An overview of the current status of the neutrino mass measurements with a focus on the HOLMES experiment

Andrei Puiu

Neutrinos

On average there are roughly one billion times more neutrinos than protons in the Universe. - Second most abundant particle in the universe - Influenced the universe as we see it

Neutrino discovery

Needed to explain the continous spectrum of electrons emitted in beta decay

 \rightarrow Opened a new era of experiments... and problems to be solved

Still misterious

Neutrinos are peculiar particles

- Tiny mass
- Flavour oscillation

Open questions:

- What is the absolute scale of their mass ?
- Majorana or Dirac particle ?
- CP violating phase ?
- Sterile neutrinos ?

Facts on neutrinos

- A central goal in both cosmology and particle physics is to measure the mass of the neutrino particles. The neutrino sector is still poorly understood and the mechanism that gives rise to their mass is unknown.
- There are thought to be three active neutrino species, with mass differences measured through solar, atmospheric, reactor and accelerator neutrino oscillation experiments

The absolute mass scale is still unknown

Mixing matrix

How to assess the neutrino mass ?

- Cosmological measurements
- Neutrinoless Double Beta Decay
- Direct kinematic measurement from Beta or Electron Capture (EC) decay

Since the flavour oscillations paradigm has been established, a remarkable increase of interest has in investigating directly the absolute mass scale

cosmology

$$m_{\Sigma} = \Sigma_i m_{\nu i}$$

Massive neutrinos behave initially like non-interacting relativistic particles, and then later like cold dark matter. As such they affect the expansion rate of the Universe, compared to a pure radiation or pure matter component, as well as modifying the evolution of perturbations at early times

- m_{vi} ≠ 0 affects CMB (multipole expansion and polarisation), Barionic Acoustic Oscillation and Lensing power spectrum
- $\Sigma_{i}m_{vi}$ is flavour mixing independent

Constraints from Cosmology

 $m_{\Sigma} = \sum_{i} m_{\nu i}$

Assumptions:

- cosmological neutrinos are the same as the terrestrial ones
- Λ CDM + 3 interacting neutrinos

The current indirect 95% upper limit from cosmological data on the sum of the neutrino masses is

$\Sigma_{i}m_{vi}$ < 130 meV

from the Planck measurements of the Cosmic Microwave Background (CMB), combined with Baryon Acoustic Oscillation (BAO) measurements from the Baryon Oscillation Spectroscopic Survey (BOSS)

Neutrinoless Double Beta Decay

$$m_{\beta\beta} = \left| \Sigma_i m_{\nu i} U_{ei}^2 \right|$$

- Not allowed in the Standard Model
- Possible only if neutrinos are Majorana particle
- Decay with halflife $\tau_{1/2} > 10^{26}$ y 30 ββ2ν Decay rate (A.U. 2.0 20 × 10 B allowed **BB** e 1.5 0.90 1.00 1.10 1.0ββ0ν 0.5 0.0 0.0 0.2 0.4 0.6 1.0 m., Fraction of decay energy $\equiv V$ $|\Gamma=G|M|^2 \left|m_{etaeta}
 ight|^2$ neutrinoless **BB** Andrei Puiu- Zuerich University

- 2vββ decay poses an unavoidable background
- High Q-value is desired
- High natural abudance → cheaper

Neutrinoless Double Beta Decay Sensitivity

Very rare event search require a special experimental environment

 Low background is a must possibly 0 background

- High resolution for electron detection
- Very large masses with high isotopic abundance
- Undergound laboratories mandatory for cosmic ray shielding

- M: Total active mass in kg
- ϵ : Detector efficiency
- i.a.: Isotopic abundance
- b: Background in c/keV/kg/y
- ΔE: Detector resolution @ ROI in keV
- T: Exposure time in y

Experimental approach

Calorimetric / Ge diodes

- Source = detector
- Extremely good energy resolution
- Crucial material selection
- Background discrimination techniquies
- Now at Ton scale

Liquid Xenon / Loaded scintillator

- Easily scalable to multi-ton scale
- Lower energy resolution
- Self shielding effect of liquid Xe

Current limit on $m_{\beta\beta}$ and neutrino mass

A non trivial issue is the evaluation of the nuclear matrix elements in order to assess mbb from the measured half life

Current limit on m_{ν} from $0\nu\beta\beta$ decay

The main limits from experiments combined is 130 – 310 meV, depending on NME model

The model indepent tool

Kinematics of b decay: $E^2 = p^2c^2 + m^2c^4$ process involving neutrinos in the final state

How to measure the neutrino

Kurie plot

A common way to draw the beta decay spectrum is the Kurie plot: a convenient linearisation of the beta spectrum

Mass hierarchy effect

$$m_{\beta} = \left(\Sigma_i m_{\nu_i}^2 U_{ei}^2\right)^{1/2}$$

- the Kurie plot is an actual sum of three different sub-plots
- Each sub-Kurie plot corresponds to one of the three different mass eigenvalues
- The weight of each sub-Kurie plot will be given by |U_{ei}|²

current experiments do not have the ability to resolve this feature $\rightarrow m_{\beta}$ is measured instead

End point close-up

Experimental approach

Two complementary approaches:

Spectrometers: source external to the detector

- Guide and select the electrons emitted from a beta source using high precision electric and magnetic fields
- measurement of the electron energy separated from the source
- Katrin planned sensitivity: $\sim 0.2 \text{ eV}$

Calorimetry: source included in the detector

- measure all the visible energy of the decay with high resolution low energy electron detector
- → cryogenic microcalorimeters
- present limit on $m_{_{\rm B}}$: ~ 10 eV
- Future sensitivity: $1 \text{ eV} \rightarrow \text{easily scalable to } 0.1 \text{ eV}$

Quick overview

Spectrometers and calorimeters

Spectrometers

- PROs:
- High statistics
- Very good energy resolution

CONs:

- systematics due to source effects
- systematics due to decay to excitated states
- background

Calorimeters:

PROs:

- no backscattering
- no energy losses in the source
- no solid state excitation
- no atomic/molecular final state effects CONs:
- limiteted statistics
- systematics due to pile-up
- background

Spectrometry of beta sources -1-

Spectrometry of beta sources -2-

Spectrometry of beta sources -3-

Spectrometry of beta sources -4-

Wrong end point evaluation introduces systematics which, if not perfectly understood, can lead to a wrong estimation of the neutrino mass; such as $m_0^2 < 0$

Andrei Puiu- Zuerich University

25

Current spectrometer status

electrostatic integrating spectrometers (MAC-E filter)

- Mainz with solid ³H source
- Troitsk with gaseous ³H source

m_v < 2.2 eV 95% CL

KATRIN will push the limit down by an order of magnitude

- Measure integral spectrum with moving threshold (E_{kin} > eU₀)
- Magnetic Adiabatic Collimation + Electrostatic filter

[Beamson et al. 1980; Kruit & Read 1983; Lobashev 1985; Picard et al. 1992] Andrei Puiu- Zuerich University

Measure integral spectrum with moving threshold ($E_{kin} > eU_0$)

Magnetic <u>A</u>diabatic <u>C</u>ollimation + <u>E</u>lectrostatic filter

momentum transformation without E-field

$$\mu = \frac{E_{\perp}}{B} = \text{const}$$

$KATRIN \rightarrow 0.2 \text{ eV goal}$

$KATRIN \rightarrow 0.2 \text{ eV goal}$

KATRIN \rightarrow 0.2 eV goal

KATRIN \rightarrow 0.2 eV goal Pre spectrometer: First energy selection: $10^{3} e^{-}/s$ 10¹¹ e⁻/s 70 m Windowless Gaseous T, Source

KATRIN \rightarrow 0.2 eV goal Main spectrometer for energy selection Incoming: $10^3 e^{-1}/s$ Reaching detector: 1 e⁻/s 10¹¹ e⁻/s Windowless Gaseous T, Source

$KATRIN \rightarrow 0.2 \text{ eV goal}$

Final e- couting facility:

- 90 mm diameter Si-PIN diode
- 148 pixels (dartboard layout)
- ΔE FWHM ~2 keV

 $10^{11} e^{-}/s$

• High detection efficiency ~ 95 %

Windowless Gaseous T₂ Source $1 e^{-}/s$

KATRIN beta spectrum and sensitivity

- Fit of the integral spectrum
- 4 fit parameters: m²_v, E₀, A_{Sig}, R_{Bg}

3 yrs (5 calendar yrs) to balance statistics and systematics

β -decay spectrum: Kleesiek et al., arXiv:1806.00369

First spectrum

First end point scan in KATRIN Great success ! Presented at NDM 2018 Daejeon | 29. June – 4. July 2018 Slides by Wongook Choi | KIT-ETP

Limits are to be pushed

Andrei Puiu- Zuerich University

Trasparenza nr. 39

Calorimetry

- Calorimetric detectors are a promising approach for confirmation of spectrometric measurements and for improving sensitivity in the near future
- Tritium is difficult to embed inside an absorber
- New isotope is needed. ¹⁸⁷Re at first
- Electron capture decaying ¹⁶³Ho is the latest candidate

Low temperature calorimeters

- The isotope of choice (¹⁶³Ho) is embedded in a gold absorber
- For each decay energy is released inside the absorber: the temperature increase is
 proportional to E/C → very low heat capacity for high signals → low temperature detectors
- All the released energy contributes to the formation of the signal, including eventual excited final states → no end point deformation

Calorimetric measurement with ¹⁶³Ho

O N N Cattura elettronica

 163 Ho + e⁻ \longrightarrow 163 Dy^{*}+v_o

¹⁶³Ho decays via (EC) from shell \geq M1, with Q_{EC} ~ 2.8keV

Proposed by A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

$$\frac{d\lambda_{\rm EC}}{dE_{\rm c}} = \frac{G_{\beta}^2}{4\pi^2} \left[(Q - E_{\rm c})\sqrt{(Q - E_{\rm c})^2 - m_{\nu}^2} \times \Sigma_i n_i C_i \beta_i^2 \frac{\Gamma_i}{2\pi} \frac{1}{(E_{\rm c} - E_i)^2 + \Gamma_i^2/4} \right]$$

ent of e- from Dy esonance
point where m_v $\frac{10^{12}}{10^6} \int_{0.5}^{0.8} \frac{10^{14}}{1 \cdot 15} \int_{0.5}^{0.8} \frac{10^{14}}{2 \cdot 5} \int_{0.5}^{0.6} \frac{10^{14}}{1 \cdot 15} \int_{0.5}^{0.6} \frac{10^{14}}{2 \cdot 5} \int_{0.5}^{0.6} \frac{10^{14}}{1 \cdot 5} \int_{0.5}^{0.6} \frac{10^{14}}{1 \cdot 15} \int_{0.5}^{0.6} \frac{10^{14}}{2 \cdot 5} \int_{0.5}^{0.6} \frac{10^{14}}{1 \cdot 5} \int_{0.5}^{0.6} \frac{10^$

- calorimetric measurement of e- from Dy de-excitation

end point close to M1 resonance
 enhances rate at the end point where m,
 is measured

- $\tau_{_{1/2}}$ ~ 4570 y: 2x1011 nuclei 163Ho = 1 Bq

Sentivity on neutrino mass and pile-up

Since all the events occurring within one detector are recorded without previous selection, pile-up becomes a crucial limiting factor

- events occurring closer in time than the timing resolution of the dector (τ_{R})
- sets the limit on the maximum activity (A_{FC}) of each detector

Number of events

HOLMES will:

- Measure m_v with ~ 1 eV sensitivity
- Prove that calorimeters are a valid technique
- High precision *Q-vlaue* measurement of ¹⁶³Ho
- Systematic errors assesment

Short and medium terms

- 64 detectors array, $t_{\rm M} = 1$ month (m_v < 10 eV)
- Final measurement: 1000 detectors, 3x10¹³ events in 3 y
- $6.5 \times 10^{16} \, {}^{163}$ Ho nuclei needed (~18 µg)

Five year plan started in 2014

Where to get ¹³⁶Ho

 $\begin{array}{ll} {}^{162} \text{Er}(\textbf{n}, \gamma) {}^{163} \text{Er} & \sigma_{\text{thermal}} \approx 20 \text{b} \\ {}^{163} \text{Er} & {}^{163} \text{Ho} + \nu_{\text{e}} & \tau_{\gamma_2} {}^{\text{EC}} \approx 75 \text{min} \end{array}$

- ILL at Grenoble: high neutron flux n 1.3x10¹⁵ n/cm²/s
- Brun up cross section 163 Ho(n, γ) 164 Ho non negligible (~ 200 b)
- 165 Ho(n, γ) (da 164 Er(n, γ)) $\rightarrow {}^{166m}$ Ho, β^- , $\tau_{\frac{1}{2}}$ = 1200 y, Q = 1856 keV
- $A(^{163}\text{Ho})/A(^{166m}\text{Ho}) = 100 \sim 1000$
- Pre and post irradiation purification at PSI (Villigen, CH)

HOLMES needs ~ 200 MBq of ¹⁶³Ho

ECHO needs ~ 10 Mbq of ¹⁶³Ho

Getting ¹⁶³Ho inside the detectors

162

-5

0

ximmi

10

-10

Andrei Puiu- Zuerich University

 163 Ho/ 166m Ho separation > 10⁵

Ho source (to be placed inside the implanter)

Thermoreduction/distillation inside special furnace: $Ho_2O_3 + 2Y(met) \rightarrow 2Ho(met) + Y_2O_3$ at T > 1600 °Cc

Andrei Puiu- Zuerich University

Ho source production:

- Metallic Ho metallico mixed with Ti e Sn
- Extraction efficiency studies are in progress
- First extraction test

Evaporated Ho \rightarrow source production

ECHo implanter system

TES for HOLMES

Transition Edge Sensors Superconductive Detectors (TES)

- Very steep R vs T dependency in transition region
- Gold absorber with ¹⁶³Ho inside coupled to TES thermometer
- Ho sandwiched between two 1 μm thick gold layers for a total electron containment
- Fast detectors to reduce pile-up
 - tunable rise time ~ L/R
 - decay time dependent on detector characteristics C/G

MMC for ECHo

S.Kempf et al., J. Low. Temp. Phys. 176 (2014) 426

The cryogenics - Milan

TES array

First Transition Edge Sensors array

- 6 different designs to be tested
- Different thermal conductances G
- Different TES intrinsic parameters

Readout

• Each TES is coupled to a RF-SQUID

$$E \rightarrow \delta T_{\text{TES}} \rightarrow \delta I_{\text{TES}}$$

Readout

Readout

- Each TES is coupled to a RF-SQUID
- Every RF-SQUID is coupled to a common ramp
- Every RF-SQUID is coupled to a resonant circuit

HOLMES final array detectors

HOLMES tested non implanted detectors \rightarrow final design established ⁵⁵Fe (5.9 keV) + fluorescence from (Ca – 3.7 keV; **Cl – 2.6 keV**; Al – 1.5 keV) Stray iductance tuned to achieve pulse edge of $\tau_R \approx 10 \,\mu s$

Final arrays – etching

beam

т

WHM width

calculated ¹⁶³Ho

- Si Deep Reactive Ion Etching (DRIE)
- Closer detector packing \rightarrow higher implant efficiency
- Still to be tuned

- Si KOH anisotropic wet etching
- Larger spacing between pixels
- Perfectly tuned → HOLMES baseline

Next steps

 \rightarrow The determination of the electron neutrino mass with ¹⁶³Ho is complementary to the determination of the neutrino mass with Tritium

 \rightarrow spectral shape measurement is needed for theoreticians to refine the EC model of ¹⁶³Ho

- \rightarrow ECHo and HOLMES have already demonstrated:
- production and purification of large amount of ¹⁶³Ho sample
- operation of large arrays of high resolution low temperature detector
- first low energy background studies
- \rightarrow HOLMES detector modules will be soon tested for ¹⁶³Ho enclosure aiming at 300 Bq
- \rightarrow ECHo is ready for upgrades to larger arrays with 1 Bq activity

Overall neutrino mass limits

$$m_{\Sigma} = \Sigma_i m_{\nu i}$$

- Model dependent
- Orbital experiments
- Current limit 0.12 1 eV
- Future limit 15-50 meV

Andrei Puiu- Zuerich University

$$m_{\beta\beta} = \left| \Sigma_i m_{\nu i} U_{ei}^2 \right|$$

- Model dependent
- Large underground
 experiments
- Current limit 100 300 meV
- Future limit 15-50 meV

 $m_{\beta} = \left(\Sigma_i m_{\nu_i}^2 U_{ei}^2\right)^{1/2}$

- Model independent
- Surface experiments
- Current limit 2 eV
- Future limit 0.2 meV

Thank you for you patience and attention ;)