Problem Set - Elastic x-ray scattering

Phil Willmott
PHY585: Principles of Non-Relativistic Scattering Applications, Block Course

$13^{\text {th }}$ February 2024

Note: to make your lives a little easier, those powerpoint slides from this part of the course that are most relevant to solving this problem set are flagged top-right with the image:

1 Hints

- A practical expression relating photon energy to its wavelength is $\lambda[\AA]=12.3984 / E[\mathrm{keV}]$
- A scattering vector Q or wavevector k in reciprocal space of magnitude G corresponds to a distance (or wavelength) in real space of $2 \pi / G$.
- The volume of a sphere of radius r is $(4 \pi / 3) r^{3}$.
- $\exp (i X \pi)$ for $X>2=\exp (i[X \bmod 2] \pi)$, whereby $X \bmod 2$ is the remainder of $X / 2$.
- The triangle formed by the incoming and outgoing wavevectors of magnitude k and the scattering vector Q in elastic scattering of radiation with wavevector k is isosceles, with a vertex angle equal to 2θ and a base length equal to the scattering vector Q.

2 Problems

Problem 1.1. The so-called 'Poynting vector', S, defines the energy flow per unit area and unit time of electromagnetic radiation and is given by

$$
S=\frac{\epsilon_{0} E_{0}^{2} c}{2}
$$

whereby E_{0} is the amplitude of the electric-field component, $\epsilon_{0}=8.854 \times 10^{-12} \mathrm{As} / \mathrm{Vm}$ is the permittivity of free space and $c=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the speed of light. Determine the electric-field amplitude E_{0} for an x-ray beam consisting of $10^{14} 10-\mathrm{keV}$ photon/s and a top-hat profile of $0.01 \mathrm{~mm}^{2}$. What is the amplitude of the associated oscillatory electric force acting on an electron, expressed in $\mathrm{fN}\left(10^{-15} \mathrm{~N}\right)$?

Problem 1.2. A diffraction experiment runs at a photon energy of 12.658 keV . What is the volume of the Ewald sphere in cubic reciprocal Angstroms? How many Bragg peaks lie within the bounds of the Ewald sphere for a tetragonal crystal with lattice constants $a=b=7 \AA$ and $c=3.9 \AA$?

Problem 1.3. A powder diffraction pattern of an orthorhombic crystal is recorded. The following data was extracted:

- (10 1) peak at $1.128008 \AA^{-1}$,
- (2 000) peak at $1.414758 \AA^{-1}$,
- (0 1 1) peak at $1.449354 \AA^{-1}$.

The equation to determine interplanar spacings, $d_{(h k l)}$, for orthorhombic crystals is given by

$$
d_{(h k l)}^{2}=\left(\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{l^{2}}{c^{2}}\right)^{-1}
$$

Using this information, determine the unit-cell volume in \AA^{3}.

Figure 1: The unit cell of face-centered cubic GaAs. The unit cell is composed of four Ga-atoms at $(0,0,0),(0,1 / 2,1 / 2),(1 / 2,0,1 / 2)$, and $(1 / 2,1 / 2,0)$; and four As-atoms at $(1 / 4,1 / 4,1 / 4),(1 / 4,3 / 4,3 / 4)$, $(3 / 4,1 / 4,3 / 4)$, and $(3 / 4,3 / 4,1 / 4)$, in units of the lattice constant.

Problem 1.4. Consider the unit-cell configuration of GaAs in Figure 1. Demonstrate that the expression for the structure factor F of the (311) Bragg peak of GaAs is

$$
F=4\left(f_{G a}-i f_{A s}\right)
$$

whereby $f_{G a}$ and $f_{A s}$ are the atomic form factors for Ga and As, respectively.

Problem 1.5. This question addresses the overlap problem associated with Laue diffraction. Figure 2 is a (not to scale) schematic of a Laue diffraction setup. The h-axis points antiparallel to the incident radiation, and the l-axis points vertically, as shown. Also shown is the line trace that passes through the $m(102) \mathrm{Bragg}$

Figure 2: A not-to-scale schematic of a crystal diffraction pattern and the Laue volume associated with a broadband radiation of 5 to 20 keV . The dashed line passes through the set of $m(102)$ Bragg peaks.
reflections [that is, the (102), (204), (306)...etc. reflections] - these will all overlap with one another, as their scattering directions are identical.

The crystal generating this pattern has a primitive cubic unit cell with a lattice constant $a=100 \AA$. The polychromatic radiation spans 5 to 20 keV . What are the minimum and maximum values of m that are simultaneously recorded?

Figure 3: The bacterium Escherichia coli can be well approximated as a hollow prolate ellipsoid.
Problem 1.6. The bacterium Escherichia coli can, in terms of SAXS experiments, be approximated as being a hollow prolate ellipsoid (cigar shaped) with a length of $1 \mu \mathrm{~m}$, largest girth diameter of $0.5 \mu \mathrm{~m}$, and a wall thickness of 40 nm (see Figure 3). Calculate its radius of gyration R_{G} in nm . Refer to the table provided in the powerpoint presentation "Scatt2v2.pptx".

