| Radiation                          | 171 | 23 Entropy & The Second Law 191              |
| k body                             | 171 | 23.1 Efficiency of engines                   |
| leigh-Jeans law                    | 172 | 23.2 Refrigerators                           |
| ık's law                           | 173 | 23.3 2nd law of thermodynamics for a re-     |
| .1 Quantum mechanical model        | 174 | versible process                             |
|                                    |     | 23.3.1 Heat pump                             |
| hanges                             | 175 | 23.4 Entropy, reversibility and disorder 195 |
| herms, critical temperatures & va- |     | 23.4.1 Entropy for a reversible cycle . 196  |
| pressures                          |     | 23.4.2 Entropy for an ideal gas 196          |
| se changes & latent heat           | 176 | 23.5 Entropy and probability                 |

1 of 55

physik.uzh.ch ii Mathematische Hilfsmittel zur Physik I und II

mit ergänzenden Beispielen und Korrekturen, 15. Februar 2013

Physik - Institut Universität Zürich

| Iı | nhaltsverzeichnis               |
|----|---------------------------------|
| 1  | Funktionen und ihre Ableitungen |

|          | 1.1 | Funktionen                                                       |
|----------|-----|------------------------------------------------------------------|
|          | 1.2 | Felder                                                           |
|          | 1.3 | Ableitungen (von Funktionen mit einer Variablen)                 |
|          | 1.4 | Ableitungsregeln für elementare Funktionen                       |
|          | 1.5 | Funktionen mehrerer Variablen                                    |
|          |     | 1.5.1 partielle Ableitung                                        |
|          |     | 1.5.2 totales Differential von Funktionen mit mehreren Variablen |
|          |     |                                                                  |
| <b>2</b> | Tay | lor-Reihen und Näherungen                                        |

### 3 Messen und Messfehler

| 3.1 | Systematische und zufällige Messfehler              | 11 |
|-----|-----------------------------------------------------|----|
| 3.2 | Wahrscheinlichkeitsverteilung zufälliger Messfehler | 11 |
| 3.3 | Schätzungen der wahren Werte                        | 13 |
| 3.4 | Fehlerfortpflanzung                                 | 14 |
|     |                                                     |    |

### **Formelblatt Physik HSGYM**

♥ 6 53%

10

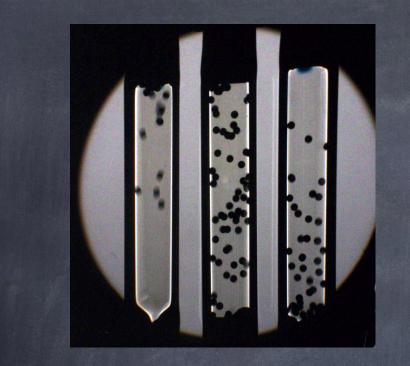
4. April 2015, M. Lieberherr

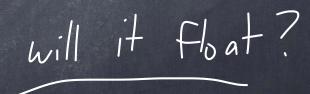
Viele Gesetze und Informationen auf dieser Seite sollten von der Mittelschule her bekannt sein und angewendet werden können. Folgen Sie den braunen oder blauen Links für weitergehende Auskünfte oder dem Index.

 $P = \frac{W}{\Delta t}$  $1 \text{ u} = 1.661 \cdot 10^{-27} \text{ kg}$   $B = \frac{\mu_0 I}{2\pi r}$ Phys. Rechnen M = m/n  $pV = nRT = Nk_BT$   $2\pi r$   $\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$ Eine Grösse umfasst Zahlenwert und Einheit.  $\eta = \frac{W_2}{W_1}$ Für gegebene und  $R = 8.314 \,\mathrm{J/(mol \cdot K)}$  $B = \frac{\mu_0 NI}{l}$  $1 \,\mathrm{kWh} = 3.6 \,\mathrm{MJ}$ gesuchte Grössen  $k_B = 1.381 \cdot 10^{-23} \,\mathrm{J/K}$  $\vec{p} = m\vec{v}$  $\vec{p}_1 + \vec{p}_2 + \dots = const$ werden Platzhalter  $V_{mn} = 22.4 \cdot 10^{-3} \,\mathrm{m^3/mol}$   $U_{ind} = -\frac{d\Phi}{dt}$ eingeführt. Eine Schlussformel ist nach  $\frac{1}{2}m\upsilon^2 = \frac{3}{2}k_BT$  $\Delta U = Q + W + \dots$  $\vec{F}_{res} = \frac{\Delta \vec{p}}{\Delta t}$  $\Phi = AB_{\perp}$ der gesuchten Grösse  $u(t) = \hat{u}\cos(\omega t)$ aufgelöst und enthält nur  $pV^{\varkappa} = const$  $\omega = \frac{2\pi}{T} = 2\pi f = \frac{\nu}{r}$ Variable für gegebene  $U_{\rm eff} = \frac{\hat{u}}{\sqrt{2}}$ Q = mHGrössen. Das Resultat  $a_z = \frac{v^2}{r} = r\omega^2$ hat ebenso viele  $\eta = \frac{T_w - T_k}{T_w}$ signifikante Stellen wie Schwingungen/Wellen  $F_G = \frac{Gm_1m_2}{r^2}$ die ungenaueste Ausgangsgrösse. Elektrizität  $y(t) = \hat{y}\sin(\omega t + \varphi_0)$  $G = 6.674 \cdot 10^{-11} \, \frac{\mathrm{Nm}^2}{\mathrm{kg}^2}$  $T = 2\pi \sqrt{m/D}$  $e = 1.6022 \cdot 10^{-19} \,\mathrm{C}$ Mechanik  $M = aF = rF\sin\alpha$  $T = 2\pi \sqrt{l/g}$  $\vec{\upsilon} = \frac{\Delta \vec{s}}{\Delta t}$  $\Sigma Q_i = const$  $a_1F_1 = a_2F_2$  $F_C = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 Q_2}{r^2}$  $\alpha_r = \alpha_1$  $p = \frac{F_N}{A}$ 1 m/s = 3.6 km/h $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$ du

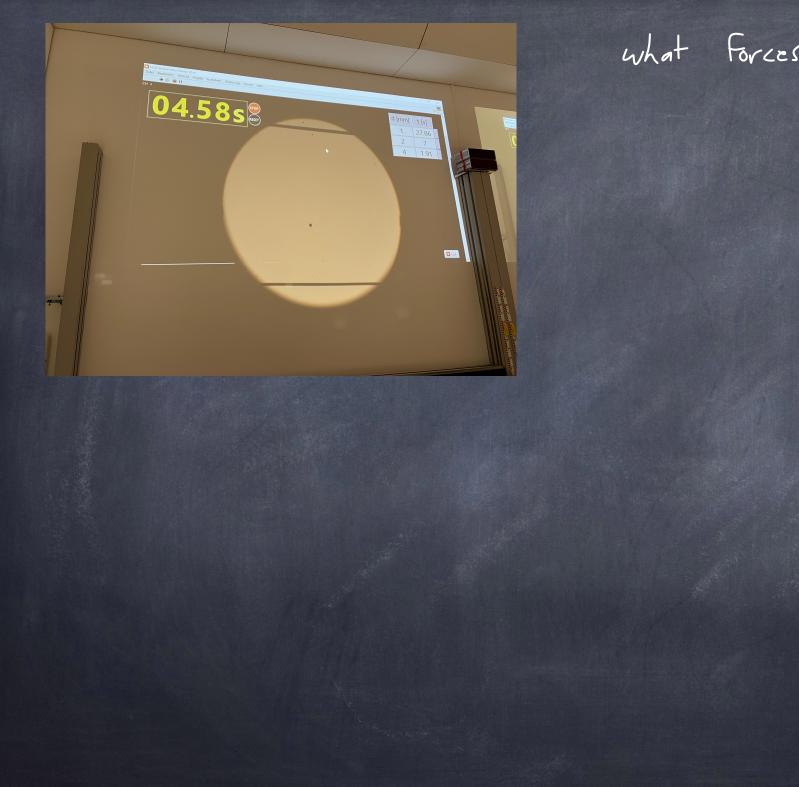
| Lecture<br>schedule<br>(12<br>lectures) | Topics                                                                                               | PDF of<br>chalkboard | Additional resources                                                                                                                 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Week 1<br>(Feb.<br>23rd, 2024)          | Intro, units, reminder of forces, and force balancing.                                               |                      | See additional resources linked above.                                                                                               |
| Week 2<br>(Mar. 1st,<br>2024)           | Electromagnetic radiation.                                                                           |                      | See PHY121 script, chapters<br>13,18,&19 for more on waves,<br>the power of heat of EM<br>radiation.                                 |
| Week 3<br>(Mar. 8th,<br>2024)           | But are photons particles or waves ?                                                                 |                      | See Thornton & Rex, "Modern<br>Physics", chapter 3, available<br>online.                                                             |
| Week 4<br>(Mar. 15th,<br>2024)          | Waves, standing waves, probabilities                                                                 |                      | See Script 1 chapter 12 on<br>harmonic oscillators, and<br>script 2 chapter 12 on waves.                                             |
| Week<br>5 (Mar.                         | Wave-particle duality, wave packets,<br>uncertainty principle, Schroedinger wave                     |                      | See script sectipon 12.1.2 & 12.1.3 for small-angle                                                                                  |
| 22nd,<br>2024)                          | equation                                                                                             |                      | approximation, more on<br>waves in chapter 13.<br>业 Wave-diffraction (GIF, 592<br>KB)                                                |
|                                         |                                                                                                      |                      | ,<br>⊻ Wave-diffraction-big-<br>aperture (GIF, 276 KB)<br>, ⊻ wave-packet (GIF, 3 MB) ,<br>⊻ group-and-phase-velocity<br>(GIF, 1 MB) |
|                                         |                                                                                                      |                      |                                                                                                                                      |
| Week<br>6 (Apr.<br>12th, 2024)          | The quantum nature of electrons in an atom, and emitted light. Standing waves. Particle in a 3D box. |                      | Videos shown on standing waves on a 2D drum:                                                                                         |
| 2                                       |                                                                                                      |                      |                                                                                                                                      |

| PHY 127                                                                         | Physics Terms helper |        |                  |                                                |                          |                                             | Prof. Ben Kilminster    |  |
|---------------------------------------------------------------------------------|----------------------|--------|------------------|------------------------------------------------|--------------------------|---------------------------------------------|-------------------------|--|
| physical quantity<br>(SI base units in<br>blue)<br>(radiation physics<br>units) | Deutsch              | Symbol | SI unit          | Simplified<br>Formula to<br>help with<br>units | in other SI<br>units     | typical<br>units in<br>radiation<br>physics | conversions             |  |
| Length                                                                          | Länge                | e      | meter = m        |                                                |                          |                                             |                         |  |
| time                                                                            | Zeit                 | t      | second = s       |                                                |                          |                                             |                         |  |
| velocity                                                                        | Geschwindigkeit      | v      | m/s              |                                                |                          | c=~3E8 m/<br>s                              |                         |  |
| acceleration                                                                    | Beschleunigung       | а      | m/s²             |                                                |                          |                                             |                         |  |
| mass                                                                            | Masse                | m      | kilogram =<br>kg |                                                |                          | 1eV/c <sup>2</sup>                          | 1eV/c² =<br>1.78E-36 kg |  |
| momentum                                                                        | Impuls               | р      | kg*m/s           | p=mv                                           |                          |                                             |                         |  |
| force                                                                           | Kraft                | F      | Newton = N       | F = ma                                         | 1N = kg*m/s <sup>2</sup> |                                             |                         |  |
| torque                                                                          | Drehmoment           | τ      | N*m              | $\tau=rFsin\theta$                             | kg*m²/s²                 |                                             |                         |  |
| energy, work                                                                    | Energie, Arbeit      | E, W   | Joule = J        | W = Fx                                         | 1J = kg*m²/s²            | 1eV                                         | 1eV =<br>1.602E-19J     |  |


| power               | Leistung                   | Р               | Watt = W            | P = E/t    | 1W = kg*m²/s          |                           |                    |
|---------------------|----------------------------|-----------------|---------------------|------------|-----------------------|---------------------------|--------------------|
| pressure            | Druck                      | Р               | Pascal = Pa         | P = F/area | 1Pa=1N/m <sup>2</sup> |                           |                    |
| Electrical charge   | Elektrische<br>Ladung      | q               | Coulomb =<br>C      |            |                       | e =<br>electron<br>charge | 1e =<br>1.602E-19C |
| Electrical current  | Stromstärke                | I               | Ampere =<br>Amp = A | l = q/t    | 1A=1C/s               |                           |                    |
| Electric potential  | Elektrische<br>Spannung    | V or φ          | Volt = V            | Power = IV | 1V = 1W/A             |                           |                    |
| Electric field      | Elektrisches Feld          | Е               | N/C = V/m           |            |                       |                           |                    |
| Magnetic field      | Magnetische<br>Flussdichte | В               | Tesla = T           | F=BIℓ      | 1T=1N/(A*m)           |                           |                    |
| Resistance          | Elektrischer<br>Widerstand | R               | $Ohms = \Omega$     | V = IR     | 1Ω = 1V/A             |                           |                    |
| Capacitance         | Elektrische<br>Kapazität   | С               | Farad = F           | C=q/V      | 1F = 1C/V             |                           |                    |
| Temperature         | Temperatur                 | т               | Kelvin = K          |            |                       |                           |                    |
| amount of substance | Stoffmenge                 | N               | Mol                 |            |                       |                           |                    |
| luminous intensity  | Lichtstärke                | l <sub>v</sub>  | Candela =<br>cd     |            |                       |                           |                    |
| radioactivity       | Radioaktivität             | A <sub>Bq</sub> | Becquerel =<br>Bq   |            | 1/s                   |                           |                    |
| Absorbed dose       | Energiedosis               | DT              | Gray = Gy           |            | m²/s² = J/kg          |                           |                    |
| Equivalent dose     | Åquivalentdosis            | Ητ              | Sievert = Sv        |            | m²/s² = J/kg          |                           |                    |


Goal today: introduce physics principles to understand charge quantization, so that we can learn that electrons are particles with a fixed mass and charge

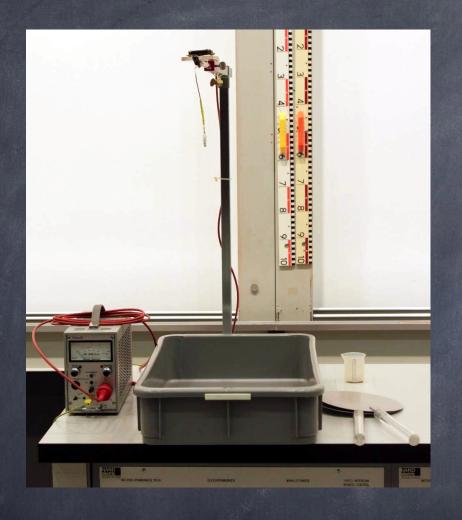



Newton's second law: SF=mā (+) falling ball: EF= -Fg=-mg=ma Fg=mg a = -g $\overline{a} = -\overline{g}$ 9 = 9.8 m/s<sup>2</sup> ball held 4p by a column of air Experiment: No: velocity (+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+) $F_{PRAG} = F_p = -bN_b$ ball with b=6TTMr Stokes' Law respect to air Viscosity radius of fluid of the  $\Xi F = F_p - F_g = ma = 0$  $F_p = F_g$ 

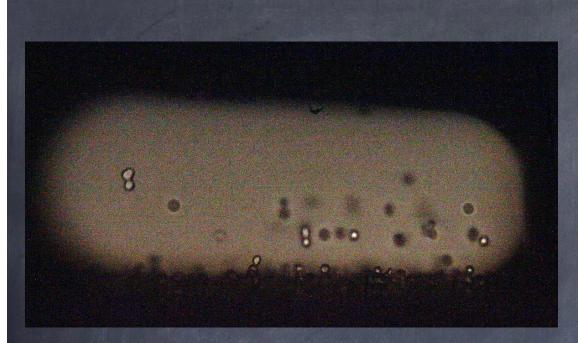







Experiment 2: broyancy (+)  $f_{Bhoyancy} = F_B$  when ball is suspended,  $f(F) = F_B - F_S = m_B^2 = 0$   $F_S = F_B - F_S = m_B^2 = 0$   $F_B = F_S$ FB: weight of Fluid being displaced by the ball Archimedes' principle: There is a broyant force (upward) on an object that is immersed in a Fluid. density of f/nid,  $T = \frac{m_f}{Volume}$  $F_{B} = m_{f} g$ m= density \* volume



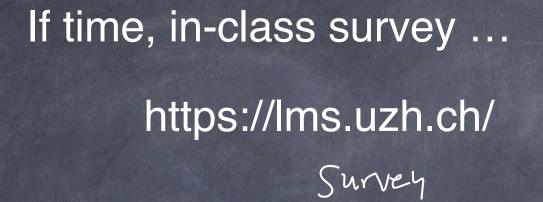

what Forces are at play?

Experiment 3! Buoyancy, drag force, gravity Dell reaches a constant velocity (terminal velocity) When forces balance. Fr Fr VF EF=FB+FB-FB=ma=0 ball: density =  $P = \frac{m}{\sqrt{2}} = m = pV$  $F_{g} = mg = \rho Vg = \rho \left(\frac{4}{3} \pi r^{3}\right)g$  $F_{g} = m_{f}g = \sigma V_{g} = \tau \left(\frac{4}{3}\pi r^{3}\right)g$   $f_{hid} \quad density$   $f_{hid} \quad of f_{hid}$  $f_p = +bN = (6\pi nr) N_t$ terminal velocity

Approximate a skier as a ball. Is it faster to be a big skier or a small skier ?



### Electric charge

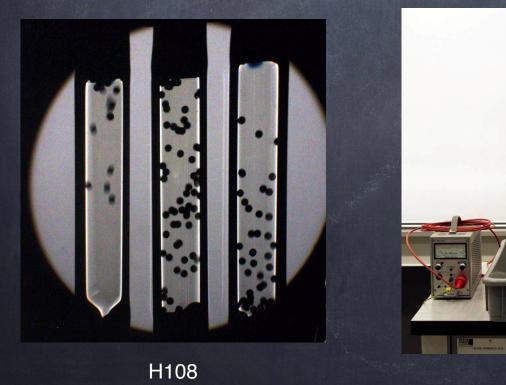



Experiment 4: add electricity (termis) -> bubbles can be charged electrically with electric potential, and there is an electric Force, FE. € E F=gE (E points in the direction a F) charge would g Experiment 5: tiny glass balls in an electric field Filled with oil  $|\vec{E}| = \Delta V$   $\vec{F} = q \vec{E}$   $\vec{A}$   $\vec{F} = q \vec{E}$  (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)E SAV Fuoltage] Fe is in (+) direction

(+)

 $\wedge$ 

$$\begin{array}{cccc} & & & \\ F_{g} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$






H44



H62



ES38

ES36