Wow: 690 students enrolled!

PHY II7 HS2023
 Week 3, Lecture I Oct. 3rd, 2023
 Prof. Ben Kilminster

$$
\text { Pleose do quiz }{ }^{ \pm} Z \text { on OLAT }
$$

Week 1 online OLAT quiz

Participants

408

60\% participation

Who are you?

How many semesters of physics have you had ?

0 1
2
3+

9\% no physics
62\% 3+ semesters

Are you taking MAT 182 ?

What could be the integral of $3 x^{2}$?

What is the derivative of x^{3} with respect to x ?

19

41
\%
10%
20\%
30%

- $2 x^{2}$

Types of energy:

- work
- Kinetic energy
- Kinetic energy
- potential energy due to grant
Ialue to spring

Relationship of forces to energy:

The work done by a force is $W=F \Delta X$

(for the case when \bar{F} is in the directed)

$$
W=F \Delta X
$$

If \bar{F} not parallel to $\overline{\Delta x}$, we need to find the component of $\frac{n e e d}{F}$ that is parallel.

$$
W=F_{x} \Delta x=\underset{\left(s^{\circ} \quad F_{x} \| \Delta x\right)}{ }
$$

When the force is in the same direction as the motion, W is (t)
Derivation: If we have a net force, then we get an acceleration

$$
\sum F_{x}=m a
$$

Remember $v^{2}=v_{0}^{2}+2_{a} \Delta x \Rightarrow a=\frac{v^{2}-v_{0}^{2}}{2 \Delta x}$

$$
\text { work }=F_{x} \Delta x=m a \Delta x=m\left(\frac{v^{2}-v_{0}^{2}}{2 \Delta x}\right) \Delta x=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}
$$

The work-energy theorem:

$$
W_{\text {to TX L }}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=K_{f}-K_{i}=\Delta K
$$

$$
\frac{1}{2} m v^{2} \equiv \text { Kinetic energy }=K
$$

is the kinetic energy of an object moving

Notes: - K is a scalar, no direction

- K is always positive or zero
- ΔK can be negative (if object slows down)
- Consider each force separately s and the work it does.

Example:

Arnold lifts a 5 kg block to $h=2 \mathrm{~m}$, using 500 N of force.

1) What is the work done by Arnold?
2) what is the work done by gravity?
3) What is the final velocity of the block?

There are 2 forces at work, Arnold + gravity, Initial velocity is zero. work done by And.

$$
\begin{aligned}
W_{A} & =F_{A} \cos ^{\prime} s \theta \Delta x=F_{A} \Delta x \\
& =(500 \mathrm{~N})(2 \mathrm{~m})(1) \\
& =1000 \mathrm{~J}
\end{aligned}
$$

2)

$$
\begin{aligned}
W_{g} & =F_{g} \cos ^{-1} \theta \Delta x=-m g \Delta x \\
& =-(5 \mathrm{~kg})\left(10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(2 \mathrm{~m}) \\
& =-100 \mathrm{~J}
\end{aligned}
$$

3)

$$
\begin{aligned}
W_{\text {ToTAL }} & =W_{A}+W_{g}=1000 \mathrm{~J}-100 \mathrm{~J}=900 \mathrm{~J} \\
W_{\text {TOTAL }} & =\Delta K=\frac{1}{2} m v_{F}^{2}-\frac{1}{2} / \mathrm{NV}_{i}^{2} \\
V_{F} & =\sqrt{\frac{2\left(W_{\text {ToTAL }}\right)}{m}}=\sqrt{\frac{2(900 \mathrm{~J})}{5 \mathrm{Kg}}}=19 \frac{\mathrm{~m}}{\mathrm{~s}} \text { direction }
\end{aligned}
$$

So far, we have had a constant force

we move an object in t-director.

$$
\begin{aligned}
& W= F_{\Delta x}= \\
& \text { area under } \\
& \text { bis. } t
\end{aligned}
$$

what if our force is changing? curve.

F_{x} moves only in x direction

The total work is $W=\lim _{\Delta x_{i} \rightarrow 0} \sum_{i} F_{x_{i}} \Delta x_{i}$

$$
W=\int_{x_{1}}^{x_{1}} F_{x} d x \quad F_{2}=F(x)
$$

The x-component of the force, in the direction of movement, x.

So far , we have $W=\int F_{x} d x=\int_{x_{1}}^{x_{2}}\left(F_{\cos \theta}\right) d x$
In physics, we often have vectors $\xrightarrow[F_{x}]{\theta} d x$ in different directions
 The dot product of \bar{A} and \bar{B} is.

$$
\bar{A} \cdot \bar{B}=|\bar{A}||\bar{B}|(\cos \theta)
$$

A dot product multiplies the parallel components of 2 vectors.

Two ways:

\[

\]

where A and B are magnitudes

In 3-b coordinates (x, y, z)

$$
\begin{aligned}
& \bar{A}=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{r} \\
& \bar{B}=A_{x} \hat{x}+B_{y} \hat{y}+B_{z} \hat{z}
\end{aligned}
$$

$\left.\bar{A} \cdot \bar{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right] \quad A$ scalar value
A scalar value
(not vector)
Fells us
are our vectors.
So our formula is now $W=\int_{s_{1}}^{s_{2}} \bar{F} \cdot d \bar{s}$
\bar{S} is the path of the object.
$d \bar{s}$ could be $d \bar{x}$ if the object is moving in the x-direction.

In this class, we will only deal with paths that are in one direction at a time.

The work done on a system can be stored as potential energy, U.

Potential energy can change $\Delta U=U_{f}-U_{i}=U_{2}-U_{1}$
Sometimes, we write

$$
d u=\Delta u
$$

$$
-\Delta U=-\left(U_{2}-U_{1}\right)=W=\int_{s_{1}}^{s_{2}} \bar{F} \cdot d \bar{s}
$$

Notice that $\Delta u=-W$
Example:
Assume we lift an object of mass, m to a height, h.

Force of gravity is $F_{s}=m g, \bar{F}_{3}=-m g \hat{z}$

$$
d \bar{s}=d z \hat{z} \quad W=\int \bar{F} \cdot d \bar{s}
$$

work done bu gravity

$$
\begin{aligned}
& W=\int_{0}^{h}(-m g \hat{z}) \cdot(d z \hat{z})=\int_{0}^{h}-m g d z \\
& W=-m g]_{0}^{h}=-m g h
\end{aligned}
$$

\downarrow_{g}

$$
\hat{z} \cdot \hat{z}=1
$$

change in potential energy

In general, gravitational potential energy is $U=m g \frac{z}{\uparrow}$ height
But potential energy is relative.
\square
m
Id T $U=m g z$

U relative to the flor is $U=m$ nh
U relative to the table is $U=m g d$

Conservation of energy
$\epsilon_{\text {before }}=\epsilon_{\text {after }}$ always top if we consider all sources of energy, then the sum of energies is conserved before and after any situation.
For conservative forces, potential energy plus Kinetic energy is conserved.

$$
(K+U)_{\text {before }}=(K+U)_{\text {after }}
$$

summary so far,
Energy is conserved

$$
\epsilon_{\text {before }}=\epsilon_{\text {after }}
$$

Potential energy $=m g h=U$ gravitation al
relative to a height of zero.

$$
\text { Kinetic energy }=\frac{1}{2} m v^{2}=K
$$

work -energy theorem $\quad W_{\text {DiaL }}=\Delta K=\frac{1}{2} m v_{F}^{2}-\frac{1}{2} m V_{i}^{2}$
potential energy + work relation

$$
-\Delta U=W=\int_{s_{1}}^{s_{2}} \bar{F} \cdot d \bar{s}
$$

Consider Arnold again.
If he lifts the block with 50 N of force, to $h=2 \mathrm{~m}$ and lets 90)
how fast will it move as it hits the ground.

1) work of Amold:

$$
\begin{array}{rlrl}
\bar{F}_{A} \uparrow \Delta \bar{x} & W_{A} & =\bar{F}_{A} \cdot \overline{\Delta x}=F_{\Delta} \Delta x=F_{A} h \\
\cos \Delta=1 \\
& & & =(50 \mathrm{~N})(2 m)=+100 J
\end{array}
$$

2) \bar{x} gravity also does work

$$
\begin{aligned}
& W_{g}=\bar{F}_{g} \cdot \Delta \bar{x}=-F_{g} \Delta x=-m g h=\left(-5 \mathrm{kgg}_{(100}\right)\left(\frac{10 \mathrm{~m}}{\mathrm{~s}^{2}}\right)(2 m) \\
& =-100 \mathrm{~J}
\end{aligned}
$$

3) Total work $=W_{A}+W_{9}=100 \mathrm{~J}-100 \mathrm{~J}=0 \mathrm{~J}$ The total work is zero, so velocity is
zero.

Amold drops the weight, how fast is it moving?

The block has

$$
\left.\begin{array}{l}
U=m g h \\
K=0
\end{array}\right\} a t \text { top }
$$

When he drops it, the potential energy becomes kinetic energy.

$$
\begin{aligned}
&(K+U)_{\text {Before }}=(K+U)_{\text {after }} \\
& 0+m g h \\
& m g h=\frac{1}{2} m v^{2}
\end{aligned} \frac{\frac{1}{2} m v^{2}}{}+0 .
$$

How high does the grasshopper jump?
$P_{s}=-k \Delta x \quad$ force points opposite the stretching of the spring.
T

$$
K=\frac{F_{s}}{\Delta x}=\frac{(2.5 \mathrm{~kg})\left(9.8 / \frac{\mathrm{m}}{\mathrm{~s} 2}\right)}{0.04 \mathrm{~m}}=612.5
$$

$$
-\Delta u=w=\int \bar{f} \cdot d \bar{s}
$$

$$
W=\int_{0}^{x} F \cdot d x=\int_{0}^{x}(-k x) \cdot d x
$$

$$
U=\frac{1}{2} k x^{2}
$$

$$
W=-\frac{1}{2} k x^{2}
$$

energy

$$
\Delta U=-W=\frac{1}{2} k x^{2}
$$ stored ir a spring where x is the compression spring

