University of
Zurich™

Bachelor’s thesis
Physics

Numerical integration of single variable
functions using TensorFlow

Mohammad Alminawi

SUpervisors:
Prof. Nicola Serra
Jonas HEschle

July, 2020

Abstract

Integration of single variable functions is needed in many branches of physics.
Python implementations of numerical integration methods are available, but none
have utilized TensorFlow, which allows for parallelized computing, as well as be-
ing able to operate on GPU to increase e ciency. Seven integration methods have
been implemented using TensorFlow, including two historically untested meth-
ods. Results for tests of these methods against one another and against similar
implementations from the library scipy.integrate using a range of di erent inte-
grals are presented. The primary goals are: Determining whether TensorFlow
yields a boost in performance compared to currently available options, compar-
ing the performance when running the methods using a CPU or a GPU, identify-
ing which method is best suited for which case and determining whether there is
merit to using the historically untested methods. This project is the initial step of
developing a single variable integration library based on TensorFlow.

Acknowledgment

Working on this project has been a true joy as it is very di erent from anything
else that | had done throughout the last three years. For that | must thank Pro-
fessor Nicola Serra and Jonas Eschle, as their holistic approach to physics is what
allowed for such a unique bachelor’s project to exist.

Professor Nicola Serra has been incredible to work with, his trust in my ability
and the abilities of the members of his group astonished and inspired me, I am
very thankful for his supervision and guidance.

I cannot begin to express my gratitude to Jonas Eschle. | could not have asked for
a better supervisor, his knowledge fascinated me, his ambition inspired me and his
work ethic simply stunned me. Regardless of the type of obstacle I faced or when

I encountered it, he always could guide me through it and I cannot begin to pic-
ture what this project would have looked like without his supervision. At times

it was di cult to keep in mind that he was my supervisor as he would get as in-
vested into the project as | was, this resulted in the project expanding to a larger
scale than either of us could have predicted initially. It has been a great honor to
work with him and | look forward to any opportunities in the future where I may
get the chance to do so again.

I would like to thank Abdulrahman Tabaza, MD and Omar Marouf for their help
with testing the program. | would also like to thank Amr Fatafta and Dana Kleu
for their help with the editing and nalization of the thesis.

Studying at the University of Zurich has been an marvelous experience, | am grate-
ful to the incredible people that have taught me and the amazing friends that
made the last three years truly special.

Lastly there are three individuals, to whom | owe a debt of gratitude for so many
di erent things that I could not begin to name. From the bottom of my heart |
would like to thank Aisha Zaidan, Dawud Alminawi and Omar Alminawi.

Contents

(I__Introduction|

2 Computing and numerical integration|

(2.1 The importance of numerical integration|

[2.2.2 Adaptive Integration methods|

P3

Romberg Integration

0.4

Gausslan quadraturel

[2.4.1 Calculation of abscissa and weights|

[2.4.2 Gauss-Legendre and Gauss-Kronrod quadraturel

25

Gauss-rRomberg method,

2.6

Implementation in Tensor ow| . . .

3 Tests and results|

3.1

Preliminary testing|

B2

Secondary tests|

[3.3.1 Benchmark using di cult integrals|

[3.3.2 Benchmark of the methods running on CPU vs GPU|

[3.3.3 Newton-Cotes: Tensor ow Vs

Numpy|

[3.3.4 Performance test against scipy.integrate.

4 Conclusion and outlookl

(A Appendix|

Al

Code and testing devices|

A2

Implementation of adaptive methods|

A3

Improving error-tolerance matching|

1. Introduction

We frequently study physical quantities through their rate of change with respect
to a variable, this yields di erential equations that are commonly solved through
integration.

A key example of the need for integration is the probabilistic nature of quantum
mechanics. Rather than looking for exact answers from individual cases, quantum
mechanics is understood through calculation of the expectation value and vari-
ance for a given problem, this is accomplished through integration of operators
and wave functions|[9].

A large number of modern physics branches are rooted in quantum mechanics to
a certain extent, thus it is not surprising that integration plays a key role in those
elds as well, for example, in high energy physics (HEP) we can study particle
interactions through Fermi's golden rule, which requires us to evaluate the magni-
tude of the matrix elements of the transition matrix through integration [6].

To showcase the importance of integrals in high energy physics, let us consider a
scattering experiment consisting of a particle beam and a xed target. As the par-
ticle beam collides with the target, the particles will scatter at di erent angles. In-
tegrating over the angular distribution allows us to identify and study the events,
despite the individual events providing no information on their own.

We have shown that the integrals contain valuable information, yet we have not
outlined any methods to obtain this information. Functions arising in high energy
physics are generally di cult or impossible to integrate using analytic methods,
this can be due to a plethora of di erent reasons, such as the integrand containing
too many independent functions or containing functions, whose integrals cannot
be expressed in terms of elementary functions. [2]

Since analytical solutions are not an option, we turn our attention to numerical
integration methods. For multidimensional integrals the most important method
is Monte-Carlo integration , in contrast it is at best mediocre when considering
single dimensional integrals, which are the focus of this thesis.

The error for the Monte-Carlo method is given by / 1:p N whereN is the to-
tal number of points, which is equal to the number of points in one dimensiam
raised to the number ofpdimensionsi; N = n9 for single variable integrals this
yields an error of / 1= n for the Monte-Carlo integration method, which is sig-
ni cantly worse than the standard methods: Mid-point rule / 1=n, trapezoidal
rule / 1=r?, Simpson's rule / 1=n%.

We are interested in three types of integration methodsNewton-Cotes meth-

ods, Gaussian quadrature rules and Romberg methods . These methods are
commonly used nowadays as they approach the task of approximating an integral
from di erent angles.

We aimed to explore whether implementing the methods using the Python library
Tensor ow would yield any bene ts. Despite machine learning being the primary
purpose for the development of Tensor ow, it provides a powerful infrastructure
for mathematical operations, especially for more complex functions that can be
sped up through utilizing the compiling feature of TensorFlow, which constructs a
computational graph to improve e ciency.[11]

While TensorFlow provides the infrastructure for numerical integration, the li-

brary does not contain any implementations that could ful Il the requirements of
high energy physics experiments. Hence a primary goal of this thesis is the imple-
mentation of well known single dimensional numerical integration algorithms using
TensorFlow.

Since the methods di er fundamentally from one another, it is likely that they do
not bene t equally from being implemented using Tensor ow. To examine this we
compare the implementations in Tensor ow with native Python and Scipy imple-
mentations.

The integral being approximated is also likely to a ect the performance of the
methods, thus we need to test them using a range of di erent integrals, in order
to determine the ideal conditions for each method.

The methods, as well as the theoretical bene t of implementing them using Ten-
sor ow are explored in chapter 2, the progress of the Tensor ow implementations,
comparisons with di erent implementations and comparisons of the individual
methods are discussed in chapter 3 and a review of the results and an overview
of future plans are given in chapter 4.

2. Computing and numerical integration

Numerical integration, formerly called quadrature, has a history extending all the
way back to the invention of calculus, with the term "numerical integration” rst
appearing in 1915 in the publicationA Course in Interpolation and Numeric In-
tegration for the Mathematical Laboratoryby David Gibb [8]. We will be using
\numerical integration” as an umbrella term to refer to the use of di erent algo-
rithms in order to obtain numerical approximations of de nite integrals.

2.1 The importance of numerical integration

Before diving into numerical integration we must rst recall the rst fundamental
theorem of calculus.[17]

Theorem 2.1.1 (First fundamental theorem of calculus) Let f be a contin-
uous function on the interval[a; j and let F be its anti-derivative, then:

Zy
f(x)dx= F(b F(a)

a

Applying the theorem to the appropriate intervals we can deduce the existence of
the integrals of elementary functions. However, the integrals of elementary func-
tions could not, in general, be computed analytically.

In the absence of the exact solutions obtained analytically, the approximate solu-
tions yielded by numerical integration become more appealing. Nonetheless, the
e ort required to use these methods by hand could not be understated, which sti-
ed the progress of the eld during the 18th and 19th centuries.

The eld experienced a resurgence due to the invention of automatic computing;
running a hundred or even a thousand iterations of an algorithm became possi-
ble. Numerical methods became capable of obtaining results within a very small
margin of the exact results.

Automatic computing changed the goals of numerical integration methods: The

aim was no longer to nd methods that are possible for humans to utilize, rather,
the aim was to develop algorithms such that computers could approximate inte-

grals very precisely, which revived interest in methods that were rather ine cient
for human use such as the Newton-Cotes formulas.

2.2. NEWTON-COTES FORMULAS

2.2 Newton-Cotes formulas

Newton-Cotes formulas refer to a class of numerical integration algorithms that
are based on evaluations of the integrand function at equally spaced points.

There are two main categories of Newton-Cotes formulas, closed formulas and
open formulas. The terms \open™ and \closed" refer to the interval on which the
formula is applied, with closed formulas containing the end points of the interval
in the evaluation and open formulas neglecting said points as shown in Figure 2.1.

Figure 2.1: Comparison of closed and open Newton-Cotes formulas [2]

Newton-Cotes formulas are a quintessential part of the history of numerical inte-
gration, they revolutionized the eld and are surely elegant, which makes their ir-
relevance in modern times quite disheartening. Indeed, there are only two Newton-
Cotes formulas that are regularly used nowadays, those being the \extended trape-
zoidal formula™ and the \extended mid point rule". Although far less popular, the
\extended Simpson's rule" also makes appearances from time to time.

Before showcasing some Newton-Cotes formulas, an explanation for why these for-
mulas fell out of favor is in order. The Newton-Cotes formulas function through

the use of polynomial interpolation, with higher order formulas being needed for
higher order integrand functions, the formulas function exceptionally well for low
order polynomials. However, the dependence on polynomial interpolation some-
times results in catastrophic Runge's phenomena for the closed formulas, in which
the error grows exponentially with the degree of the polynomials used, leading to
oscillations at the edges of the interval which prevent convergence. The open for-
mulas are just outdone by Gaussian quadrature rules in all regards.

Lup to degree 5

2.2. NEWTON-COTES FORMULAS

Figure 2.2: Runge's phenomenon for interpolation olfm using 5th, 9th
and 13th degree polynomials

The failures of the Newton-Cotes formulas could be mitigated to a certain extent,
but the e ort needed to do so far outweighs the reward: The open formulas re-
main inferior to Gauss quadrature formulas and cannot be chained together to
make extended formulas. The closed formulas can be substantially improved, but
they are still outdone by other methods such as Romberg integration, which will
be shown later.

There are four historically important closed Newton-Cotes formulas, using these
formulas one could obtain exact results for polynomials of up to degree 5.

Trapezoidal rule

The trapezoidal rule evaluates the integrand at 2 points, approximating the inte-
gral using a linear function, therefore it is exact for degree one polynomials.

2 xa 1 1 0
f(x)dx = h Qf (X1) + Qf (x2) + O(h% ") (2.1)

X1

The error term depends on some coe cient multiplied by the cube of the step size
h and the second derivative of the integrand evaluated at some point in the do-
main, this point is unknown, so we can only obtain an upper bound on the error.

2.2. NEWTON-COTES FORMULAS

Simpson's rule

Simpson's rule evaluates the integrand at 3 points and due to cancellation of coef-
cients due to left-right symmetry, the formula is exact for polynomials up to and
including degree three.

Z

Xaf(x)dx = h %f (x1) + gf (x2) + %f (x3) + O(h5f @) (2.2)

X1

Once again the error is unknown, although it is now dependent on the fourth
derivative and the fth power of the step size, leading to a lower upper bound in
most cases.

Simpson's 3/8th rule

Using four points instead of three yields no direct bene t as there is no cancella-
tion of coe cients and the error term does not change in any signi cant way. The
main bene t of this formula is that it allows for the derivation of Boole's rule.

Z

X4f(x)dx= h gf (X1) + gf (X2) + gf (X3) + gf (xa) + O @) (2.3)

X1

Boole's rule

As a result of left-right symmetry, this formula is exact for polynomials up to and
including degree ve.

Z

X

s 14 64 24 64 14
f(x)dx=h 4—5f (X1) + 4—5f (X2) + 4—5f (X3) + 4—5f (Xa) + 4—5f (xs) + O(h'f ©)
(2.4)

X1

The error term now depends on the sixth derivative and seventh power of the step
size, further decreasing the upper bound in most cases.

It is possible to derive higher order formulas, but this is the point at which it be-
comes likely to encounter Runge's phenomenon, thus it is a good point to stop
and search for alternative approaches.

	Introduction
	Computing and numerical integration
	The importance of numerical integration
	Newton-Cotes formulas
	Extended Formulas
	Adaptive integration methods

	Romberg Integration
	Gaussian quadrature
	Calculation of abscissa and weights
	Gauss-Legendre and Gauss-Kronrod quadrature

	Gauss-Romberg method
	Implementation in Tensorflow

	Tests and results
	Preliminary testing
	Secondary tests
	Final tests
	Benchmark using difficult integrals
	Benchmark of the methods running on CPU vs GPU
	Newton-Cotes: Tensorflow vs Numpy
	Performance test against scipy.integrate

	Conclusion and outlook
	Appendix
	Code and testing devices
	Implementation of adaptive methods
	Improving error-tolerance matching

