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Physics at the high energy frontier

I LHC offers access to a whole qualitatively new set of interactions,
Yukawas couplings, which can be probed at precision over a wide
range of momenta.

I Extremely broadband new-physics search
machine, with ∼1k channels across several
orders of magnitude in momentum scales.

I Accurate predictions and optimized algorithms
are required to make sense of noisy data
spanning orders of magnitude in energy.
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Jets as proxies for quarks and gluons
Because of color confinement, partons
shower and hadronise immediately into
collimated bunches of particles.

Jets are defined through a sequential
recombination algorithm

{?8}︸︷︷︸
particles

jet alg.
=⇒ { 9:}︸︷︷︸

jets

Jets are prevalent at hadron colliders.
— incoming beam particle
— intermediate particle
— final particle
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Boosted objects at the LHC

I At LHC energies, EW-scale particles (W/Z/t. . . ) are often produced
with ?C � <, leading to collimated decays.

I Hadronic decay products are thus often reconstructed into single jets.
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Boosted objects at the LHC

I Many techniques developed to identify hard structure of a jet based on
radiation patterns.

I In principle, simplest way to identify these boosted objects is by looking
at the mass of the jet.

I But jet mass distribution is highly distorted by QCD radiation and
pileup.
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Identifying boosted objects

Two main avenues to study boosted decays:

1. Manually constructing tractable substructure observables that help
distinguish between different origins of jets.

2. Apply machine learning models trained on large input images or
observable basis.

Aim: New methods bridging the gap between these two approaches.

We will introduce the Lund plane representation of jets and use it as a
framework to tackle a range of ML-based problems
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BOOSTED OBJECTS & THE LUND PLANE



Lund diagrams

I Lund diagrams in the (ln I�, ln�)
plane are a very useful way of
representing emissions.

I Different kinematic regimes are
clearly separated, used to illustrate
branching phase space in parton
shower Monte Carlo simulations and
in perturbative QCD resummations.

I Soft-collinear emissions are emitted
uniformly in the Lund plane

3F2 ∝ 
B
3I

I

3�
�

[Andersson et al, Z.Phys. C43 (1989) 625]
[FD, Salam, Soyez, JHEP 1812 (2018) 064]
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Lund plane representation

To create a Lund plane representation of a jet, use the (Cambridge/Aachen)
clustering sequence of the jet to associate a unique Lund tree to each jet.

1. Undo the last clustering step, defining two subjets 91 , 92
ordered in transverse momentum.

2. Save the kinematics of the current declustering step 8 as
a tuple T (8) = {:C ,Δ, I, <,#}

Δ ≡ (H1 − H2)2 + ()1 − )2)2 , :C ≡ ?C2Δ,

<2 ≡ (?1 + ?2)2 , I ≡ ?C2
?C1+?C2

, # ≡ tan−1 H2−H1
)2−)1

.

3. Repeat this procedure on both 91 and 92 until they are
single particles.

Cambridge/Aachen clustering: pairwise recombination of particles with smallest Δ separation.

[FD, Salam, Soyez, JHEP 1812 (2018) 064]
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Lund plane representation

I Each jet is thus mapped onto a tree of Lund declusterings from its
clustering sequence.

I Primary sequence of hardest transverse momentum branch is of
particular interest for measurements and visualisation.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV jets.
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I Non-perturbative region clearly separated from perturbative one.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV jets.
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Measurement of the primary Lund plane

Lund images provide an opportunity for experimental measurements and
comparisons with theory
I Lund plane can be predicted analytically, and the calculation is

systematically improvable.
I Can be compared to data and used e.g. for 
B extractions.

[Lifson, Salam, Soyez, JHEP 10 (2020) 170]
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Tagging jets in the Lund Plane

We will now investigate the potential of the Lund plane for boosted-object
identification.

Several different approaches:

I A log-likelihood function constructed from a leading emission and
non-leading emissions in the primary plane.

I Primary Lund plane as an input to CNN and LSTM.

I Full Lund plane as input to graph networks.

As a concrete example, we will take dijet background, with,, and CC̄
signal events.
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Log-likelihood use of Lund Plane

Log-likelihood approach takes two inputs:

I First one obtained from the “leading” emission, defined as first emision
satisfying I > 0.025 (∼ mMDT tagger).

ℒℓ (<, I) = ln
(

1
#(

3#(

3<3I

/
1
#�

3#�

3<3I

)
I The second one which brings sensitivity to non-leading emissions.

ℒ=ℓ (Δ, :C ;Δ(ℓ )) = ln
(
�(=ℓ )
(

/
�(=ℓ )
�

)
Overall log-likelihood signal-background discriminator for a given jet is then
given by

ℒtot = ℒℓ (<(ℓ ) , I(ℓ )) +
∑
8≠ℓ

ℒ=ℓ (Δ(8) , :(8)C ;Δ(ℓ )) + N(Δ(ℓ ))
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Boosted] tagging

I LL approach already
provides substantial
improvement over
best-performing substructure
observable.

I LSTM network achieves
even better results than
those obtained with LL or
older ML methods.

I Large gain in performance,
particularly at higher
efficiencies.
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Mapping the full Lund plane to a graph

I Performance can be improved further by taking secondary/tertiary Lund
planes into account, particularly relevant for top tagging.

I Treat each declustering of the Lund tree as a node on a graph.
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Many promising applications of graphs, e.g.

[Henrion et al. DLPS NIPS ’17]
[Martinez et al. EPJP 134 (2019) 7, 333]
[Moreno et al. EPJC 80, 58 (2020)]
[Qu, Gouskos, PRD 101, 056019 (2020)]

ln 1/∆
ln
k
t

Frédéric Dreyer 15/41

https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
https://arxiv.org/abs/1810.07988
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1902.08570


LundNet models

Tuple of kinematic variables as input for each node
{

LundNet-5 : (ln :C , lnΔ, ln I, ln<,#)
LundNet-3 : (ln :C , lnΔ, ln I)

Lund coordinates

EdgeConv Block
C = (32, 32)

EdgeConv Block
C = (64, 64)

EdgeConv Block
C = (128, 128)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Lund tree

EdgeConv Block
C = (32, 32)

EdgeConv Block
C = (64, 64)

EdgeConv Block
C = (128, 128)

Concatenate

Linear (384) + BN + ReLU

ReLU

features

Lund tree feature pairs

Linear (C1) + BN + ReLU

Aggregation

Linear (C2) + BN + ReLU

(a)

(b) (c)

edge features

[FD, Qu, JHEP 03 (2021) 052]

T ′ (8) =�3
:=0 h� (T (8) ,T (9: ) )
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Boosted object tagging with graph networks

I Graph-based methods outperform our previous benchmarks
significantly.

I LundNet model provides substantial improvement over ParticleNet and
is an order of magnitude faster to train/deploy.
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Complexity of models

I Direct use of the Lund tree as the graph structure removes the need for
a costly nearest-neighbour search.

I LundNet reduces training and inference time by order of magnitude
compared to previous graph methods.

I Due to their higher-level kinematic inputs, LundNet takes significantly
less epochs to converge to a good solution.

I Training and inference time of the model are reduced as transverse
momentum cut is increased and more nodes are removed from input.
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Exploiting universal features of QCD

I Universality of QCD suggests most information learnt in training
process is common to different signals and experimental setups

I Can use transfer learning to develop fast and data-efficient jet taggers
from existing models.

Consider two models:
I Fine-tuning: retrain all weights with a

lower learning rate
I Frozen: keeping the EdgeConv frozen

and retraining the final dense layers

[FD, Grabarczyk, Huss, Monni, in progress]
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Efficent jet traggers using transfer learning
I Both models can achieve high

performance despite dramatic reduction in
training data.

I Can be used to retrain existing taggers
with different experimental cuts or even
trained on other signals.
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Reliable taggers can be obtained with an order of magnitude
less data and training time
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Understanding what the network is learning

Can we determine what is driving performance of a neural network?

I Consider their application on a simple task where we have first
principle understanding.

I Build analytic likelihood-ratio discriminatant for this configuration and
compare them with ML models.

We will consider quark/gluon discrimination.
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Calculating Lund plane variables

Primary Lund-plane density can be computed to single-logarithmic accuracy
for both quarks and gluons.

[Lifson, Salam, Soyez, JHEP 10 (2020) 170]

For given jet with Lund declusterings
{Δ8 , :C ,8 , . . . } define likelihood ratio

Ldensity =
∏
8

�6(Δ8 , :C ,8)
�@(Δ8 , :C ,8)
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Building an analytic q/g discriminant

For a jet with primary declusterings {Δ8 , :C ,8 , I8 , . . . } compute the likelihood
ratio

Lprimary =
?6({Δ8 , :C ,8 , I8 , . . . })
?@({Δ8 , :C ,8 , I8 , . . . })

where ?@,6({Δ8 , :C ,8 , I8 , . . . )} is the probability to observe the given set of
declusterings if the jet were a quark or a gluon.

?@({Δ8 , :C ,8 , I8 , . . . }) = ?(final)(@ |@0) + ?(final)(6 |@0)
?6({Δ8 , :C ,8 , I8 , . . . }) = ?(final)(@ |60) + ?(final)(6 |60)

We can compute all single-logarithms from running coupling and collinear
effects.
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Optimal discriminant at single-logarithmic accuracy

I Computation in the collinear limit where Lund declusterings are
strongly ordered in angle Δ1 � Δ2 � · · · � Δ= .

I Construct the quark & gluon probability distribution iteratively from first
splitting.

Probabilities after including all Lund declusterings expressed as

?(final) = (=+1,= %̃(=)(=,=−1 . . . %̃(8)(8 ,8−1 . . . %̃(1)(1,0?(0)

where ( is a NLL Sudakov matrix and % a matrix of splitting kernels.

P̃ (1) P̃ (2) P̃ (i) P̃ (n)

p(0) S(1,0) S(2,1) S(i,i−1) S(n,n−1) S(n+1,n)
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Comparison with pure-collinear parton shower

I Compare analytic and deep learning approaches in events generated
in the strong-angular-ordered limit.

I In this limit analytic approach is exact and becomes optimal
discriminant.
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Application to full Monte Carlo

I Applying to /+jet events generated with Pythia 8: difference in
performance, but same qualitative behaviour.
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[FD, Soyez, Takacs, in progress]
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Comparison with other methods

I Comparison of the Lund-plane-based approaches with other analytic
and ML models.

I LundNet+ID model achieves marginally higher AUC but PFN-ID has
small performance improvement at low signal efficiency.
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Robustness to model-dependent effects
I Performance compared to resilience to MPI and hadronisation corrections.
I Vary Lund plane cut on :C , which reduces sensitivity to the non-pert. region.
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I LundNet-3 performs well
even at high resilience.

I Most ML models can reach
very good performance but
are not particularly resilient
to non-perturbative effects.

(c.f. arXiv:1803.07977)
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Robustness to model-dependent effects
I Performance compared to resilience to detector smearing effects.
I Vary Lund plane cut on :C , which partly reduces sensitivity to detector effects.
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PARTON SHOWER ACCURACY



But what does the machine learn?

I Important limitation stems from the fact that labelled training data is
usually obtained from Monte Carlo event generators.

I But parton shower simulations are not perfect tools!
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Common dipole showers display
quark/gluon differences that

should not be there.

I How to be sure ML models are not
overfitting unphysical features?

[Dasgupta, FD, Hamilton, Monni, Salam, Soyez, Phys.Rev.Lett. 125 (2020) 5, 052002]
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Effect of azimuthal angles

I Lund azimuthalΨ8 angles have notable impact on discriminating
power at intermediate quark efficiencies.
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What goes into simulating a high-energy collision?

I LHC collisions probe physics across
scales, from hard process at the TeV
scale to non-perturbative modelling
below the GeV scale.

I Parton showers span several orders of
magnitude to provide crucial link
between hard interaction and
observable particles.

I Multi-scale evolution lead to large
logarithms of ratio of scales: to what
accuracy are they under control?
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Basic picture of dipole showers

I Many showers are dipole/antenna showers where gluon emissions
correspond to dipole splittings.

I Squared amplitudes obtained from recursive chain of emissions.

Two key ingredients:

I kinematic mapping ?̃8 , ?̃ 9 → ?8 , ? 9 , ?: .
I evolution variable E defining order of

emissions.
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Dipole shower evolution

Evolution from state with = particles to state with = + 1 is described by

3P=→=+1
3 ln E =

∑
dipoles { 8̃ , 9̃}

∫
3�̄
3)

2�

B(:C) +  
2

B (:C)
�

×
[
6(�̄)0:%8̃→8:(0:) + 6(−�̄)1:% 9̃→9:(1:)

]
,

I E is the evolution variable (e.g. :C in dipole
c.o.m. frame)

I 6(�̄) is a function partitioning the dipole
using the rapidity of the emission within the
dipole (with 6(�̄) + 6(−�̄) = 1)

I %8̃→8:(I) are first-order splitting functions
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What is the accuracy of a parton shower?

I Parton showers are often referred to as leading logarithmic accurate.
I This means that it generates the correct squared amplitude in limit

where both energy and angle of emissions are strongly ordered.
I Distributions can be compared to analytic resummations

For example, Thrust, defined as

) = max
®=)

∑
8 | ®?8 · ®=) |∑
8 | ®?8 |

we have, for 
B! ∼ 1

�(1 − ) < 4−!) = �0 exp[!61(
B!)︸    ︷︷    ︸
LL

+ 62(
B!)︸  ︷︷  ︸
NLL

+ 
B 63(
B!)︸      ︷︷      ︸
NNLL

+ . . . ]
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What is the accuracy of a parton shower?

I Are existing dipole showers strictly LL accurate for all observables or
better in some contexts?

I For what observables do we achieve a given accuracy with a given
parton shower?

I Can we design a parton shower that can systematically achieve NLL
accuracy for broad range of observables?
I global event shapes (Thrust, jet rates, angularities, broadening, . . . )
I non-global observables (e.g. energy in a rapidity slice)
I multiplicity
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Achieving NLL accuracy

I NLL accuracy requires that the shower generates correct squared
amplitude in a limit where every pair of emissions is strongly ordered
for at least one logarithmic variable :C and �.

I I.e., should reproduce correct effective
matrix element squared when all
emissions are well separated in Lund
diagram (312 , 323 , · · · � 1)

I allowed to make $(1) mistake when pair
of emissions is close (323 ∼ 1)
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Ingredients of a shower

There are two key ingredients in the design of a parton shower

I How to associate colour and transverse recoil to dipoles?

I The choice of evolution variable (transverse momentum, angle, . . . )

Design two new showers with different recoil:

I PanLocal uses ordering variable intermediate between transverse
momentum and angle, partitioning dipole in event c.o.m. frame.

I PanGlobal uses :C ordering but defines global recoil scheme, with
longitudinal recoil handled by dipole-local map.
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How to probe the accuracy of a shower

I Run full shower for smaller and
smaller values of 
B , keeping 
B!
constant

I Ratio to NLL of each distribution
deviates from one: because of
residual NNLL term or because of
NLL mistake?

I Extrapolation 
B → 0 proves
agreement with NLL, here for Δ#12
observable considered earlier
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Designing new showers for precision physics

[Dasgupta, FD, Hamilton, Monni, Salam, Soyez, Phys.Rev.Lett. 125 (2020) 5, 052002]

Paves the way for improved simulations with more
accurate physical description of perturbative radiation.
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Asymptotic single-logarithmic limit

I Use training data generated with PanLocal shower and consider limit
where subleading effects decrease.

I Analytic and corresponding ML models converge as 
B → 0.
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CONCLUSIONS



Conclusions

I Higgs sector and searches for new physics requires us to understand
how to relate with high precision the fundamental Lagrangian of
particle physics with experimental observations.

I Exploiting available data to its fullest extent and understanding bias
and limitations of machine learning models will be essential steps
towards this goal.

I Combination of physical insight and machine learning can lead to
substantial impact on our ability to exploit the substructure of jets for
searches for new physics.
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