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Exercise 1 Electron / hole density and Hall effect in GaAs
In the lecture, we derived for the electron density n = 2

�
mekBT
2⇡~2

�3/2
exp[(µ � Ec)/kBT ] and a

similar formula for the hole density p.

(a) Use the effective mass and the band gap (see table values of the lecture slides) to estimate
n and p (for light holes).

(b) Calculate the Hall coefficient if only holes or electrons contribute.

Exercise 2 Hall effect: Multiband scenario
In the lecture we derived single-band expressions for the resistivity ⇢ = m/ne2⌧ and the Hall
coefficient RH = �1/ne. It is convenient to write the relation between the current density j

and the electric field E as E = ⇢j where:

⇢ =

 
⇢ �RHB

RHB ⇢

!
(1)

(a) Let us consider a metal where more than one band crosses the Fermi level. When applying
an electric field E, the current jn on the nth band is: jn = ⇢�1

n E where

⇢n =

 
⇢n �RH,nB

RH,nB ⇢n

!
. (2)

Show that the total induced current j is given by E = ⇢j where ⇢ = (

P
⇢�1
n )

�1.

(b) If only two bands are crossing the Fermi level, show that:

RH =

RH,1⇢22 +RH,2⇢21 +RH,1RH,2(RH,1 +RH,2)B2

(⇢1 + ⇢2)2 + (RH,1 +RH,2)
2B2

(3)

⇢ =

⇢1⇢2(⇢1 + ⇢2) + (⇢1R2
H,2 + ⇢2R2

H,1)B
2

(⇢1 + ⇢2)2 + (RH,1 +RH,2)
2B2

(4)

Hint: It is allowed to use Mathematica. If you do so, print out the code and the output.

(c) Magnetic field dependence of resistivity is called magneto-resistance. If the two-band system
has both electron-like and hole-like carries so that |RH,1| ⇡ |RH,2|, what is the field dependence
of ⇢.

Exercise:	Magneto-resistance



Magneto-resistance
The Nobel Prize in Physics 2007 was awarded jointly to 
Albert Fert and Peter Grünberg
"for the discovery of Giant Magnetoresistance"





Electronic	masses

Text	added	after	the	lecture.

Reading	Kittel more	careful,	it	seems	that	
following	notation	is	adopted.	
m	=	is	the	free	electron	mass.
me	=	effective	crystal	electron	mass

The	fact	that	the	electron	mass	is	lighter
in	semiconductors	is	confirmed	on	the	
following	link.

https://www.youtube.com/watch?v=cdirek91Hto
http://ecee.colorado.edu/~bart/book/effmass.htm

Better	notation:
m0 =	free	electron	mass
me =	crystal	electron	mass
mh =	crystal	electron	mass



© 2005 Nature Publishing Group 

 

where S(E) ¼ pk2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4pc *
2)1/2 and the best fit

to our data yields c * < 106m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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where S(E) ¼ pk2 is the area in k-space of the orbits at the Fermi
energy E(k) (ref. 13). If these expressions are combined with the
experimentally found dependencesm c / n1/2 and BF ¼ (h/4e)n it is
straightforward to show that S must be proportional to E2, which
yields E / k. The data in Fig. 3 therefore unambiguously prove the
linear dispersion E ¼ !hkc * for both electrons and holes with a
common origin at E ¼ 0 (refs 11, 12). Furthermore, the above
equations also imply m c ¼ E/c *

2 ¼ (h2n/4pc *
2)1/2 and the best fit

to our data yields c * < 106m s21, in agreement with band structure
calculations11,12. The semiclassical model employed is fully justi-
fied by a recent theory for graphene14, which shows that SdHO’s
amplitude can indeed be described by the above expression
T/sinh(2p2kBTm c/!heB) with m c ¼ E/c *

2. Therefore, even though
the linear spectrum of fermions in graphene (Fig. 3e) implies zero
rest mass, their cyclotron mass is not zero.

The unusual response of massless fermions to a magnetic field is
highlighted further by their behaviour in the high-field limit, at
which SdHOs evolve into the quantum Hall effect (QHE). Figure 4
shows the Hall conductivity jxy of graphene plotted as a function of
electron and hole concentrations in a constant B. Pronounced QHE
plateaux are visible, but they do not occur in the expected sequence
jxy ¼ (4e2/h)N, where N is integer. On the contrary, the plateaux
correspond to half-integer n so that the first plateau occurs at 2e2/h
and the sequence is (4e2/h)(N þ 1/2). The transition from the lowest
hole (n ¼ 21/2) to the lowest electron (n ¼ þ1/2) Landau level (LL)
in graphene requires the same number of carriers (Dn ¼ 4B/
f0 < 1.2 £ 1012 cm22) as the transition between other nearest levels
(compare the distances between minima in rxx). This results in a
ladder of equidistant steps in jxy that are not interrupted when
passing through zero. To emphasize this highly unusual behaviour,
Fig. 4 also shows j xy for a graphite film consisting of only two
graphene layers, in which the sequence of plateaux returns to normal
and the first plateau is at 4e2/h, as in the conventional QHE. We
attribute this qualitative transition between graphene and its two-
layer counterpart to the fact that fermions in the latter exhibit a finite
mass near n < 0 and can no longer be described as massless Dirac
particles.
The half-integer QHE in graphene has recently been suggested by

two theory groups15,16, stimulated by our work on thin graphite films7

but unaware of the present experiment. The effect is single-particle
and is intimately related to subtle properties of massless Dirac
fermions, in particular to the existence of both electron-like and
hole-like Landau states at exactly zero energy14–17. The latter can be
viewed as a direct consequence of the Atiyah–Singer index theorem
that is important in quantum field theory and the theory of super-
strings18,19. For 2D massless Dirac fermions, the theorem guarantees
the existence of Landau states at E ¼ 0 by relating the difference in
the number of such states with opposite chiralities to the total flux
through the system (magnetic field can be inhomogeneous).

Figure 1 | Electric field effect in graphene. a, Scanning electron microscope
image of one of our experimental devices (the width of the central wire is
0.2 mm). False colours are chosen to match real colours as seen in an optical
microscope for large areas of the same material. b, c, Changes in graphene’s
conductivity j (b) and Hall coefficient RH (c) as a function of gate voltage
Vg. j and RH were measured in magnetic fields B of 0 and 2T, respectively.
The induced carrier concentrations n are described in ref. 7; n/Vg ¼ 101/te,
where 10 and 1 are the permittivities of free space and SiO2, respectively, and
t < 300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate.
RH ¼ 1/ne is inverted to emphasize the linear dependence n / Vg. 1/RH

diverges at small n because the Hall effect changes its sign at about Vg ¼ 0,
indicating a transition between electrons and holes. Note that the transition
region (RH < 0) was often shifted from zero Vg as a result of chemical
doping7, but annealing of our devices in vacuum normally allowed us to
eliminate the shift. The extrapolation of the linear slopes j(Vg) for electrons
and holes results in their intersection at a value of j indistinguishable from
zero. d, Maximum values of resistivity r ¼ 1/j (circles) exhibited by devices
with different mobilities m (left y axis). The histogram (orange background)
shows the number P of devices exhibiting rmax within 10% intervals around
the average value of ,h/4e2. Several of the devices shown were made from
two or three layers of graphene, indicating that the quantized minimum
conductivity is a robust effect and does not require ‘ideal’ graphene.

Figure 2 |Quantumoscillations in graphene. SdHO at constant gate voltage
Vg ¼ 260Vas a function of magnetic field B (a) and at constant B ¼ 12Tas
a function of Vg (b). Because m does not change greatly with Vg, the
measurements at constant B (at a constant q ct ¼ mB) were found more
informative. In b, SdHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T ¼ 20K; green, T ¼ 80K; red, T ¼ 140K. The Djxx

curves were obtained by subtracting a smooth (nearly linear) increase in j
with increasing Vg and are shifted for clarity. SdHO periodicity DVg at
constant B is determined by the density of states at each Landau level
(aDVg ¼ fB/f0), which for the observed periodicity of,15.8 Vat B ¼ 12 T
yields a quadruple degeneracy. Arrows in a indicate integer n (for example,
n ¼ 4 corresponds to 10.9 T) as found from SdHO frequency BF < 43.5 T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localizationmagnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy
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behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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FIG. 1: Linear Λ-shaped dispersion near the BZ corner H. (a) ARPES intensity map taken

near the H point (photon energy hν=140 eV, kz ≈ 0.50 c∗), along a cut through H and perpendicular

to kx (see red line in the BZ shown in panel c). The inset shows a schematic diagram of the Dirac

cone dispersion near EF in the three dimensional E-kx-ky space. (b) MDCs from EF to -2.0 eV.

The MDCs are normalized to have the same amplitude and displaced by the same amount so that

the dispersion can be directly viewed by following the peak positions at each energy. The dotted

lines are guides to the eyes for the linear-dispersing peaks in the MDCs. (c) Three dimensional BZ

for graphite with high symmetry directions relevant for this paper highlighted with red, green and

blue lines.
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Massless Dirac fermions: 
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Figure 11. Local crystal field and energy level diagram for d orbitals in spherical,
cubic (Oh) and tetragonal (D4 h) symmetry.

neglect apical oxygens. In our case, this model seems to be only partially justified: in fact, we
can expect that the 2D cluster, which does not include the apical ligands, cannot fully account for
the dependence of 1eg and 1t2g on the out-of-plane Cu–ligand distance l. Within this covalent
picture, the energy levels of d states are written as

E cov
x2�y2 = 1

2
(1pd � Tpp) �

r
T 2

pd +
1
4
(1pd � Tpp)2, (23)
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◆2

+
1
4
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+
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E cov
xz/yz = 1

2
1pd �

s✓
Tpd

2
p

2

◆2

+
1
4
12

pd (26)

where 1pd is the CT energy, Tpd is the ground state Cu 3d–O 2p hybridization energy and Tpp

is the nearest-neighbor O 2p–O 2p hybridization energy. For LCO, the values of the parameters
were obtained by taking the value of 1pd from independent experiments (2.2 eV [36]) and
by fulfilling two of the three equations for Tpd and Tpp. The values that better reproduce
the experimentally determined energies of Cu-3d states in LCO are Tpd = 3.20 eV and Tpp =
0.81 eV. However, this 2D cluster cannot describe the energy sequence found for SCOC, CCO
and NdBCO. In fact, in those compounds E3z2�r2 > Exy , whereas E cov

3z2�r2 < E cov
xy for any value

of 1pd, Tpd and Tpp, as can be seen from the equations above. It is anyhow interesting to note that
this model predicts a power law for the xy to x2 � y2 energy splitting with exponent n = 3.5,
dictated by the dependence of the overlap integrals on the Cu–O distance [49]. This value is
rather close to the experimental one.

New Journal of Physics 13 (2011) 043026 (http://www.njp.org/)
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Doping	of	materials

Example:	La2-xSrxCuO4 Schematics	of	CuO2-plane

La3+

Sr2+



Doping	of	materials

Example:	
La2-xSrxCuO4
Tc =40	K

La3+

Sr2+

K.A.	Müller	&	G.	Bednorz:	Discovery	of	high-temperature	superconductivity	
Nobel	Prize	1986



Hole	- doping

Si4+

B3+ From	Kittel



From	Kittel

Electron	- doping

Si4+

As5+



p-n	junction:	solar	cell



Brief	– History	(of	materials)

Bronze- age
A	bit	of	tin	mixed	with
copper	brought	us	out	
of	the	stone-age.

Iron- age
A	bit	of	carbon	mixed	with
iron-age	gave	us	steel	and	
kick-started	the	industrial	
revolution.

Silicon	- age
Semiconductor	doping	
enabled	the	computer	chip



Today’s	program

1. Semiconductors
Carrier	density
n- and	p-type	semiconductors

2.	Magnetism
Ferromagnetism
Anti-ferromagnetism

0.	Summary	from	last	week
Finished	the	Qauntum Oscillation	Experiments
Hall	effect	experiment



The	Electron

Electron	property
Charge
Mass
Spin



Overview

- Non	Fermi	surface
- Electron	mobility

- Fermi	surface
- Mobility



Overview

- Electrons:	mobile	/	itinerant

Metals Magnets

- Electrons:	localized



2-dimensional	square	lattice

Let’s	consider:

1	electron	/	atom

Each	electron	 is	localized

Now	each	red	dot	can	represent	
an	electron.	

So,	we	have	an	electronic	“crystal”



2-dimensional	square	lattice

Heisenberg	Model

Nearest	Neighbor	Interaction

𝑈 = −𝐽𝑆: ; 𝑆<

J =	“Coupling	between	spins”

Nature	likes	to	minimize	the	energy	U!



Heisenberg	Model

𝑈 = −𝐽𝑆: ; 𝑆<

Anti-ferromagnetism
J	<	0

Ferromagnetism
J	>	0



Heisenberg	Model

𝑈 = −𝐽𝑆: ; 𝑆<

Anti-ferromagnetism
J	<	0

1.	What	is	the	lattice	parameter?

2.	What	happens	to	the	unit	cell?

3.	What	about	the	first	Brillioun zone?



Heisenberg	Model

𝑈 = −𝐽𝑆: ; 𝑆<

Anti-ferromagnetism
J	<	0



Anti-ferromagnetism
J	<	0

Scattering	theory:	Magnetic	Form	Factor

What	is	your	expectation	for	the	
magnetic	form	factor?



Scattering	theory:	Structure	Factor

Atomic	crystal	lattice	

NaCl – type	structure

Example:	MnO

S	=	4	(fM- fO)	when	hkl even
S	=	4	(fM+	fO)	when	hkl odd
S	=	0	mixed	parity

fM ~	- fO



Scattering	theory:	Structure	Factor

1

2

3
4

New	peaks
Magnetic	“Crystal”	structure
can	be	resolved.	

C.	G.	Shull	et	al.,
Phys.	Rev.	1951	



Scattering	theory:	Structure	Factor

1

2

3
4

New	peaks Magnetic	phase	transition

C.	G.	Shull	et	al.,
Phys.	Rev.	1951	



Phonons	– Lattice	vibrations

J. Phys.: Condens. Matter 24 (2012) 053202 Topical Review

Figure 3. Influence of temperature on phonons. (a) Phonon dispersion of aluminium at 80 K as in figure 2. (b) Comparison between the
various temperature dependences of the phonon frequency at the LL point (indicated by a red arrow in (a)): the explicitly anharmonic (ah)
shift (see text), the shift due to electronic (el) excitations and the shift due to quasiharmonicity (qh), i.e. influence of thermal expansion [24].

Figure 4. Correlation between the deviation from experiment for
the lattice constants and the bulk moduli. The results for the three
different exchange–correlation functionals LDA, GGA–PBE and
GGA–PBEsol are shown in blue, orange and green, respectively.
Reproduced with permission from [25]. Copyright 2011 Springer
Science + Business Media.

explicit anharmonicities usually impact thermodynamic data
particularly at high temperatures, the influence of non-
adiabatic interactions is very much system-dependent. A few
examples of this currently intensively investigated topic [26]
will be mentioned below; several others can be found in the
literature, e.g. [27].

In order to ensure a high numerical precision when
computing the various free energy contributions, great care
needs to be taken to sufficiently converge the results. Since
a large number of parameters need to be optimized, efficient
scaling procedures can be applied for this purpose [21]. Some
of the most important aspects for phonon calculations are:

• For some elements (e.g. Cu) the grid size of the
augmentation charges needs to be increased well beyond
standard values in order to obtain a convergence of
the Grüneisen parameter (volume dependence of phonon
energies) to less than 1%.

• For some elements (e.g. Al) extraordinary high k-point
meshes for the electronic integration are necessary.

Inappropriate k-point meshes can even yield unphysical
imaginary phonons in the vicinity of the 0-point.

• In the direct force constant method the supercell size
is a critical parameter. In order to resolve the phonon
dispersion with sufficiently high precision (e.g. Pb) or to
identify small (Kohn) anomalies in the phonon spectra (e.g.
Pt), the supercell size needs to be sufficiently large.

A high precision enforced in the phonon calculations
allows us to unambiguously assign the remaining errors
to (i) missing free energy contributions such as non-
adiabatic contributions mentioned before and (ii) the xc
functionals providing unique information regarding sources
of their failing. Figure 2 shows that LDA overestimates the
experimental data in most cases, while GGA underestimates
it. This behaviour is surprisingly systematic [21] and
consistent with the performance of these functionals already
at T = 0 K (see figure 4): The overbinding of LDA and the
corresponding too-small lattice constant leads to a prediction
of a stiffer material with a bulk modulus that is too large
as compared to experiments. The opposite correlation is
observed for GGA. The situation cannot simply be resolved
by using the experimental value for the lattice constant, since
this results in an artificial inner pressure of the system. Even
if the same (experimental) lattice constant is used for both xc
functionals, the corresponding difference in phonon energies
remains almost the same and only their order is reversed, i.e.
LDA/GGA under/overestimates the experimental phonons,
respectively. The only way out of this dilemma is the
development of improved xc functionals. As can be seen
in figure 4, PBEsol [28] is significantly reducing the
over-/underbinding of LDA/GGA for non-magnetic metals.
Since PBEsol, however, does not improve the description
of magnetic materials, which are the main objective of this
paper, we will not consider this xc functional in upcoming
discussions.

The systematic behaviour of the xc functionals becomes
even more apparent in the heat capacities. They are obtained
from a second derivative of the free energy (calculated with
equation (1)), which is most often the target quantity for
materials research. The heat capacity, however, provides a
more sensitive response to even tiny errors in the free energy.

5

Simple	Model	Calculation	 Phonons	of	Aluminium



Magnons – vibrations	of	spin



Magnons – dispersion	of	La2CuO4

In general terms, our results show that at the q ¼
ð1=2; 0Þ position the spin waves are more strongly coupled
to other excitations than at q ¼ ð1=4; 1=4Þ. This coupling
provides a decay process and therefore damps the spin
wave, reducing the peak height and producing the tail.
The question is, What are these other excitations? An
interesting possibility is that the continuum is a manifes-
tation of high-energy spinon quasiparticles proposed in
theoretical models of the cuprates [1–3,13,19–21]. These
assume that Néel order coexists with additional spin cor-
relations with the magnetic state supporting both low-
energy SW fluctuations of the Néel order parameter as
well as distinct high-energy spin-1=2 spinon excitations
created above a finite energy gap [20,21]. Spinons are S ¼
1=2 quasiparticles which can move in a strongly fluctuating
background. The anomaly we observe at ð1=2; 0Þ may be
explained naturally in a model where spinons exist at high
energies and have a d-wave dispersion [20,21] with min-
ima in energy at q ¼ ð$1=4; 1=4Þ and ð1=4;$1=4Þ. Under
these circumstances, the lower boundary of the two-spinon
continuum is lowest in energy at ð1=2; 0Þ and significantly
higher at ð1=4; 1=4Þ. This provides a mechanism for the
spin waves at ð1=2; 0Þ to decay into spinons [with
ð1=4;$1=4Þ] and those at ð1=4; 1=4Þ to be stable.

The new features in the collective magnetic excitations
observed in the present study are (i) a q-dependent

continuum and (ii) the q dependence to the intensity of
the SW pole. We estimate the total observed moment
squared (including the Bragg peak) is hM2i ¼ 1:9$
0:3!2

B. The continuum scattering accounts for about 29%
of the observed inelastic response. The total moment sum
rule [15] for S ¼ 1=2 implies hM2i ¼ g2!2

BSðSþ 1Þ ¼
3!2

B. We consider two reasons why we fail to observe
the full fluctuating moment of the Cu2þ ion. First, our
experiment is limited in energy range to about 450 meV;
thus, there may be significant spectral weight outside the
energy window of the present experiment. Raman scatter-
ing [22] and optical absorption [23] spectra show excita-
tions up to about 750 meV. Recent RIXS measurements
also show high-energy features [24] which appear to be
magnetic in origin. The second reason why we may fail to
see the full fluctuating moment may be covalency effects
[25,26]. The Cu dx2&y2 and O px orbitals hybridize to yield

the Wannier orbital relevant to superexchange. This will
lead to a reduction in the measured response. However, the
(at most) 36% reduction observed in La2CuO4 is substan-
tially less than the 60% reduction recently reported in the
cuprate chain compound Sr2CuO3 [26].
Our results have general implications for the cuprates.

Firstly, they show that the collective magnetic excitations
of the cuprate parent compounds cannot be fully described
in terms of the simple SW excitations of a Néel ordered
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FIG. 2 (color online). q dependence of the magnetic excitations in La2CuO4. (a) One-magnon dispersion (T ¼ 10 K) along lines in
(c, inset). Symbols indicate Ei: 160 meV (h), 240 meV (4), and 450 meV ('). The solid line is a SWT fit based on Eq. (1).
(b) Measured "00ðq; !Þ. Dashed circle highlights the anomalous scattering near ð1=2; 0Þ. An @!-dependent background determined
near ð1; 0Þ has been subtracted. (c) One-magnon intensity. Line is a fit to SWTwith renormalization factor Zd ¼ 0:4$ 0:04. (d) One-
magnon intensity divided by SWT prediction. (e) SWT dispersion (color indicates SW intensity).
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