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Exercise 1 Spin waves in a two-dimensional antiferromagnet

La2CuO4 is a nice example for a two-dimensional Heisenberg antiferromagnet consisting of
CuO2 plains, see Fig. 1. The dispersion-relation of the spin waves is given by
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Calculate the exchange coupling J by using the experimental data along Q⃗ = (Qx, 0, 0)

shown in Fig. 1.

Exercise 2 Spin waves in a three-dimensional antiferromagnet

In YBa2Cu3O6.15 it is possible to observe spin-waves due to the coupling between two CuO2

planes, see Fig. 2. The Heisenberg Hamiltonian can be written as
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∑
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J∥SiSj +
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J⊥SiSk. (2)

Because we have two Cu spins per unit cell, we will observe two spin-wave branches, an an
acoustic and an optical branch. The dispersion relation is given by:
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where + is the acoustic branch and − is the optical branch. Calculate the exchange
couplings J⊥ and J∥ using the experimental data shown in Fig. 2. (Hint: It is best to look
at the maximum and the minimum of the optical branch.)



Figure 1: (Left) The arrangement of the spins in the CuO2 plane of high Tc superconduc-
tors. (Right) The dispersion relation of the spin waves in the CuO2 planes of La2CuO4.
From S. M. Hayden et al., Phys. Rev. Lett. 67, 3622 (1991).

Figure 2: (Left) The arrangement of the spins in the CuO2 plane of YBCO. (Right) The
dispersion relation of the acoustic (solid line) and optical (dashed line) spin waves in the
CuO2 planes of YBa2Cu3O6.15. From S. M. Hayden et al., Phys. Rev. B 54, R6905(R)
(1996).
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Exercise 3 Heusler alloy as polarizing neutron monochromator

Heusler alloys are a class of crystals that have the chemical formula X2YZ ordered in a
common L21 face centered cubic crystal structure with the following unit cell:

X1 : (0, 0, 0)

X2 : (0.5, 0.5, 0.5)

Y : (0.75, 0.75, 0.75)

Z : (0.25, 0.25, 0.25)

These systems have a particular use in neutron instrumentation as some of these crystals
have magnetic atoms that lead to a difference between the spin-up and spin-down Bragg-
scattering that can be used to polarize the neutron beam. As the Bragg condition has to
be fulfilled, the crystal can be used as monochromator and polarizer at the same time.

a) Calculate the selection rules and structure factors from the nuclear scattering length
bX , bY , bZ of the three atomic species.

b) Consider a Heusler alloy with ferromagnetic order of the Y atom. The magnetic
form factor shall be fM(q) = fm(|q|) ∗ µy. The shape of the form factor vanishes
with increasing |q|. Modify the structure factor from (a) to retrieve the spin-up and
spin-down structure factors.

c) Beam polarization is defined as P = 2(Iup-Idown)/(Iup+Idown) so a beam with
equal intensity of spin-up and spin-down neutrons would have P=0 and a perfectly
polarized beam with only spin-up neutrons P=1. Which condition would a Heusler
alloy need to fulfil to provide optimal polarization at the [111] Bragg reflection?



Figure 3


