
University of Zurich, Physik-Institut, autumn semester 2020
Bachelor Thesis

Supervision: Dr. Rafael Silva Coutinho, Jonas Eschle, Dr. Patrick Owen, Prof. Nicola
Serra

Comparison of Prediction Uncertainties Using
Bayesian Neural Networks and Boosted Decision

Tree Ensembles with B Decays

Andreas Wiemeyer
April 5, 2023

Contents

1 The Standard Model and New Physics 1
1.1 Detector setup . 1

2 Machine Learning Methodology 3
2.1 Boosted Decision Trees . 4
2.2 Neural Networks . 5
2.3 Bayesian Neural Networks . 7
2.4 Evaluating the Performance of an Algorithm 9
2.5 Examining the Data . 10

2.5.1 The feature space and its transformation 11

3 Training the Classifiers 14
3.1 Implementation of the Boosted Decision Trees 14

3.1.1 Boosted Decision Tree Ensembles . 16
3.2 Implementation of a Neural Network . 17
3.3 Implementation of a Bayesian Neural Network 17

4 Evaluation of the Classifiers and Discussion 18
4.1 Frequentist Versus Bayesian Uncertainty . 19
4.2 Using Uncertainties for Classification . 22
4.3 Generalisation to other decay channels . 26
4.4 Usability for Further Analysis . 29

5 Conclusion 33

A BDT Hyperparameters 36

B Hyperparameters of the Neural Network 38

C Hyperparameters of the Bayesian Neural Network 38

D Training and Prediction times 38

Abstract

Bayesian Neural Networks and Boosted Decision Tree ensembles were trained for the
signal-background separation for B-meson decays measured at the LHCb. The two types
of classifiers were compared regarding the uncertainties on their predictions for signal,
background and a third class of unknown events. For both types the behaviour was found
to be similar, yielding a slight difference in the uncertainties for signal/background and
unknown events. Furthermore it was tested whether one of the classifier types is better
at generalising beyond the training data. No significant differences were found except for
cases where the training data had different cuts applied. In these cases the Bayesian Neural
Network was better than the Boosted Decision Tree ensembles at generalising to other
files.

1 The Standard Model and New Physics
The Standard Model of particle Physics (SM) is a theory that states the elementary
particles which all matter is made up of and describes how these particles interact with
one another. The SM has been extremely successful in providing experimental predictions.
Since the discovery of the Higgs boson in 2012, all elementary particles of the SM have
been found. Nevertheless, there are reasons to believe that a theory beyond the SM is
needed. The SM for instance does not explain gravity or other large scale phenomena. It
does also not explain some experimental observations such as the neutrino oscillation. To
test whether there are other experimental inaccuracies, the decay ratios of particles are
studied using particle accelerators. This search for deviating observations is often called the
search for new physics (NP). Research in these areas promises to give valuable insights for
new theories beyond the SM. An important research facility is the Large Hadron Collider
(LHC), the worlds largest and highest energy particle accelerator, built and operated by the
European Organization for Nuclear Research (CERN). It is mainly used as a proton-proton
synchrotron and reaches single-beam energies of up to 6.5 TeV. When these high energy
beams collide, the constituents of the protons create heavier particles that decay into
other particles along different decay channels. To investigate them, the LHC is equipped
with multiple detectors, the largest of which are called Atlas, CMS, Alice and LHCb. Some
detectors are designed to understand specific aspects of the decays, the behaviour of certain
decay products for instance. The LHCb experiment, from which the data for the thesis
project was taken, focuses on heavy flavour physics, such as decays of B-mesons. The
specific decays that have been used in this thesis are the following:

B0 −→ K∗e+e− (1.1)

B0 −→ K∗J/Ψ(−→ e+e−) (1.2)

B0 −→ K∗J/Ψ(−→ µ+µ−) (1.3)

B0 −→ K+π−µ+µ− (1.4)

B0 −→ K+π−e+e− (1.5)

1.1 Detector setup
The LHCb detector, which was used to gather data for these decays, is shown in figure 1.1.
It does not cover the full angle around the collision point because the relevant types of
hadrons do not scatter far from the beam at high energies. An array of different components
is used to gather information about the processes taking place in the detector. There are
multiple layers (Vertex Locator, TT, T1-T3) that track the movement of charged particles.
These are made of Kapton/Al straws or – where higher precision is needed – silicon-strips
sensors. The tracking of the particles near the interaction point is done by a component

1

called VELO, enabling a more precise location of the primary decay vertices. To retain

information about charge and mass of a particle, a large magnet with an integrated �eld

of 4 T m is set up to de�ect the particles, such that charge and mass can be inferred from

a particles path. Finally, there are multiple modules responsible for the identi�cation of

particle types. RICH1 and RICH2 are Ring Imaging Cherenkov counters, mainly responsible

for � -K separation by measuring the velocity of the particle. The electromagnetic (ECAL)

and hadronic (HCAL) calorimeters measure electrons, photons and hadrons position and

energy. The muon stations (M1-M5), which are composed of wire chambers and gas electron

multipliers interleaved with material to stop other particles, identify muons and determine

their locations.

Fig. 1.1: The LHCb detector at CERN that determines the properties of the decay
products [2, 2].

Without �ltering, the detector would produce far too much data to store, since about 10

million proton collisions are registered every second. Because of this, there are multiple

trigger stages, that decide which events to store and which to discard. In the �rst part of the

selection the frequency of measured events is still too high to make elaborate computations.

The transverse energy serves as a �rst selector (among other things), because particles

with high transverse energy are easier to measure. This reduces the bandwidth enough to

be able to partially recreate tracks, make more elaborate selections and save what is left

to disk [2].

The o�ine analysis is done afterwords using the stored data. In short, the paths of

particles are reconstructed more accurately than during the trigger stage to �nd the vertices

at which decays happened. Using the information from the particle identi�cation and the

reconstructed paths one can �gure out which particles decayed into which. In this data

there is still a lot of background coming from noise in the electronics, random combination

2

of particle tracks or other physics processes, which is in a �rst step reduced by only selecting

events where certain measurements are within de�ned regions. Some kinds of background

are more di�cult to �lter out because they require multiple variables to be considered for a

clean separation. Therefore, a multivariate analysis (MVA) can be performed using machine

learning algorithms. This part of the selection is what the thesis project aims to improve

and will be returned to later. After the selection one can determine physical observables.

One can for instance compute the e�ciency of the selection and with it compute the

branching ratios of di�erent channels. These ratios can then in principle be used to test

the SM and guide the way to NP. However, results are only statistically signi�cant, if the

selection is clean enough, which is why improvements is this area are very important.

The selection needs to deal with di�erent kinds of background. One kind of background

is due to falsely reconstructed decay vertices. It can happen, that decay products, which

actually stem from di�erent decays or other outside sources, have their paths reconstructed

in such a way, that they are taken to stem from the same decay. This kind of background

is called combinatorial background and it is the main target of the previously mentioned

MVA.

To get cleaner results an algorithm is needed that can di�erentiate combinatorial back-

ground from signal. Given a data set with background and signal examples (see section

2.5), such an algorithm can be obtained with machine learning methods, of which several

were used for the thesis project. Some algorithms that are commonly used in the �eld

are Boosted Decision Trees (BDTs, see Section 3.1), which serve as a baseline comparison.

They are compared to the more complex Neural Networks (NNs, see section 2.2) and �nally

to Bayesian Neural Networks (BNNs, see section 2.3). These are an interesting variant

of NNs that can output a distribution of predictions from which a measure of certainty

can be deduced. It was tested whether this makes them more robust to misclassi�cations

of similar but di�erent or even completely unknown events. One would expect that such

events receive a prediction with a large uncertainty. This way one could know that one

actually does not know well or even be able to tell that these are events of a di�erent

kind. In contrast, simpler methods, such as BDTs, are expected to sometimes mark com-

pletely unknown events as signal, with no associated uncertainty such that they cannot be

distinguished from actual signal.

BNNs thus might enable researchers to identify odd events and �nd solutions to eliminate

them. In the end this would allow for cleaner signal yields and more signi�cant tests of the

SM. The following chapter introduces the theory behind the above mentioned methods

in more detail. The third chapter documents their practical application and the fourth

chapter concerns the evaluation of the results.

2 Machine Learning Methodology
An algorithm can be said to learn, when it improves through experience. This is what

di�erentiates machine learning algorithms from ordinary algorithms. Ordinarily, once an

algorithm is written, it will keep performing its task in the same fashion resulting in equal

3

output for equal input. Machine learning algorithms on the other hand are set up such

that they can learn from the data they process and gradually become better at ful�lling

their task until their peak performance is reached and then the algorithm is frozen. This

de�nition encompasses a wide array of methods, not only the ones used for the thesis.

Since the right type of machine learning method depends largely on the type of task,

the problem �rst needs to be characterized. Multiple data sets (for details see section

2.5) will be used, of which some contain only background, some only signal and some are

mixed. The goal is to be able to separate the mixed data sets into background and signal: a

binary classi�cation problem. The sets that are already separated can be used to train the

classi�ers. The basic idea is to create a mixed data set from them, such that the correct

label is known. The classi�er is then set up to do a classi�cation and since the correct

solution is known, one can give feedback step by step to reduce the mistakes the algorithm

makes. This process is called supervised learning. Once it is �nished and a classi�cation

is learned, it can be applied to datasets where the true labels are not known (such as the

mixed sets).

The following sections give a more concrete and mathematical idea of how the feedback

loop works. Since this mechanism is di�erent for all of the methods, the discussion is split

into three sections.

2.1 Boosted Decision Trees
As the name suggests, boosted decision trees (BDTs) are an adaption of ordinary decision

trees. A decision tree is a simple tool with which one can divide a set of items into subsets.

Following the metaphor of a tree, the decision tree is made up of nodes and branches (see

�gure 2.1). At the start there is a single branch � the root or stem if you will � which

divides into more and more branches, corresponding to subsets, at each node. Each node

represents a decision with which the superset is subdivided. If items have a numerical value

x for instance, a node might split into three subsets withx > 4, x = 4 and x < 4. With a

clever choice of decisions at the nodes, a useful division into subsets can be obtained. One

could for instance end up with m subsets that contain only (or mostly) signal events and

n subsets that contain only (or mostly) background events.

4

Fig. 2.1: The structure of a decision tree visualised[3].

A single tree typically is not a very performant classi�er since it is prone to not generalise

well to new data. There are several methods that are designed to overcome this problem

by automatically generating many trees and joining them together. BDTs are one of these

methods. They di�er from other methods (like random forests), in that the tree generation

works iteratively, meaning that the generation of each new tree is informed by the trees

generated before it. The procedure works roughly as follows:

1. A �rst tree, a so called weak learner, is generated to obtain a baseline classi�cation

on which to improve.

2. The di�erence between the true class and the predicted class is used to compute the

loss of each prediction.

3. A second tree is generated to predict the loss associated with the initial predictions.

4. By subtracting the predicted loss (usually multiplied with a learning rate l < 1) from

the initial prediction a modi�ed classi�cation is obtained, that is more accurate than

the initial one.

5. The modi�ed prediction is used as new baseline and steps 2-5 are repeatedn times.

There are many libraries which implement the BDT algorithm. The three libraries used

for the thesis project are Scikit-learn, XGBoost and LightGBM. For a comparison of these

libraries see section 3.1.

2.2 Neural Networks
Neural networks (NNs) are inspired by the structure of brains, where electrochemical pulses

are passed from neuron to neuron. In the arti�cial version, neurons are modelled as entries

of vectors and elecrochemical pulses are nonlinear functions, mapping from one set of vector

entries to another. The initial vector serving as argument for the functions encodes the

data one is working with, the so called input layer l0. To obtain an algorithm that can

5

learn, a mathematical operation with free parameters transforms it into a second vector (or

layer) l1. This in done in three steps with a weight matrix W , a bias vectorb (these are the

free parameters, both initially random) and an activation function f a. First, l0 is multiplied

with the weight matrix, whose entries wij , are called weights and can be understood to

determine the importance of thej -th entry in l0 for the i -th entry in l1. Afterwords the bias

is added and the activation function is applied to get l1. The activation function and the

bias are used to introduce non-linearity, which is needed for the network to work. Usually

the described operation is performed multiple times consecutively, such that there aren

vectors (or layers) l1 : : : ln in the end. One can thus generalise the operation mapping from

one layer to the next as

l i +1 = f ai (Wi l i + bi): (2.1)

The �nal layer ln is called output layer. The goal of the consecutive operations is to obtain

a useful output layer from the input layer. For the thesis project, the purpose of the output

layer is to enable a classi�cation into background and signal. To obtain this, the right

weights Wi and biasesbi need to be found. To do so a measure called lossL is de�ned

and then minimised. Depending on the problem, di�erent loss functions work best, for the

thesis project categorical cross-entropy was used. It can be de�ned as

L = �
1
N

NX

i =1

~ytrue;i � log(~youtput;i) (2.2)

where the j -th entry of ~ytrue;i and ~youtput;i determine whether the i -th event belongs to

the j -th class. The entries of~ytrue;i are binary and are given by the known classi�cation of

the labelled training set. The output of the neural network ~youtput;i depends on the choice

of the output layer, for the thesis project it has entries ranging from 0 to 1. To minimise

the loss, one typically uses a modi�ed or approximated version of gradient descent, like

stochastic gradient descent (SGD). The idea behind SGD is to approximate the gradient

of the loss with respect toWi and bi by computing it for a random subset � called batch �

of the training data. One then subtracts the approximate gradient (scaled with a learning

rate 0 < l < 1) from Wi and bi . If the learning rate is aptly chosen one will move towards

a minimum of the loss. For each training epoch this is repeated until all of the training

data was selected for the batch exactly once. This way the algorithm learns a lot faster

and �nds a more stable minimum than if one were to compute the gradient with the whole

data set.

Because it is di�cult to choose the right amount of free parameters, NNs often have

too many degrees of freedom. This means that they can learn not just the true correlations

within the data, but also remember random statistical noise within the training set. This

e�ect is called overtraining or over�tting. When an algorithm is over�tting, its performance

on the training set continues to increase, but the performance on other data (called out-of-

sample data) decreases, because it does not share its random patterns. The more irrelevant

patterns are learned, the more the network will be mislead on out-of-sample data, resulting

6

in a worse performance. An illustrative analogy of this e�ect can be found in ordinary �ts

(see �gure 2.2).

Fig. 2.2: A distribution that is under�tted (left), �tted just right (middle) and
over�tted (right)[5].

One way to account for over�tting is to split the labelled data into a statistically independent

training and test set. The former is used for training and the latter is used to get a measure

of the out-of-sample performance. Because the test data is statistically independent, it will

not contain the same random patterns as the training data and give an unbiased measure

of the algorithms performance. By monitoring when the performance on the test data

starts to decrease, one can �nd the ideal amount of training epochs.

Another issue arises when the training data is not exactly the same as the data one

wants to classify. For the thesis project, it was only possible to obtain a labelled data set

that approximates the real data (see section 2.5). This gives rise to the question of whether

the classi�er can generalise to the real out-of-sample data. There is no simple answer to

this question and because of this, the evaluation of an algorithms performance on such

data is di�cult. A central motivation of the thesis project is to �nd ways in which an

algorithm could be evaluated when going beyond the training data. This is discussed in

more detail in section 2.4.

BDTs and NNs do not come with a good measure of how certain their classi�cations are.

Such a measure would be of special interest for the generalisation to real data, which might

contain previously unseen kinds of events. A possible solution is seen in BNNs, which are

introduced in the next section.

2.3 Bayesian Neural Networks
As the name suggests, BNNs are an implementation of Bayesian statistics in the NN

framework. The school owes its name to the famous statistician and philosopher Thomas

Bayes. His approach to statistics is the most in�uential one next to the so-called frequentist

approach. His ideas center around Bayesian inference, which relates di�erent probability

quantities to another.

Consider an hypothesisH explaining the observation of some dataD . The data is a set

of events, which have the combined probabilityP(D) to be measured. The HypothesisH

can be given a probability P(H), called prior, which says how likelyH is to be the correct

description of reality. Often the hypothesis is a function of a set of parameters� i , such

that the prior P(H (� i)) is a probability density function in the � i space. Next there is the

likelihood function P(D jH (� i)) which says how likely it is that the measurementsD would

be taken, if H (� i) were the true description of reality.

7

For the frequentist approach the hypothesis is looked for, which maximizes the likelihood

function. The underlying assumption being that the � i must have a �xed value and the

goal of the scientist is to �nd this correct value. On the Bayesian approach one does not

settle on a �xed set of � i because one takes these values to be distributions by nature,

which are not reducible to a single value. Because of this one is interested in how likely an

hypothesis it to be true for the whole rangeof � i , given the data D . This is given by the

posterior P(H (� i)jD), which is obtained with Bayesian inference as follows:

P(H (� i)jD) =
P(D jH (� i))P(H (� i))

P(D)
(2.3)

In a neural network the training parameters (Wi ; bi) can be understood to de�ne an

hypothesis H (Wi ; bi) explaining the observed training data (X i ; yi). Regular NNs are set

up to �nd the �xed set of parameters for which the likelihood P((X i ; yi)jH (Wi ; bi)) is

maximized, they thus implement a frequentist approach. For the Bayesian approach, the

parameters are understood to be distributions by nature. One thus wants to �nd the

probability that � given the data � the network correctly codi�es the classi�cation for

the whole parameter space. This is given by the posteriorP(H (Wi ; bi)j(X i ; yi)) . With

the posterior one could classify otherX j and obtain the right probability distribution

yj for their classi��cation. In practice this is not possible because one cannot precisely

compute the posterior. However, one option is to use variational inference to approximate

the posterior.

For variational inference a distribution q� i (Wi ; bi) replaces the exact posterior. The

distribution has its own parameters � i and is a function of the weights and biases of

the network. During the training of the network, the parameters � i are �tted so that q� i

approximates the true posterior. To do so a di�erent loss metric calledELBO is utilized.

The weights and biases are no longer single values, since the posterior is to be computed

for the whole parameter space. Thus, they are replaced by prior distributions with further

parameters, from which they are sampled each time a prediction is made. For cases where

it is hard to know the priors in advance, empirical Bayes can be and was used. With this

variant the parameters of the priors are trained along with the � i , such that one only

needs to choose the right parametrisation (for more information see [22-23 , 1]). A normal

distribution is a common default choice.

Because of the stochastic weights and biases and the new loss function, BNN layers

converge less quickly and easily. To remedy this problem, one can rely mostly on normal

layers and have only the last few layers implement empirical Bayes. This lets the network

learn a lot faster and still gives decently satisfying results from a Bayesian point of view

[27, 1].

A BNN di�ers from ordinary NNs and BDTs in that it is not deterministic. This means,

that even after the training is completed, the algorithms output is not predetermined by

the input. Since weights and biases are sampled for each prediction from their prior, the

networks response function is di�erent each time. Thus if a prediction is repeatedly made

8

for the same event, a random distribution of outputs will be obtained. From the shape of

this distribution one can read out how certain the network is about its prediction. The

standard deviation of the distribution serves as a simple measure of certainty, with the

prediction being given by the mean, the most likely value. The usefulness of this measure

of certainty will be discussed in section 4.

2.4 Evaluating the Performance of an Algorithm
When it comes to the labelled test set, there are some easy to compute quantitative

measures to tell whether the learned algorithm performs well. Firstly there is the accuracy,

the percentage of events that are classi�ed correctly. This measure can be unreliable though,

since 1) it depends on the choice of the threshold for a prediction to count as signal and

2) imbalanced data sets can give misleading accuracies. In the labelled data used for the

thesis project, over 93% of the events are signal, such that a trivial algorithm, that classi�es

everything as signal, would have an accuracy of over 93%. It is easy to see that further

measures are needed to identify useful algorithms. One can split the predictive success of

an algorithm into four categories:

1. True positive rate: TPR = amount of correct signal classi�cations
amount of signal events

2. False positive rate: FPR = amount of incorrect signal classi�cations
amount of signal events

3. True negative rate: TNR = amount of correct background classi�cations
amount of background events

4. False negative rate: FNR= amount of incorrect background classi�cations
amount of background events

An algorithm that classi�es everything as signal only has a good TPR. By requiring also a

good FPR, one can make sure that the signal is pure. One can make use of the TPR and

the FPR to get a measure of the classi�ers quality without having to choose a threshold for

the classi�cation. To do so the two ratios are plotted for di�erent choices of the threshold.

The resulting plot is called receiver operating characteristic curve or ROC-curve for short.

Conventionally, the TPR is chosen as y-axis and the FPR as x-axis. For any threshold

one wants the TPR to approach one and the FPR to approach zero. The curve for a

perfect algorithm, which assigns all signal events a higher predictions than any background

event, is shown in �gure 2.3. For realistic data sets that are not neatly separable, the TPR

increases with the FPR. This makes sense, because as the threshold for signal classi�cations

is lowered, both more correct signal classi�cations and more false signal classi�cations are

allowed. For a simple quanti�cation of classi�ers quality we can integrate the ROC-curve,

obtaining the area under the ROC curve, called AUROC. This is the measure that was

focused on for the thesis project, leaving the problem speci�c question of how to choose

the classi�cation threshold aside for later steps in the analysis. Sometimes the labelled

data set can be so small, that there are large �uctuations in the AUROC score depending

on which subset is used for testing. K-fold cross valdiation (CV) can be used solve this

problem. For this method multiple classi�ers are trained by dividing the labelled data into

k subsets, training the classi�ers onk � 1 subsets and using them to predict on the left

9

over subset. One then computes the AUROC score of the algorithms on thek di�erent

test sets and takes the average.

Fig. 2.3: The ROC-curves of di�erent algorithms and the area under them
(AUROC)

Since these measures cannot be computed for data sets other than the labelled data

(unlabelled data from now on), other measures need to be found for these sets. Three

criterions of quality were checked for. Firstly it was checked how well the algorithm handles

unknown events by classifying di�erent types of modi�ed or generated data (see section

4.2).

The second criterion of quality is how nicely the classi�cation works for the �ts, which

are made in later stages of the analysis. To evaluate this, the di�erent classi�ers are used to

cut out the background before �tting the data. If a result looks nicer, it does not necessarily

mean that it is more accurate. This will be discussed again when looking at the results in

section 4.4.

The third criterion of quality is how well the Classi�er generalises to other decay channels.

It would be desirable to have a classi�er that can be used on more decay channels than the

one it was trained on. One way to test whether a classi�er generalises well is to compare the

predictions made for MC �les of di�erent decay paths. The di�culty in such a comparison

is that some channels might in fact look more less like typical signal than others. If this is

the case it would not be a weakness of the classi�er to assign di�erent predictions to such

channels. A more elaborate discussion is thus needed and can be found in section 4.3.

2.5 Examining the Data
A machine learning classi�cation can only work if good data is available. The data that

is to be analysed and motivates the thesis was collected in 2016 with the LHCb experi-

ment described in section 1. Along with the real data, �les generated using Monte-Carlo

10

simulation (MC) are used. These data sets are available for various decay channels listed

below:

B 0 �! K � e+ e� MC and real data

B 0 �! K � J=	(�! e+ e�) MC and real data

B 0 �! K � J=	(�! � + � �) MC and real data

B 0 �! K + � � � + � � real data

B 0 �! K + � � e+ e� real data

The real data sets are a mix of background and signal, on which a classi�cation needs to be

performed. The MC �les contain only simulated signal and can be used for training and for

the performance measures mentioned in section 2.4. For the labelled training data a set of

pure signal events and one of pure background events is needed. The signal is taken from

the MC simulation for the B 0 �! K � e+ e� decay. The background is taken from a real data

set by cutting o� the region where the B0 mass, the signal region, is above5450 MeV=c2.

Above this threshold the signal contribution should be diminishingly small, so that the cut

sample can be considered pure background. Granting this, there are still possible problems

with the training data.

Firstly, the signal is simulated, meaning that there might be di�erences to signal events

found in real data. Secondly, the background is cut out at a high energy region, but the

real data also contains lower energy background. The algorithm thus needs to be able to

generalise from higher to lower energy background. For future research it could be tried to

use background from higher and lower energy regions to remedy this problem. Lastly, the

signal set is much larger than the background set, containing 88'521 events, about 15 times

more than the background set with 5'785 events. A data set with such a large ratio in class

sizes is called animbalanceddata set and can be di�cult to deal with. An algorithm might

get stuck assigning every event a prediction of one, since this will already give a decent

accuracy (over 93% would be classi�ed correctly for the thesis project).

2.5.1 The feature space and its transformation

For the data used for thesis project, every event comes with thousands of features. Some

of these are direct measurements and some of these are deduced quantities. Many of

the features are redundant. Some have missing entries and some are not relevant for the

classi�cation, meaning that the amount of features can be greatly reduced. This reduction

is important not only because it makes algorithms quicker to train but also because it

reduces the risk of over�tting. Thus only 14 features corresponding to the quantities shown

in table 2.1 were selected for the algorithm to work with.

The machine learning library XGBoost comes with a function to roughly estimate how

important these features are for the classi�er. The following features were found to be most

11

Feature name Physical meaning

BDT F P V � 2 � 2 of the DecayTreeFitter �t of the primary vertex
BF D � 2 PV Flight distance signi�cance of B -meson in units of� 2 w.r.t. the related

vertex
B SV � 2 � 2 of the B -meson decay vertex position
BDIRA PV Direction angle of B -meson w.r.t. the related Vertex
HMin IP � 2 PV � 2 of the impact parameter of the hadron
BP T Transverse momentum of theB -meson
L Min IP � 2 PV Minimal impact parameter of the lepton � 2 w.r.t. the related vertex
HMin P T Minimum transverse momentum of the hadron
L Max P T Maximal transverse momentum of the lepton
B IP � 2 PV Impact parameter of B -meson� 2 w.r.t. the related vertex
L Max IP � 2 PV Maximal impact parameter of the lepton � 2 w.r.t. the related vertex
L Min P T Minimal transverse momentum of the lepton
K � SV � 2 � 2 of the K � -meson decay vertex position
J=	 SV � 2 � 2 of the J=	 -meson decay vertex position

Table 2.1: The 14 features that were used for the classi�cation and the
corresponding physical quantities

important by XGBoosts feature_importances_ :

Fig. 2.4: The features found to be most relevant using XGBoosts
feature_importances_

To get a better understanding of how a separation can be obtained and how clean this separa-

tion can be, the 4 most important features (according to XGBoostsfeature_importances_)

have been histogrammed for signal and background. The distributions for the di�erent

12

kinds of white noise from section 2.4 are also shown:

Fig. 2.5: The distribution of the 4 most important features (sorted from most to
least important) for signal and background events compared to two kinds of white
noise.

Many features follow an exponential-like distribution, such that a logarithmic transforma-

tion of the data can yield a better resolution as it makes it easier for neural networks to

pick up on the di�erence between background and signal. Following a standard procedure

in data preprocessing, the features were also shifted to have a mean of zero and scaled

to have a standard deviation of one. This ensures that all of the features have an equally

large e�ect on the network for the initial weights. After applying the transformations, the

distribution of the features looks as follows:

13

Fig. 2.6: The distribution of the 4 most important features (sorted from most to
least important) for signal and background events after taking the logarithm and
normalisation compared to two kinds of white noise.

Figure 2.6 illustrates nicely, why certain features were found to be most important by

XGBoost (see �gure 2.4). For the most important features the overlap of signal and back-

ground is small, meaning that the region where events are similarly likely to be background

and signal is smaller.

3 Training the Classi�ers
The methods described in sections 3.1, 2.2 and 2.3 were implemented using di�erent machine

learning libraries. First the BDTs were trained to quickly obtain a baseline, followed by

ordinary NNs to have guidance for the geometry of the BNNs, which were trained last. The

primary interest for the thesis is whether the measure of uncertainty from BNNs provides

a signi�cant advantage over BDTs and NNs. For a better comparison, BDT ensembles were

trained from which an uncertainty can be obtained as well (see section 3.1.1).

3.1 Implementation of the Boosted Decision Trees
Three libraries were used to train BDTs: scikit-learn, XGBoost and LightGBM. Scikit-learn

is the most accessible and comes with many useful functions and a lot of beginner friendly

documentation. XGBoost has become somewhat of a standard in the �eld for its solid

14

performance and relative ease of use. LightGBM is the newest of the three libraries and

is becoming increasingly popular because it is by far the fastest to train and competes

well with XGBoost performance wise. Because the implementation is similar for all of the

libraries, the details will not be gone over for each of them. For all of the libraries it was

quite easy to train an algorithm that performs decently well. The �rst step to improve the

performance of the algorithms was tuning the hyperparameters. The resulting parameter

values are shown in the appendix A.

When using a large proportion of the labelled data as training set, it was found that

the test set was too small to give a stable measure of the performance. For a more reliable

measurek-fold cross-validation (CV, see section 2.4), was used. Figure?? shows how

much the tuning e�ected the performance as a function ofk. The errors bars indicate the

standard deviation of the AUROC score across 20 di�erentk-fold splits.

Fig. 3.1: The AUROC score of the di�erent BDTs with and without tuning of the
hyperparameters computed with k-fold CV and averaged across 20 di�erent fold
seeds. The shaded areas �ll the area between the �rst standard deviation of the
AUROC score for BDTs without hyperparameter tuning

More e�ort could have been invested into the tuning, but these results are good enough

for having a benchmark. The training and prediction times for the di�erent classi�ers can

be found in appendix D.

15

3.1.1 Boosted Decision Tree Ensembles

As a �nal improvement of the BDTs and to obtain a comparison for the BNNs measure of

uncertainty, an ensemble of BDTs was trained. What this means is that multiple BDTs are

trained to each make a prediction which are then joined into a single prediction. For the

thesis 20 di�erent BDTs were taken from the k fold CV evaluation and their predictions were

joined by taking the average, with the standard deviation giving a predictions uncertainty.

The motivation behind this method is to avoid over�tting on patterns that only show up

in some training sets. If one takes the average, the random �uctuations caused by these

patterns should be diminished.

The method was applied for a range of values ofk, giving the performance increases

shown in �gure 3.2.

Fig. 3.2: The AUROC score of the di�erent BDT ensembles taken from k-fold CV
compared to simplek fold CV BDTs (all with tuned hyperparameters)

Across all values ofk averaging yields a stable performance increase on the labelled data.

Because of this, the further analysis will focus on BDT ensembles as a benchmark for NNs

and BNNs. The previous performance measures seem to indicate that scikit-learn is not a

viable alternative to XGBoost and LightGBM. We will nevertheless continue to evaluate

the BDT ensembles for all Libraries because there might be signi�cant di�erences when it

comes to the generalisation to other data types. The measure of uncertainty of the BDT

ensembles will be examined in more detail in section 4.1.

16

3.2 Implementation of a Neural Network
As expected, it was much harder to set up a working NN than a BDT. The �rst di�culty

is that there is far less guidance for choosing the initial hyperparameters, like the networks

geometry. Since this is crucial for the performance (a wrong choice can make the network

completely useless) a lot more trial an error was needed. The network was set up as

feedforward NN, using the Sequential model oftensor�ow.keras. Four layers with 40 to 60

nodes were eventually settled on, details can be found in appendix B.

The tuning of the network was made a lot easier by transforming the data as shown

in �gure 2.6. After the transformation it was possible to drastically reduce the amount

of layers and nodes per layer, making the network faster to train and making it easier to

tune other parameters or test new optimizations. The �nal hyperparameters are found in

appendix B.

In order to not over�t, a feature called early stopping was implemented. The early

stopping callback was set up to stop training when the AUROC score computed for an

independent test set has not increased over the last 5 epochs. In this case the network has

most likely started to over�t and the training can be stopped.

Since the training can be quite computationally expensive, something like ak-fold CV

averaged over 20 seeds to evaluate the performance was not tried. Instead, the labelled data

was split into a training set and a test set to compute the AUROC score. This was done for

20 random train/test splits, to obtain a measure of how reliable the score is. Furthermore

di�erent split ratios were tried to check how much the network depends on the amount of

available data, the results are shown in table 3.1.

Train/Test split AUROC score

90%/%10 0:9942� 0:0007
80%/%20 0:9942� 0:0007
70%/%30 0:9942� 0:0008
60%/%40 0:9941� 0:0007
50%/%50 0:9941� 0:0007

Table 3.1: The AUROC score of the NN averaged over 20 random data splits for
di�erent ratios of training and testing data and the time it took to train and predict

For the further evaluation, a classi�er with a 70%/30% training/test split ratio was

used. For the BNN this split ratio will be motivated in section 3.3. For the main research

interest the NN only serves as a guidance to constructing the BNN, so these results are

satisfactory.

3.3 Implementation of a Bayesian Neural Network
The Bayesian neural network was even more di�cult to set up. It has the same geometry

with some of the layers beingDenseVariational layers from the TensorFlow Probability

library. Since these layers implement Empirical Bayes, they need to have more free parame-

17

ters to �t the distribution of the weights and biases and the posterior shape, three times as

many parameters were used for the thesis (see section 2.3). The �tting of these parameters

is much more error prone, which is why a wrong amount of variational layers or a wrong

ordering can prevent the network from learning. For the thesis project a single variational

layer was placed at the end of the network. A further di�culty is, that one needs to de�ne

the shape from which weights and biases are sampled as well as the initial parametrisation

of the distribution. A wrong choice can again prevent the network from learning.

The hyperparameters that were eventually settled on can be found in appendix C. Again

early stopping and the same evaluation method was used to �nd the following AUROC

scores for di�erent train/test splits:

Train/Test split AUROC

90/10 0:9925� 0:0006
80/20 0:9926� 0:0006
70/30 0:9927� 0:0006
60/40 0:9929� 0:0009
50/50 0:9926� 0:0006

Table 3.2: The AUROC score of the BNN averaged over 20 random data splits for
di�erent ratios of training and testing data

The classi�er that used for the evaluation was trained with a 70%/30% train/test

split, because the test set needs to be somewhat large for the training of a meta classi�er

introduced in section 4.2.

4 Evaluation of the Classi�ers and Discussion
For the performance on the labelled data set, the AUROC scores indicate, which classi�ers

are best. A summary of the results is shown in table 4.1. The BDT ensembles lack a

con�dence interval because they are only trained once due to computational intensity.

Figure 3.2 suggests that the scores are somewhat stable though.

Classi�er AUROC

Neural Network 0:9948� 0:0008
XGBoost ensemble 0:9940

LightGBM ensemble 0:9939
given algorithm 0:9933

scikit-learn ensemble 0:9928
Bayesian Neural Network 0:9927� 0:0006

Table 4.1: The AUROC scores of the di�erent classi�ers sorted in descending order

The classi�er called given algorithm is a benchmark MVA score that already came with the

18

data. It was obtained with an XGBoost classi�er, that was optimized with a Grid Search

and randomly selected from one of 10 classi�ers obtained with 10-fold CV. The training

data is almost the same as the one used for this theses, expect for the background cut

being at 5600 MeV=c2 rather than 5450 MeV=c2. The given algorithm has a signi�cantly

worse AUROC score on the labelled data than some of the newly trained classi�ers. These

results are not the primary interest of the thesis though. The evaluation will focus on the

performance on unlabelled data, since it is most important how the algorithms generalise

beyond the labelled data. As mentioned in section 2.4, evaluating the performance on

such data is a di�cult task. The following sections show how well the di�erent classi�ers

ful�ll the criteria of quality from section 2.4. Three research questions are central for this

evaluation.

1. Is the uncertainty supplied by the BNN di�erent from the one of the BDT ensemble?

2. Are the uncertainties useful for the detection of unknown events?

3. How well do the classi�ers perform applied to di�erent channels?

4. How useful is the classi�er for the further analysis?

4.1 Frequentist Versus Bayesian Uncertainty
As mentioned in section 2.4 several types of unknown events were generated to be predicted

on. These are events for which:

1. Every feature is sampled from a �at distribution in the feature space (white noise

�at)

2. Every feature is sampled from a distribution that is �at in the transformed feature

space (white noise �at in transform)

3. Gaussian noise proportional to the standard the deviation of the feature and scaled

by di�erent factors is added to the features (noisy 10%, 30%, ...)

Since BDTs are easier to train, there would be no reason to use a BNN if it did not provide

another bene�t. It was thus checked whether there is a signi�cant di�erence between the

BDT ensembles and the BNN when it comes to predicting on these events. To do so, the

uncertainties assigned to di�erent types of unknown events were visualised and compared.

Figures 4.1, 4.2, 4.3 and 4.4 show the predictions assigned to events within a given

percentile of their respective data sets. The width of the bars represent the uncertainties

of the predictions.

19

	The Standard Model and New Physics
	Detector setup

	Machine Learning Methodology
	Boosted Decision Trees
	Neural Networks
	Bayesian Neural Networks
	Evaluating the Performance of an Algorithm
	Examining the Data
	The feature space and its transformation

	Training the Classifiers
	Implementation of the Boosted Decision Trees
	Boosted Decision Tree Ensembles

	Implementation of a Neural Network
	Implementation of a Bayesian Neural Network

	Evaluation of the Classifiers and Discussion
	Frequentist Versus Bayesian Uncertainty
	Using Uncertainties for Classification
	Generalisation to other decay channels
	Usability for Further Analysis

	Conclusion
	BDT Hyperparameters
	Hyperparameters of the Neural Network
	Hyperparameters of the Bayesian Neural Network
	Training and Prediction times

