

Lecture notes prepared by Steven J. Lee

Table of Contents

1.Course outline.

2.Course schedule.

- 3.Lecture note structure.
- 4. Course requirements.

Course outline

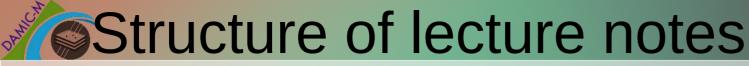
- 1. Introduction to programming in Linux (Today).
- 2. Introduction to basics of programming.
- 3. Data processing in C/C+.+.
- 4. Data handling in C/C++.
- 5. Memory management in C/C++.
- 6. Handling large data in C and C++.
- 7. Object and Classes.
- 8. Scripting using ROOT 5 and 6.
- 9. Programming using ROOT 5 and 6 packages.
- 10. Parallel programming in C/C++ (Last day).

The course will run from 0900~1145 on Monday August 25 to Friday September 2

Course Schedule

0900~0915: I will give you an introduction to the first topic for the day (Except for today's lecture due to extended introduction).

0915~1015: For 1 hour, we will divide into smaller groups and work on the exercises.


1015~1030: We will take a short coffee/bathroom break.

1030~1045: I will give you an introduction to the second topic for the day.

1045~1130: For 45 minutes, we will divide into smaller groups and work on the exercises.

1130~1145: We will address last minute questions and I will conclude the lecture for the day.

There will be 3 colours used to distinguish between

Bash command (direct command line):

bashcommand

Bash script (directly executable from command line):

1 bashscript

C++ code:

c++code

Course requirements

This is the first time we're running the course in person in a few years but we still request that you use your own computer for the exercises.

This means you need to have some form of Linux environment. There are 4 options:

- 1)Virtual Box: You install a virtual version of linux inside your current computer and operating system.
- 2)Full Linux installation, not the best option for a 2 weeks compressed block course because things can go wrong, unless if you already have it.
- 3) Mac is built on Unix, which is very close to Linux
- 4) For Windows users, we can use "Windows subsystem Linux"

Course requirements

You also have the option to use the virtual machines remotely using open secure shell "ssh" and the command looks similar to this:

Warning: Permanently added 'ohm21.physik.uzh.ch,130.60.165.162' (ECDSA) to

Password: #Here, you will not see your password being typed.

Have a lot of fun...

the list of known hosts.

ssh -X username@remote.com.put.er

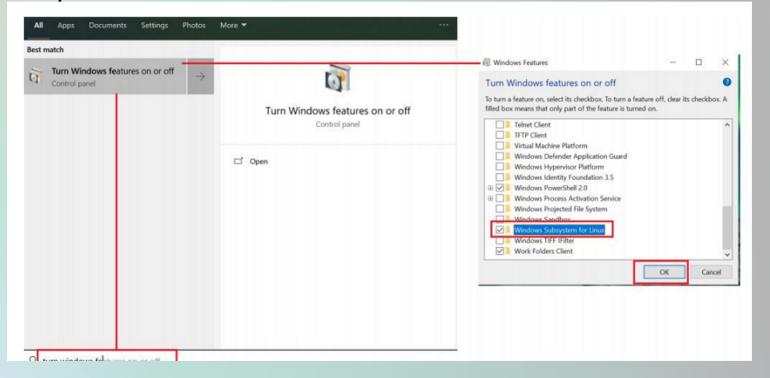
stelee@ohm21:~>

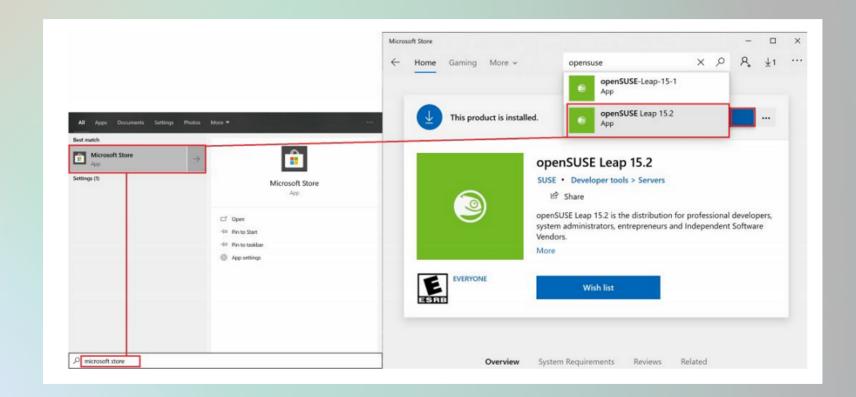
You will also have to make sure the display works in between computers.

On Windows, I recommend using X-Ming (http://www.straightrunning.com/XmingNotes/)

And on Mac, I recommend X-Quartz (https://www.xquartz.org/)

On Linux, you only need to keep in mind the option "-X" when using the SSH command.


ssh -X username@remote.com.put.er



For Windows Subsystem Linux (WSL), the steps can look intimidating but it is quite simple.

Windows Subsystem Linux

Then in addition, you must install Xming (

https://www.physik.uzh.ch/dam/jcr:0b8cc71b-7788-4a7c-b0d0-d47b228bbf33/Xming-6-9-0-31-setup.exe

And a text editor within the WSL and configure the ".bashrc" and add in an "export line as follows:

```
zypper in emacs

exit

emacs -nw ~/.bashrc

export DISPLAY=0:0
```


For Mac users, this is a little bit different. You must first install Xquarts (
https://www.physik.uzh.ch/dam/jcr:ee978d2d-2c55-4ad5-949f-aea05eddb98f/XQuartz-2.7.11.dmg), then you
must add the line:

```
XAuthLocation /opt/X11/bin/xauth
```

Into the file:

```
/etc/ssh/ssh_config
```

To look similar to this

Once we're all set up, let's test to make sure we can see a simple xgenerated clock called "xclock"

xclock

If this is working, let's start programming!

