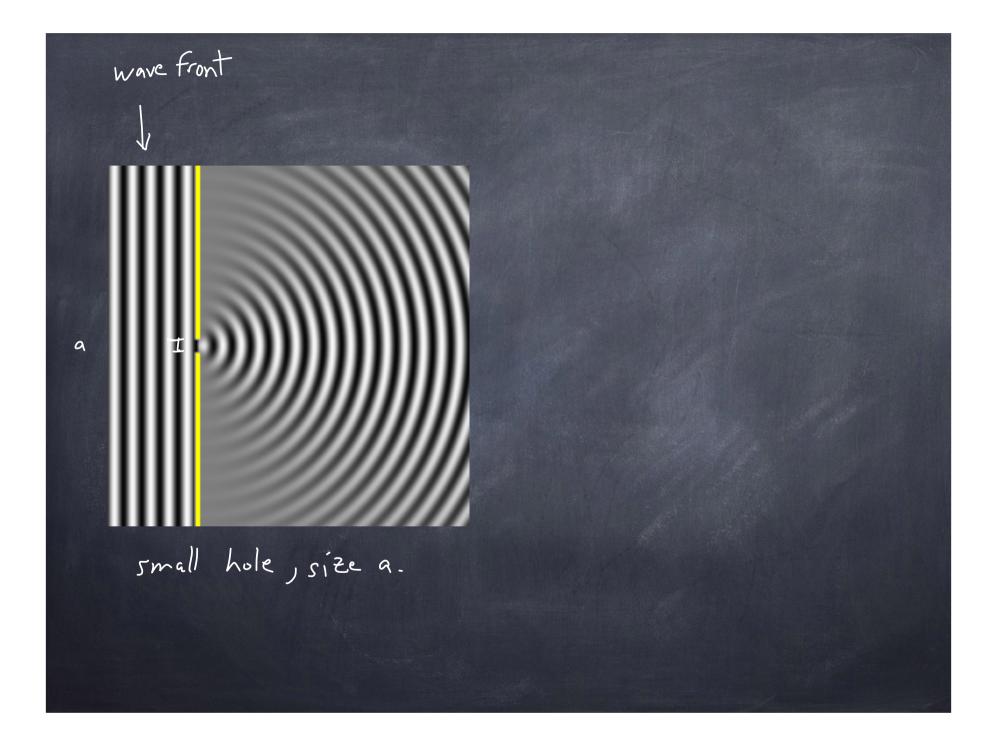
PHY 127 FS2024

Prof. Ben Kilminster Lecture 5 March 21st, 2024

Lecture 4 reminderwave equation:
$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{N^2} \frac{\partial^2 y}{\partial t^2}$$
solutions: $y = A \sin(kx - ut)$ For a standing wave on a string: $\gamma = A_n \sin n\pi x$ $n = 1, 2, 3; \cdots$ $n = 2$ $n = 2$ $n = 2$



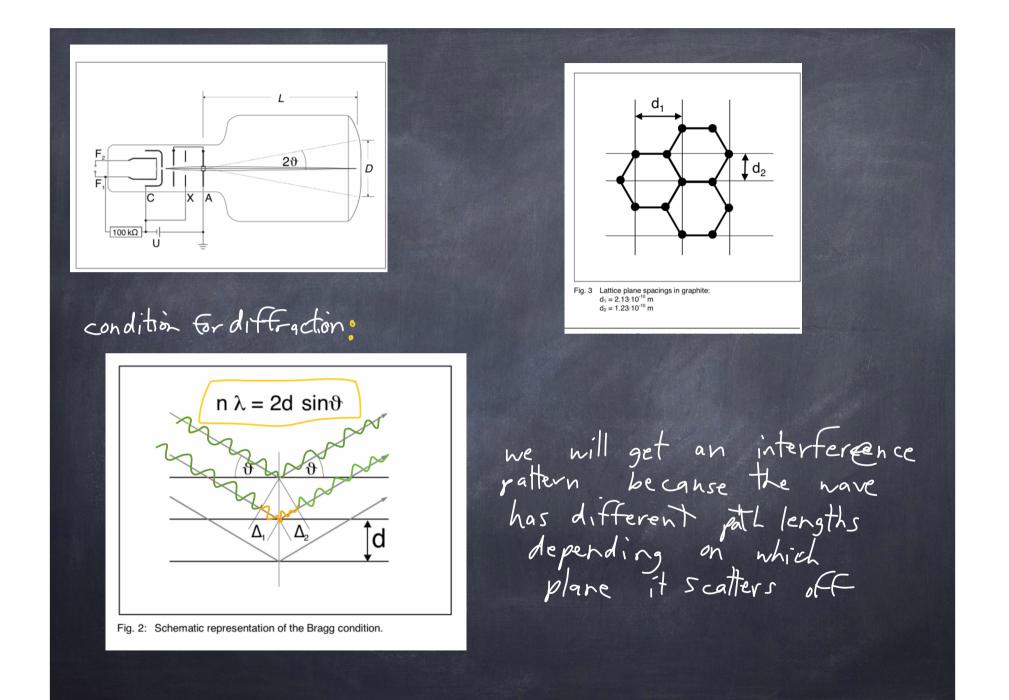
(videos on lecture notes meb page) Diffraction pattern. From constructive + destructive interence 9 larger hole Huygen's principle: every point on a nave front serves as a source of secondary sphen; cal mavelets little maves.

This is a diffraction pattern.

$$\int \frac{\tan \theta = \frac{y}{D}}{\tan \theta \approx \sin \theta \approx \theta \approx \frac{y}{D}} \int \frac{\sin \theta = m\lambda}{\ln \theta \approx \sin \theta \approx \theta \approx \frac{y}{D}} \int \frac{d}{d} = \frac{d}{d} + \frac{d}{d}$$

circular diffraction with electrons we accelerate electrons in an electric potential, U. **2**ϑ D ell = zmv XA potential kinetic energy 100 kΩ energy V= J<u>2eU</u> P=mV= J2emU The wavelength of the electrons is $J = \frac{h}{p} = \frac{h}{\sqrt{2em}G}$ $eU = 2mv^2$ z = zeU U $V = \sqrt{\frac{2eh}{m}} p = mV = m\sqrt{\frac{2eh}{m}} = \sqrt{\frac{2eh}{m^2}}$

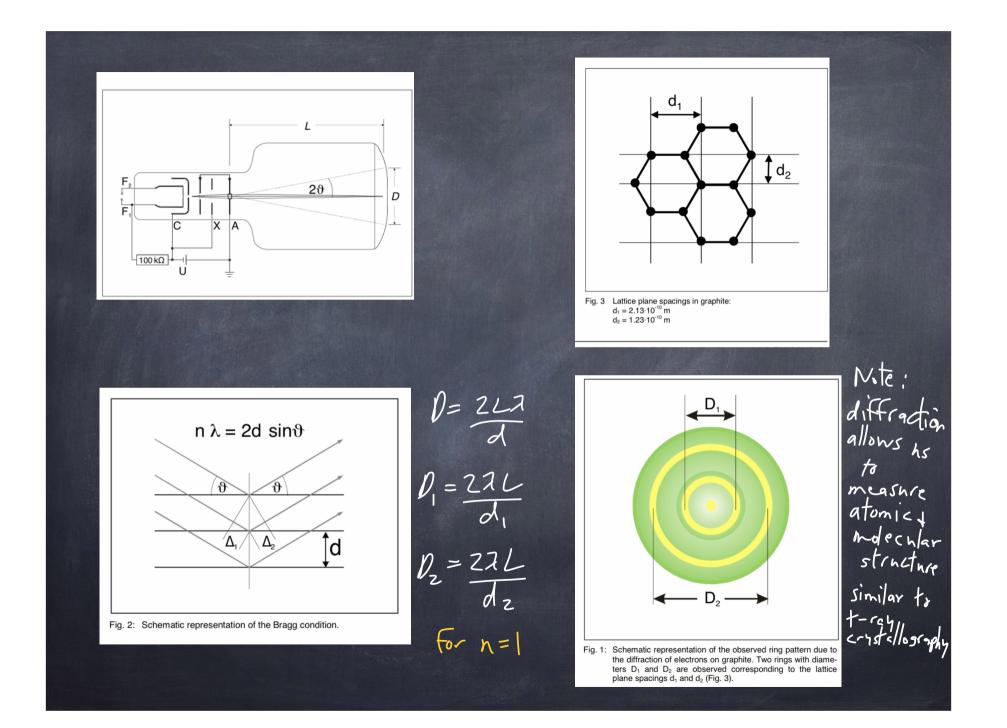
graphite target d_1 L td₂ F₂ ₅ 2ϑ D ٿ F С X A 100 kΩ + Fig. 3 Lattice plane spacings in graphite: $\begin{array}{l} d_1=2.13\cdot 10^{-10}\mbox{ m} \\ d_2=1.23\cdot 10^{-10}\mbox{ m} \end{array}$ U ÷ lattice spacings di, dr



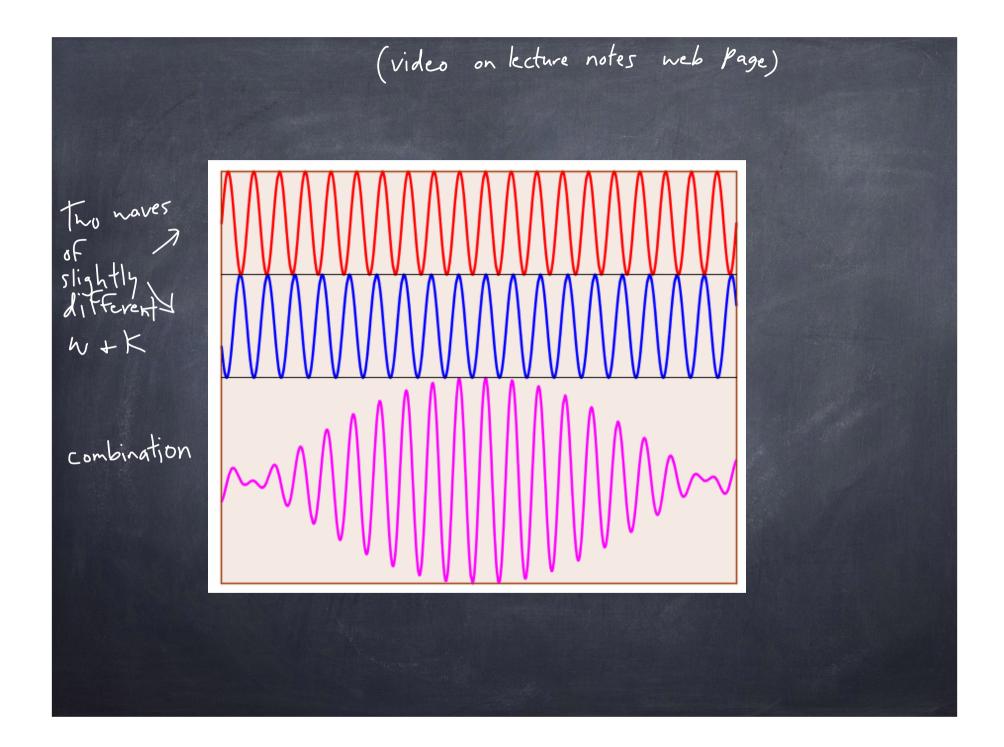
by geometry:

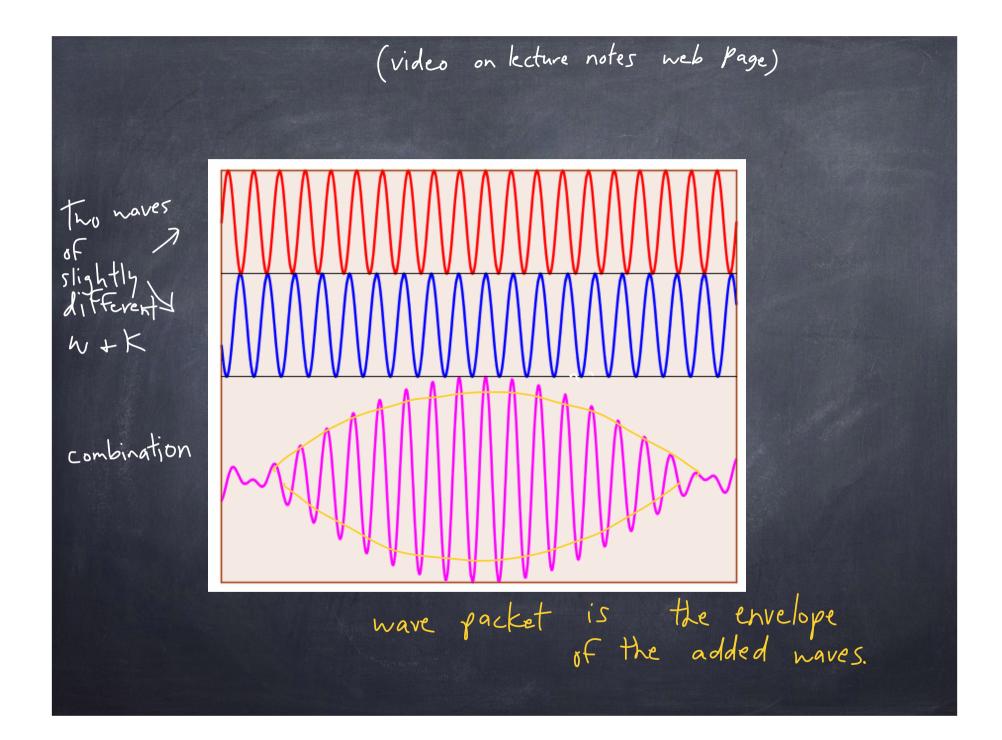
$$tan (20) = \frac{p}{2} = \frac{p}{2L}$$

 $tan (20) = \frac{p}{2} = \frac{p}{2L}$
 $tan (20) = \frac{p}{2} = \frac{p}{2L}$
 $tan (20) = \frac{p}{2} = \frac{p}{2L}$
 $tan (20) = \frac{p}{2L} = \frac{p}{2L}$
 $tan (20) = \frac{p}{2L}$

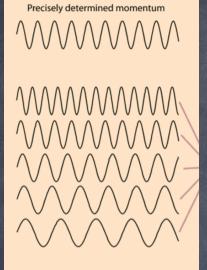


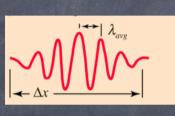
If an electron is a wave, what does it look like? A wave with a singular angular frequency ($k = 2\pi \nu$) and a wave number $\left(k = \frac{2\pi}{3}\right)$ looks like this: perfect sine nave with an exact It has no beginning or end in space. We can't define where it is. To represent a localized position of a nave, ne need a group of naves, called a "wave packet".





Precisely determined momentum mave packet represents the location of a particle rance 7. of 7, 12 ax: location range of ptcl. Each individual wave has its own 2; → own wi, Ki $\Delta \lambda = \lambda_n - \lambda_1 \Longrightarrow \Delta K = \frac{2\pi}{\Delta \lambda}$ $V_{i} = \frac{\omega_{i}}{K}$ The nave packet has a range of AK + AW The wave packet has its own velocity, V = AW The average of the individual naves has a velocity Vp = phase = Wavy velocity = Vavy gronp . Velocity





Precisely determined momentum

A sine wave of wavelength λ implies that the momentum is precisely known. But the wavefunction and the probability of finding the particle $\Psi^*\Psi$ is spread over all of space! precise x unknown

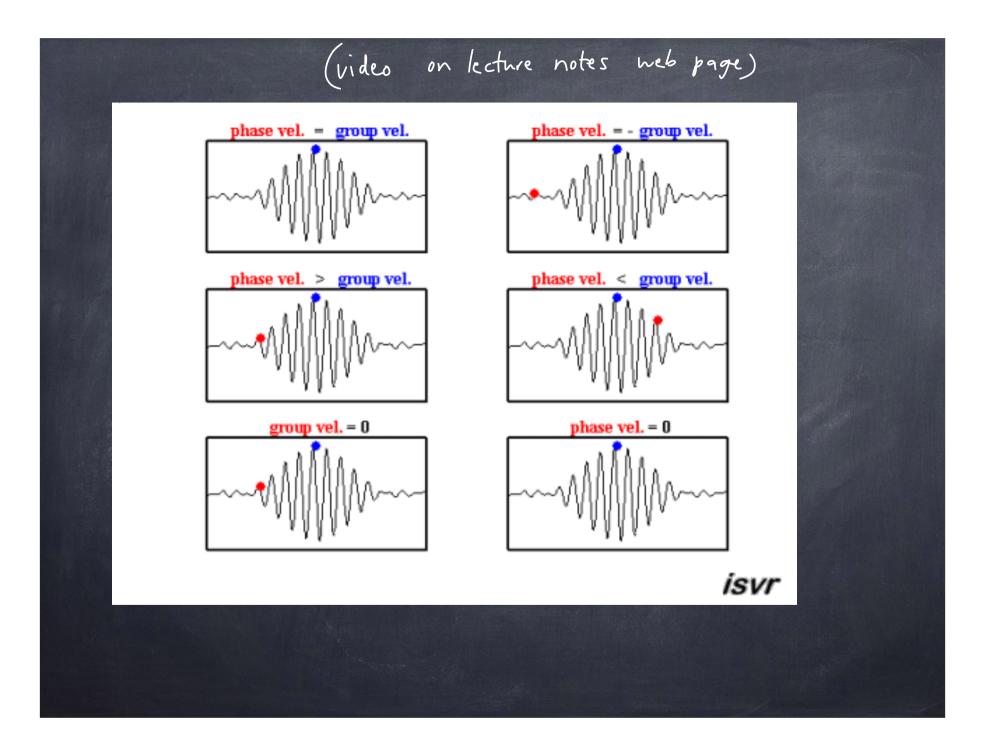
Adding several waves of different wavelength together will produce an interference pattern which begins to localize the wave.

P= 1/2

 $\bigwedge_{\mathbf{z} = \Delta x} \bigwedge_{\mathbf{z} = \mathbf{z}} \ldots_{\mathbf{z} = \mathbf{z$

But that process spreads the momentum values and makes it more uncertain. This is an inherent and inescapable increase in the uncertainty Δp when $\Delta \chi$ is decreased.

 $\Delta x \Delta p > \frac{\hbar}{2}$



A seneral property of naves is that
AKOXAL AK: range of nave
AWATAL AK: range of nave
AWATAL AX: location or
Size of wave
the can multiply these equations by
The constant,
$$\frac{h}{2\pi} = h$$

 $p = \frac{h}{2} = \pi K$ $E = \mathbb{E}h_X = \pi W$
 $p = \frac{h}{2} = \pi K$ $E = \mathbb{E}h_X = \pi W$
AEATAL
These relations provide a fundamental concept.
Since porticles are waves, they must be the mules
of waves, and therefore we can't know both the
p + X simultaneously. Likewise, we can't know est
simultaneously.

This is expressed as?
APAX =
$$\frac{\pi}{2}$$

AEAT > $\frac{\pi}{2}$
AEAT > $\frac{\pi}{2}$
AEAT > $\frac{\pi}{2}$
AE: time available for
measurement
AE: incertainty in measured
cheray
AP: incertainty in measured
aP: incertainty in momentum
AX: incertainty in position:
IF you know 2 exactly, then you know p exactly
So ap=0. Then AXN ∞

Let's go back to our electron in a 1-D box.
What is the nave function? What are the allowed
energies? Where is it?
W(X)
$$f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$$

W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}^{\infty} c \text{ infinitely fall box}$
W(X) $f = \int_{-\infty}$

The energy of the particle is
$$E = K + U$$

(Kindic) (Poluntial)
The wave equation for quantum mechanics is:
Schoedinger
wave
equation:
(time-independent)
Inside the box, $U(x) = O$, the particle has no
potential energy.
 $U(x) = E(Y_x)$
 $U(x) = E(Y_x)$

To solve this, we need a time function whose
2nd derivative is
$$-k^2$$
 times the function.
guess: If $Y(k) = Asinkx$
 $\frac{\partial Y(k)}{\partial x} = Akcoskx$
 $\frac{\partial^2 Y(k)}{\partial x^2} = Ak^2 sinkx$
we can see that $\frac{\partial^2 Y(k)}{\partial x^2} = -k^2 Y(k)$
Also, $Y(k) = Bcoskx$, it would also work. (B elso
 $\frac{\partial x^2}{\partial x^2} = -k^2 Y(k)$
So the general solution, $Y(k) = Asinkx + Bcoskx$
we know that $Y(x=0)=0$ $Y(x=L)=0$
 $Y(x=0)=0 = Asink(0) + Bcosk(0) = B$ so this means
 B must be
 $\frac{\partial y(x)}{\partial x} = \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2}$

sin(a) $\Upsilon(t=L) = O = A sinkL$ π <u>)317</u> D when does this happen? It happens when KL=nT where h= integer we get that $K = \frac{n\pi}{L}$ for h = 0, j, z, 3, ...From (), $C = \frac{k^2 h^2}{2m} = \left(\frac{n\pi}{L}\right)^2 h^2$ $n = \frac{n^2}{L} z_{1}$ 2m since we know $f = \frac{h}{2\pi}$ $E = h^2 h^2 \pi^2$ 2m/2The allowed $E_{n} = \frac{n^{2}h^{2}}{8mL^{2}}, n = 1, 2, 3, ...$ chergy levels of an electron in a 1-10 60× .

For
$$n=1$$
, $E_1 = \frac{h^2}{8mL^2}$ and $E_n = n^2 E_1$
for $n=1/2,...$
The energy is ghantized.
 $Tky = A sinkx = A sin(\frac{nTx}{L})$ for $n=1/2,...$
what is A_n ?
 $h = constant$ for each
 $n = nse$ $\int \Psi_{(x)}^2 dx = 1$ must be true.
 $\int (A_n sin(\frac{nTx}{L}))^2 dx = 1$
 $A_n^2 = d\theta$
 $A_n^2 = \int sin^2 d\theta = 1$
 $dx = 1$

$$for this is for x dx = \frac{1}{2} \left(x - \frac{1}{2} \sin 2x \right) \int_{0}^{1} dx$$

$$for our : A_{n}^{2} \frac{1}{n\pi} \left[\frac{\partial}{2} - \frac{\sin 2\partial}{4} \right]_{0}^{n\pi} = A_{n}^{2} \frac{1}{n\pi} \cdot n\pi = 1$$

$$we \text{ find that } A_{n} = \sqrt{\frac{1}{2}} \quad (\text{independent of } n)$$
So the solution is $f_{n}(x) = \sqrt{\frac{2}{2}} \sin(n\pi + \frac{1}{2}) \quad for = 1$

$$n! \text{ are the quantum numbers}$$

$$IF n = 1, \text{ then } f_{1}(x) = \sqrt{\frac{2}{2}} \sin(n\pi + \frac{1}{2}) \quad for = 1$$

$$I(x) = \sqrt{\frac{2}{2}} \sin(n\pi + \frac{1}{2}) \quad for = 1$$

$$U(x) = \sqrt{\frac{2}{2}} \sin(n\pi + \frac{1}{2}) \quad for = 1$$

$$\int_{0}^{\infty} \frac{1}{2} \frac{1}$$

