Precision determination(s) of α_s from lattice QCD

Mattia Dalla Brida

work done in collaboration with

Roman Höllwieser, Francesco Knechtli, Tomasz Korzec, Alberto Ramos, Stefan Sint, Rainer Sommer

Theoretical Particle Physics Seminar 31st of October 2023, University of Zürich & ETH

Current situation for α_s

- α_s is a **fundamental** parameter of the SM
- Impacts virtually all theoretical calculations for x-sections & decays for LHC
- Relevant also for EW vacuum stability, GUT, & searches of new colored sectors
- ▶ PDG: $\alpha_s(m_Z) = 0.1179(9) \approx 0.8\%$ Not good enough! We want $\ll 1\%$, else
 - \Rightarrow Large uncertainties in key processes (Higgs)
 - ⇒ Limiting factor for precision top mass and EWPO determinations at future colliders
- Many determinations are precision limited by systematics: PT truncation errors, non-pert. effects, . . .
- Lattice QCD is a **powerful** tool for the job

Path integral

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int DAD\psi D\overline{\psi} \, \mathcal{O}[A, \psi, \overline{\psi}] \, e^{-S_{\rm QCD}[A, \psi, \overline{\psi}]}$$

Gauge action

$$S_G = \frac{1}{g_0^2} \sum_{x,\mu,\nu} \operatorname{Re} \operatorname{tr} \{ 1 - P_{\mu\nu}(x) \}$$

Fermion action

$$S_F = a^4 \sum_{f=1}^{N_f} \sum_x \overline{\psi}_f(x) \underbrace{(D_w + \overline{m}_{0,f})}_{D_w} \psi_f(x) \qquad D_w = \frac{1}{2} \sum_\mu \{\gamma_\mu (\nabla_\mu^\star + \nabla_\mu) - a \nabla_\mu^\star \nabla_\mu\}$$

 $P_{\mu\nu}$

 $\checkmark\,$ Theoretically robust and cheap to simulate

★ Hard breaking of $SU_A(N_f)$ symmetry for $m_{0,f} = 0$

Continuum limit, $a \rightarrow 0$

$$g_0^2(a) \to 0$$
 $a \equiv \frac{(am_p)}{m_p^{\exp}}$ $\frac{(am_{had})}{(am_p)} = \frac{m_{had}^{\exp}}{m_p^{\exp}}$ had $= \pi, K, \ldots \Rightarrow m_{0,f}(a)$

Infinite volume limit, $L \to \infty$

Path integral

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int DU D\psi D\overline{\psi} \, \mathcal{O}[U, \psi, \overline{\psi}] \, e^{-S_G[U] - S_F[U, \psi, \overline{\psi}]}$$

Gauge action

$$S_G = \frac{1}{g_0^2} \sum_{x,\mu,\nu} \operatorname{Re} \operatorname{tr} \{ 1 - P_{\mu\nu}(x) \}$$

Fermion action

$$S_F = a^4 \sum_{f=1}^{N_f} \sum_x \overline{\psi}_f(x) \underbrace{(D_w + \overline{m}_{0,f})}_{D_w} \psi_f(x) \qquad D_w = \frac{1}{2} \sum_\mu \{\gamma_\mu (\nabla_\mu^\star + \nabla_\mu) - a \nabla_\mu^\star \nabla_\mu\}$$

 $P_{\mu\nu}$

 $\checkmark\,$ Theoretically robust and cheap to simulate

★ Hard breaking of $SU_A(N_f)$ symmetry for $m_{0,f} = 0$

Continuum limit, $a \to 0$

$$g_0^2(a) \to 0$$
 $a \equiv \frac{(am_p)}{m_p^{\exp}}$ $\frac{(am_{had})}{(am_p)} = \frac{m_{had}^{\exp}}{m_p^{\exp}}$ had $= \pi, K, \ldots \Rightarrow m_{0,f}(a)$

Infinite volume limit, $L \to \infty$

Path integral

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int DU \, \mathcal{O}'[U] \prod_{f=1}^{N_{\mathrm{f}}} \det(D_f[U]) e^{-S_G[U]}$$

Gauge action

$$S_G = \frac{1}{g_0^2} \sum_{x,\mu,\nu} \operatorname{Re} \operatorname{tr} \{ 1 - P_{\mu\nu}(x) \}$$

Fermion action

$$S_F = a^4 \sum_{f=1}^{N_f} \sum_x \overline{\psi}_f(x) \underbrace{(D_w + m_{0,f})}_{D_w} \psi_f(x) \qquad D_w = \frac{1}{2} \sum_\mu \{\gamma_\mu (\nabla^\star_\mu + \nabla_\mu) - a \nabla^\star_\mu \nabla_\mu\}$$

Puw

 $\checkmark\,$ Theoretically robust and cheap to simulate

★ Hard breaking of $SU_A(N_f)$ symmetry for $m_{0,f} = 0$

Continuum limit, $a \rightarrow 0$

$$g_0^2(a) \to 0$$
 $a \equiv \frac{(am_p)}{m_p^{\exp}}$ $\frac{(am_{had})}{(am_p)} = \frac{m_{had}^{\exp}}{m_p^{\exp}}$ had $= \pi, K, \ldots \Rightarrow m_{0,f}(a)$

Infinite volume limit, $L \to \infty$

(Wilson '74; ...)

Path integral

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int DU \, \mathcal{O}'[U] \prod_{f=1}^{N_{\mathrm{f}}} \det(D_f[U]) e^{-S_G[U]}$$

Gauge action

$$S_G \stackrel{a \to 0}{\approx} \frac{1}{4g_0^2} \int \mathrm{d}^4 x \, F^a_{\mu\nu}(x) F^a_{\mu\nu}(x) \qquad U_\mu(x) \stackrel{a \to 0}{\approx} e^{iaA_\mu(x)}$$

Fermion action

$$S_F = a^4 \sum_{f=1}^{N_f} \sum_x \overline{\psi}_f(x) \underbrace{(D_w + \overline{m}_{0,f})}_{D_w} \psi_f(x) \qquad D_w = \frac{1}{2} \sum_\mu \{\gamma_\mu (\nabla^\star_\mu + \nabla_\mu) - a \nabla^\star_\mu \nabla_\mu\}$$

 $\checkmark\,$ Theoretically robust and cheap to simulate

★ Hard breaking of $SU_A(N_f)$ symmetry for $m_{0,f} = 0$

Continuum limit, $a \rightarrow 0$

$$g_0^2(a) \to 0$$
 $a \equiv \frac{(am_p)}{m_p^{\exp}}$ $\frac{(am_{had})}{(am_p)} = \frac{m_{had}^{\exp}}{m_p^{\exp}}$ had $= \pi, K, \ldots \Rightarrow m_{0,f}(a)$

Infinite volume limit, $L \to \infty$

(Wilson '74; ...)

Path integral

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int DU \, \mathcal{O}'[U] \prod_{f=1}^{N_{\mathrm{f}}} \det(D_f[U]) e^{-S_G[U]}$$

Gauge action

$$S_G \stackrel{a \to 0}{\approx} \frac{1}{4g_0^2} \int \mathrm{d}^4 x \, F^a_{\mu\nu}(x) F^a_{\mu\nu}(x) \qquad U_\mu(x) \stackrel{a \to 0}{\approx} e^{iaA_\mu(x)}$$

Fermion action

$$S_F = a^4 \sum_{f=1}^{N_{\rm f}} \sum_x \overline{\psi}_f(x) \underbrace{(D_{\rm w} + m_{0,f})}_{D_{\rm w} + m_{0,f}} \psi_f(x) \qquad D_{\rm w} \stackrel{a \to 0}{\approx} \sum_\mu \gamma_\mu (\partial_\mu + iA_\mu)$$

 $\checkmark\,$ Theoretically robust and cheap to simulate

★ Hard breaking of $SU_A(N_f)$ symmetry for $m_{0,f} = 0$

Continuum limit, $a \rightarrow 0$

$$g_0^2(a) \to 0$$
 $a \equiv \frac{(am_p)}{m_p^{\exp}}$ $\frac{(am_{had})}{(am_p)} = \frac{m_{had}^{\exp}}{m_p^{\exp}}$ had $= \pi, K, \ldots \Rightarrow m_{0,f}(a)$

Infinite volume limit, $L \to \infty$

(Wilson '74; ...)

α_s from lattice QCD

All there is to it

$$\mathcal{O}(q) \stackrel{q \to \infty}{\approx} \sum_{n=1}^{N} c_n \alpha_{\overline{\mathrm{MS}}}^n(q) + \mathcal{O}(\alpha_{\overline{\mathrm{MS}}}^{N+1}) + \mathcal{O}\left(\frac{\Lambda^p}{q^p}\right) \qquad \left[\alpha_{\mathcal{O}}(q) \equiv \frac{\mathcal{O}(q)}{c_1}\right]$$

Why do we like it?

- \blacktriangleright Lots of freedom in choosing $\mathcal{O} \Rightarrow$ no need to be exp. accessible
- ▶ O defined within QCD \Rightarrow EW effects only affect hadronic inputs
- $\mathcal{O}(q)$ non-pert. and accurately measurable up to large scales q [if carefully chosen]
- No need for modeling hadronization

It all starts at low-energy

Lattice QCD parameters are renormalized (fixed) in terms of hadronic inputs

$$f_{\pi}, \underbrace{m_{\pi}, m_{K}, \ldots}_{N_{\mathrm{f}}} \Rightarrow g_{0}, \underbrace{m_{0,ud}, m_{0,s}, \ldots}_{N_{\mathrm{f}}}$$

QCD coupling and quark masses in any other scheme, at any scale, are predictions

Caveat

In most calculations $N_{\rm f}=3$. What happens with the charm and bottom? Later!

Meet the challenge

LQCD butchers space-time by introducing

- 1. Lattice spacing a, i.e. UV-cutoff $\sim a^{-1}$
- 2. Finite volume L^4 , i.e. IR-cutoff $\sim L^{-1}$

Systematic error constraints

► Low-energy: hadronic inputs *m*_{had}

 $L^{-1} \ll m_{\text{had}} \ll a^{-1}$ $m_{\text{had}} \stackrel{\text{e.g.}}{=} f_{\pi}, m_{\pi}, m_{K}, \ldots \sim \Lambda_{\text{QCD}}$

• High-energy: non-pert. coupling $\alpha_{\mathcal{O}}(q)$

$$L^{-1} \ll q \ll a^{-1}$$
 $q \gg \Lambda_{\rm QCD}$

Problem

Fitting hadronic and pQCD scales into a single lattice requires

 $L^{-1} \ll m_{\rm had} \ll q \ll a^{-1}$

- $\blacktriangleright\,$ Most common lattice simulations are devised for $m_{\rm had}$ calculations
- ▶ Cost of simulations $\propto (L/a)^{-7} \Rightarrow q \times 2$ is $O(100) \times$ more costly
- $\alpha_{\mathcal{O}}(q) \propto^{q \to \infty} 1/\log(q/\Lambda_{\rm QCD}) \Rightarrow$ Exponentially HARD problem!

Meet the challenge

LQCD butchers space-time by introducing

- 1. Lattice spacing a, i.e. UV-cutoff $\sim a^{-1}$
- 2. Finite volume L^4 , i.e. IR-cutoff $\sim L^{-1}$

Systematic error constraints

► Low-energy: hadronic inputs *m*_{had}

 $L^{-1} \ll m_{\text{had}} \ll a^{-1}$ $m_{\text{had}} \stackrel{\text{e.g.}}{=} f_{\pi}, m_{\pi}, m_{K}, \ldots \sim \Lambda_{\text{QCD}}$

• High-energy: non-pert. coupling $\alpha_{\mathcal{O}}(q)$

$$L^{-1} \ll q \ll a^{-1}$$
 $q \gg \Lambda_{\rm QCD}$

Problem

Fitting hadronic and pQCD scales into a single lattice requires

$$L/a \sim 100$$
 $m_{\pi}L \sim 4 \Rightarrow a^{-1} \sim 3 \,\text{GeV} \Rightarrow q \sim O(1) \,\text{GeV}$

- Most common lattice simulations are devised for $m_{\rm had}$ calculations
- ▶ Cost of simulations $\propto (L/a)^{-7} \Rightarrow q \times 2$ is $O(100) \times$ more costly
- $\alpha_{\mathcal{O}}(q) \propto 1/\log(q/\Lambda_{\rm QCD}) \Rightarrow$ Exponentially HARD problem!

How can we reach high-energy?

Computations of m_{had} and $\alpha_{\mathcal{O}}(q)$ are separate problems \Rightarrow precision demands **dedicated** approach for $\alpha_{\mathcal{O}}(q)$

Finite-volume schemes

- ► Finite-L effects are part of the definition of a_O(q), i.e. q = L⁻¹ Measure the change in finite-volume correlators as L varies
- Lattice systematics are under control once

 $L^{-1} = q \ll a^{-1} \Rightarrow L/a \gg 1 \Rightarrow \text{EASY!}$

Step-scaling strategy

(Lüscher et al. '94; Jansen et al. '96)

- 1. Given $\alpha_{\mathcal{O}}(q_{\text{had}} = L_{\text{had}}^{-1}) \stackrel{\text{e.g.}}{=} 1$, determine $q_{\text{had}}/m_{\text{had}} \sim O(1)$
- 2. Measure change in $\alpha_{\mathcal{O}}(q = L^{-1})$ as $L \to L/2$

 $\sigma_{\mathcal{O}}(u) \equiv \alpha_{\mathcal{O}}(2q)|_{u=\alpha_{\mathcal{O}}(q)} \quad \Rightarrow \quad \text{non-pert. } \beta \text{-function}$

- 3. Starting from $q_{\rm had} \sim \Lambda_{\rm QCD}$, after $n \sim O(10)$ steps, we reach $q_{\rm PT} = 2^n q_{\rm had} \sim O(100) \, {\rm GeV}$ where $\alpha_{\mathcal{O}}(q_{\rm PT}) \sim 0.1$
- 4. Extract $\alpha_{\overline{\rm MS}}(q_{\rm PT})$ from PT expansion of $\alpha_{\mathcal{O}}(q_{\rm PT})$
- **5.** $\alpha_{\overline{\text{MS}}}(q_{\text{PT}}) \xrightarrow{\text{PT}} \Lambda_{\overline{\text{MS}}}/q_{\text{PT}} \rightarrow \Lambda_{\overline{\text{MS}}}/q_{\text{had}} \rightarrow \Lambda_{\overline{\text{MS}}}/m_{\text{had}}$

(Wilson; ...; Lüscher, Weisz, Wolff '92)

Schrödinger functional couplings

Gauge fields bcs.

$$A_k(x)|_{x_0=0} = C_k(\eta, \nu)$$
 $A_k(x)|_{x_0=T} = C'_k(\eta, \nu)$

Quark fields bcs. $\left[P_{\pm} = \frac{1}{2}(1 \pm \gamma_0) \right]$

$$P_{+}\psi|_{x_{0}=0} = P_{-}\psi|_{x_{0}=T} = 0$$

$$\overline{\psi}P_{-}|_{x_{0}=0} = \overline{\psi}P_{+}|_{x_{0}=T} = 0$$

(Symanzik '81; Lüscher et al. '92; Sint '94; ...)

SF coupling

$$\alpha_{\mathrm{SF},\nu}(q) \propto \frac{1}{\partial_{\eta}\Gamma}\Big|_{\eta=0} \qquad \Gamma = -\ln \mathcal{Z}[C,C'] \qquad q = L^{-1} \qquad \overline{m} = 0$$

Gradient flow (GF)

 $\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x) \qquad \qquad B_\mu(0,x) = A_\mu(x)$

 $G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}] \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$

Gauge-invariant composite fields of B_{μ} are **finite** for t > 0 (Lüscher, Weisz '12)

GF coupling

$$\alpha_{\rm GF}(q) \propto t^2 \langle G^a_{\mu\nu}(t,x) G^a_{\mu\nu}(t,x) \rangle |_{x_0 = T/2} \qquad q = L^{-1} \qquad \sqrt{8t} = L/3 \qquad \overline{m} = 0$$

$lpha_s$ from a non-perturbative determination of $\Lambda_{\overline{ m MS}}^{(N_{ m f}=3)}$

- 1. Determination of $\mu_{\rm had}/f_{\pi,K}$ to establish $\mu_{\rm had} = 197(3) \,{\rm MeV}$ where $\alpha_{\rm GF}^{(3)}(\mu_{\rm had}) = 0.9$
- 2. Non-pert. running GF-scheme from $\mu_{\rm had}$ to $\mu_0=4.3(1)\,{\rm GeV}$
- 3. Non-pert. matching finite-volume schemes: $\mathrm{GF} \to \mathrm{SF}$
- 4. Non-pert. running SF-scheme from $\mu_0 \text{ to } \mu_{\rm PT} = 2^4 \mu_0 \sim 70 \, {\rm GeV}$
- 5. NNLO matching SF $\rightarrow \overline{\text{MS}}$ schemes and $\alpha_{\overline{\text{MS}}}^{(3)}(\mu_{\text{PT}})$ extraction 3.5% 6. $\alpha_{\overline{\text{MS}}}^{(3)}(\mu_{\text{PT}}) \rightarrow \Lambda_{\overline{\text{MS}}}^{(3)} = \overline{341(12) \text{ MeV}}$ 7. PT decoupling for *c*- and *b*-quarks gives $\Lambda_{\overline{\text{MS}}}^{(3)} \rightarrow \Lambda_{\overline{\text{MS}}}^{(5)} \rightarrow \alpha_{\overline{\text{MS}}}^{(5)}(m_Z) = \underbrace{0.1185(8)}_{0.7\%}$ (ALPHA Collab. 17)

Contribution to relative error squared of α_s

How accurate is $N_{\rm f} = 3$ QCD?

Including the charm quark in hadronic simulations is challenging

- ▶ Very fine lattice spacings are needed \Rightarrow CPU expensive $m_c \sim 1.3 \text{ GeV} \Rightarrow am_c \gtrsim 0.3$ in typical simulations
- More costly simulations and complex tuning of parameters

 $g_0, m_{0,ud}, m_{0,s}, m_{0,c} \Leftrightarrow f_{\pi}, m_{\pi}, m_K, m_D$

Systematics in $\Lambda^{(3)}_{\overline{\rm MS}} \to \Lambda^{(5)}_{\overline{\rm MS}}$

• Matching Λ -parameters The ratios $\Lambda_{\overline{MS}}^{(3)}/\Lambda_{\overline{MS}}^{(4)}$ and $\Lambda_{\overline{MS}}^{(4)}/\Lambda_{\overline{MS}}^{(5)}$ are given by $P_{\ell,f}(M/\Lambda_{\overline{MS}}^{(N_f)}) = \Lambda_{\overline{MS}}^{(N_\ell)}/\Lambda_{\overline{MS}}^{(N_f)}$ $M \equiv \text{RGI-mass decoupling quark(s)}$

Hadronic quantities

Renormalization of lattice QCD requires tuning $g_0, m_{0,ud}, \ldots$, so that

$$R_{\rm had} \stackrel{\rm e.g.}{=} \left[\frac{m_{\pi}}{f_{\pi}}\right]^{\rm lat}, \ \left[\frac{m_K}{f_{\pi}}\right]^{\rm lat}, \ \ldots \ = \ \left[\frac{m_{\pi}}{f_{\pi}}\right]^{\rm exp}, \ \left[\frac{m_K}{f_{\pi}}\right]^{\rm exp}, \ \ldots$$

 $m_{had}^{exp} \equiv exp.$ value (corrected for QED and $m_u \neq m_d$ effects) Q: What's the size of charm effects: $R_{had}^{(N_f=3)} = R_{had}^{(N_f=4)} + O(M_c^{-2})$?

How accurate is $N_{\rm f} = 3$ QCD?

Including the charm quark in hadronic simulations is challenging

- ▶ Very fine lattice spacings are needed \Rightarrow CPU expensive $m_c \sim 1.3 \text{ GeV} \Rightarrow am_c \gtrsim 0.3$ in typical simulations
- More costly simulations and complex tuning of parameters

 $g_0, m_{0,ud}, m_{0,s}, m_{0,c} \Leftrightarrow f_{\pi}, m_{\pi}, m_K, m_D$

Systematics in $\Lambda^{(3)}_{\overline{\rm MS}} \to \Lambda^{(5)}_{\overline{\rm MS}}$

• Matching Λ -parameters The ratios $\Lambda_{\overline{MS}}^{(3)}/\Lambda_{\overline{MS}}^{(4)}$ and $\Lambda_{\overline{MS}}^{(4)}/\Lambda_{\overline{MS}}^{(5)}$ are given by $P_{\ell,f}(M/\Lambda_{\overline{MS}}^{(N_f)}) \sim P_{\ell,f}^{(n\text{-loop})}(M/\Lambda_{\overline{MS}}^{(N_f)}) + O(\alpha^{n-1}(M)) + O(M^{-2})$

Hadronic quantities

Renormalization of lattice QCD requires tuning $g_0, m_{0,ud}, \ldots$, so that

$$R_{\rm had} \stackrel{\rm e.g.}{=} \left[\frac{m_{\pi}}{f_{\pi}}\right]^{\rm lat}, \ \left[\frac{m_K}{f_{\pi}}\right]^{\rm lat}, \ \ldots \ = \ \left[\frac{m_{\pi}}{f_{\pi}}\right]^{\rm exp}, \ \left[\frac{m_K}{f_{\pi}}\right]^{\rm exp}, \ \ldots$$

 $m_{had}^{exp} \equiv exp. value (corrected for QED and <math>m_u \neq m_d$ effects) Q: What's the size of charm effects: $R_{had}^{(N_f=3)} = R_{had}^{(N_f=4)} + O(M_c^{-2})$?

Effective theory of decoupling and PT matching

Fundamental theory

$$\mathcal{L}_{\text{QCD}_{N_{\text{f}}}} = \frac{1}{4g^2} F_{\mu\nu} F_{\mu\nu} + \sum_{f=1}^{N_{\ell}} \overline{\psi}_f \mathcal{D}\psi_f + \sum_{f=N_{\ell}+1}^{N_{\text{f}}} \overline{\psi}_f (\mathcal{D} + M)\psi_f$$

Effective theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}_{N_{\ell}}} + \frac{1}{M^2} \sum_{i} \omega_i \Phi_i + \dots \Rightarrow \mathbf{LO}: \quad \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}_{N_{\ell}}}$$

 Matching couplings in PT
 (Bernreuther, Wetzel '82: ...; Chetyrkin, Kühn, Sturm '06; Schröder, Steinhauser '06)

 EFT is matched at LO once the effective and fundamental couplings are matched

$$\alpha_{\overline{\mathrm{MS}}}^{(N_{\ell})}(m_{\star}) \equiv \alpha_{\star} \, \xi(\alpha_{\star}) \qquad \alpha_{\star} \equiv \alpha_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(m_{\star}) \qquad m_{\star} = \overline{m}_{\overline{\mathrm{MS}}}(m_{\star})$$

Matching $\Lambda\text{-}\mathsf{parameters}$ in PT

$$\Lambda_{\overline{\mathrm{MS}}}^{(N_{\ell})}(M, \Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}) = P_{\ell, \mathrm{f}}(M/\Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}) \Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})} \Rightarrow P_{\ell, \mathrm{f}}(M/\Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}) = \frac{\varphi_{\overline{\mathrm{MS}}}^{(N_{\ell})}(\alpha_{\star}\xi(\alpha_{\star}))}{\varphi_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(\alpha_{\star})}$$

where

$$\Lambda_{\mathbf{X}}^{(N_{\mathbf{f}})} = \mu \, \varphi_{\mathbf{X}}^{(N_{\mathbf{f}})}(\alpha_{\mathbf{X}}(\mu)) \qquad \varphi_{\mathbf{X}}^{(N_{\mathbf{f}})}(\alpha) = \dots \exp\left\{-\int_{0}^{\alpha} \frac{\mathrm{d}y}{\beta_{\mathbf{X}}^{(N_{\mathbf{f}})}(y)} + \dots\right\}$$

$$M = \overline{m}_{\mathcal{X}}(\mu) \, \varepsilon_{\mathcal{X}}^{(N_{\mathrm{f}})}(\alpha_{\mathcal{X}}(\mu)) \qquad \varepsilon_{\mathcal{X}}^{(N_{\mathrm{f}})}(\alpha) = \dots \exp\left\{-\int_{0}^{\alpha} \mathrm{d}y \frac{\tau_{\mathcal{X}}^{(N_{\mathrm{f}})}(y)}{\beta_{\mathcal{X}}^{(N_{\mathrm{f}})}(y)} + \dots\right\}$$
9/20

Perturbative decoupling at work

(Athenodorou et al. '18)

 $\blacktriangleright P_{\ell, \mathbf{f}}(M/\Lambda) \sim P_{\ell, \mathbf{f}}^{(n \text{-loop})}(M/\Lambda) + \mathcal{O}(\alpha_{\star}^{n-1})$

- PT expansion shows very good "convergence"
- \Rightarrow PT uncertainties are quite small

Q: But can we really trust PT decoupling at M_c/Λ ?

$n\operatorname{-loop}$	$\alpha_{\overline{\mathrm{MS}}}^{(5)}(m_Z)$	$\alpha_n - \alpha_{n-1}$
2	0.11699	
3	0.11827	0.00128
4	0.11846	0.00019
5	0.11852	0.00006

 $\alpha_{\overline{\rm MS}}^{(5)}(m_Z) = 0.1185(8)(3)_{\rm PT}$

How perturbative are heavy quarks?

Non-perturbative matching

$$\frac{\Lambda^{(N_\ell)}}{m_{\mathrm{had},1}^{(N_\ell)}} = P_{\ell,\mathrm{f}}^{\mathrm{had},1} \left(M/\Lambda^{(N_\mathrm{f})} \right) \frac{\Lambda^{(N_\mathrm{f})}}{m_{\mathrm{had},1}^{(N_\mathrm{f})}(M)} \quad \Rightarrow \quad m_{\mathrm{had},2}^{(N_\ell)} = m_{\mathrm{had},2}^{(N_\mathrm{f})}(M) + \mathcal{O}\left(\frac{\Lambda^2}{M^2}\right)$$

Factorization formula

(Bruno et al. '15; Athenodorou et al. '18)

$$\frac{m_{\text{had}}^{(N_{\text{f}})}(M)}{m_{\text{had}}^{(N_{\text{f}})}(0)} = \mathcal{Q}_{\ell,\text{f}}^{\text{had}} \times P_{\ell,\text{f}}^{\text{had}} \left(M/\Lambda^{(N_{\text{f}})} \right) = \underbrace{\mathcal{Q}_{\ell,\text{f}}^{\text{had}}}_{\text{NP & \& M \text{-indep.}}} \times \underbrace{P_{\ell,\text{f}}\left(M/\Lambda^{(N_{\text{f}})} \right)}_{\text{PT & \& universal}} + \mathcal{O}\left(\frac{\Lambda^2}{M^2}\right)$$

Result: Typical $O(\Lambda^2/M_c^2)$ corrections to $P_{3,4}(M_c/\Lambda)$ are < 1% effects (Athenodorou et al. 18) $\Rightarrow \Lambda_{\overline{MS}}^{(3)} \xrightarrow{\text{PT}} \Lambda_{\overline{MS}}^{(4)}$ precise enough for $\delta \Lambda_{\overline{MS}}^{(3)} \gtrsim 1.5\%$

Ratios of hadronic scales

$$\frac{m_{\rm had,1}^{(N_{\rm f})}(M)}{m_{\rm had,2}^{(N_{\rm f})}(M)} = \frac{m_{\rm had,1}^{(N_{\ell})}}{m_{\rm had,2}^{(N_{\ell})}} + O\bigg(\frac{\Lambda^2}{M^2}\bigg)$$

Result: Typical ${\rm O}(\Lambda^2/M_c^2)$ corrections to such ratios are < 0.5% effects

 \Rightarrow Good enough for a **per-cent** precision determination of $\Lambda_{\overline{\text{MS}}}^{(3)}$ (Knechtli et al. 17; Höllwieser et al. 20)

How perturbative are heavy quarks?

Non-perturbative matching

$$\frac{\Lambda^{(N_{\ell})}}{m_{\mathrm{had},1}^{(N_{\ell})}} = P_{\ell,\mathrm{f}}^{\mathrm{had},1} \left(M/\Lambda^{(N_{\mathrm{f}})} \right) \frac{\Lambda^{(N_{\mathrm{f}})}}{m_{\mathrm{had},1}^{(N_{\mathrm{f}})}(M)} \quad \Rightarrow \quad P_{\ell,\mathrm{f}}^{\mathrm{had},1} = P_{\ell,\mathrm{f}}^{\mathrm{had},2} + \mathcal{O}\left(\frac{\Lambda^2}{M^2}\right)$$

Factorization formula

(Bruno et al. '15; Athenodorou et al. '18)

$$\frac{m_{\text{had}}^{(N_{\text{f}})}(M)}{m_{\text{had}}^{(N_{\text{f}})}(0)} = \mathcal{Q}_{\ell,\text{f}}^{\text{had}} \times P_{\ell,\text{f}}^{\text{had}} \left(M/\Lambda^{(N_{\text{f}})}\right) = \underbrace{\mathcal{Q}_{\ell,\text{f}}^{\text{had}}}_{\text{NP & \& M\text{-indep.}}} \times \underbrace{P_{\ell,\text{f}}\left(M/\Lambda^{(N_{\text{f}})}\right)}_{\text{PT & \& universal}} + O\left(\frac{\Lambda^2}{M^2}\right)$$

Result: Typical $O(\Lambda^2/M_c^2)$ corrections to $P_{3,4}(M_c/\Lambda)$ are < 1% effects (Athenodorou et al. 18) $\Rightarrow \Lambda_{\overline{MS}}^{(3)} \xrightarrow{\text{PT}} \Lambda_{\overline{MS}}^{(4)}$ precise enough for $\delta \Lambda_{\overline{MS}}^{(3)} \gtrsim 1.5\%$

Ratios of hadronic scales

$$\frac{m_{\rm had,1}^{(N_{\rm f})}(M)}{m_{\rm had,2}^{(N_{\rm f})}(M)} = \frac{m_{\rm had,1}^{(N_{\ell})}}{m_{\rm had,2}^{(N_{\ell})}} + O\bigg(\frac{\Lambda^2}{M^2}\bigg)$$

Result: Typical ${\rm O}(\Lambda^2/M_c^2)$ corrections to such ratios are < 0.5% effects

 \Rightarrow Good enough for a **per-cent** precision determination of $\Lambda_{\overline{\text{MS}}}^{(3)}$ (Knechtli et al. 17; Höllwieser et al. 20)

Non-perturbative renormalization by decoupling

Current situation

- $\delta \Lambda_{\overline{\rm MS}}^{(3)} \sim 3.5\% \Rightarrow$ room for **improvement**!
- $\delta \Lambda_{\overline{\rm MS}}^{(3)}$ dominated by NP running $0.2 70 \, {\rm GeV}$
- $\blacktriangleright\,$ Halving $\delta\Lambda^{(3)}_{\overline{\rm MS}}$ by brute force is CPU expensive

Key observations

- $\blacktriangleright~P_{\ell,{\rm f}}(M/\Lambda)$ has small PT and NP corrections for $M/\Lambda\gtrsim 5$
- $\blacktriangleright\ \Lambda_{\overline{\rm MS}}^{(N_{\rm f})}$ is $M\text{-independent}\Rightarrow$ same for ${\rm QCD}_{N_{\rm f}}$ with any M
- ▶ LQCD can **access** QCD_{N_f} with any M

Master equation 1.0

$$\frac{\Lambda^{(N_\ell)}}{m_{\rm had}^{(N_\ell)}} = P_{\ell,{\rm f}}^{\rm had} \big(M/\Lambda^{(N_{\rm f})}\big) \frac{\Lambda^{(N_{\rm f})}}{m_{\rm had}^{(N_{\rm f})}(M)}$$

- Compute $\Lambda^{(0)}_{\overline{\mathrm{MS}}}/m^{(0)}_{\mathrm{had}}$ in pure Yang-Mills
- $\blacktriangleright \text{ Determine } m_{\rm had}^{(3)}(M)/m_{\rm had}^{(3)}(m_{u,d,s}^{\rm phys}) \text{ and set } m_{\rm had}^{(3)}(m_{u,d,s}^{\rm phys}) \equiv m_{\rm had}^{\rm exp}$
- Extrapolate for $M \to \infty$

(ALPHA Collab. '20, '22)

Non-perturbative renormalization by decoupling

Current situation

- $\delta \Lambda_{\overline{\rm MS}}^{(3)} \sim 3.5\% \Rightarrow$ room for **improvement**!
- $\delta \Lambda_{\overline{\rm MS}}^{(3)}$ dominated by NP running $0.2 70 \, {\rm GeV}$
- $\blacktriangleright\,$ Halving $\delta\Lambda^{(3)}_{\overline{\rm MS}}$ by brute force is CPU expensive

Key observations

- $\blacktriangleright~P_{\ell,{\rm f}}(M/\Lambda)$ has small PT and NP corrections for $M/\Lambda\gtrsim 5$
- $\blacktriangleright\ \Lambda^{(N_{\rm f})}_{\overline{\rm MS}}$ is $M\text{-independent}\Rightarrow$ same for ${\rm QCD}_{N_{\rm f}}$ with any M
- ▶ LQCD can **access** QCD_{N_f} with any M

Master equation 1.0

$$\frac{\Lambda_{\overline{\mathrm{MS}}}^{(0)}}{m_{\mathrm{had}}^{(0)}} = P_{0,3}^{(n\text{-loop})} \left(M/\Lambda_{\overline{\mathrm{MS}}}^{(3)} \right) \frac{\Lambda_{\overline{\mathrm{MS}}}^{(3)}}{m_{\mathrm{had}}^{(3)}} + \mathcal{O}(\alpha_{\star}^{n-1}) + \mathcal{O}\left(\frac{\Lambda^2}{M^2}\right)$$

- Compute $\Lambda_{\overline{\rm MS}}^{(0)}/m_{\rm had}^{(0)}$ in pure Yang-Mills
- $\blacktriangleright \text{ Determine } m_{\rm had}^{(3)}(M)/m_{\rm had}^{(3)}(m_{u,d,s}^{\rm phys}) \text{ and set } m_{\rm had}^{(3)}(m_{u,d,s}^{\rm phys}) \equiv m_{\rm had}^{\rm exp}$
- Extrapolate for $M \to \infty$

Non-perturbative renormalization by decoupling

Is this feasible?

$$L^{-1} \ll m_{\rm had}^{(3)} \ll M \ll a^{-1}$$

Example

L/a = 100 $m_{\pi}L \sim 4 \Rightarrow a^{-1} \sim 3 \,\text{GeV} \Rightarrow M \sim 1 \,\text{GeV}$

Decoupling in a finite volume

Decoupling scale

 $\alpha^{(3)}_{\rm GF}(\mu^{(3)}_{\rm dec}) = 0.3 \quad \Rightarrow \quad \mu^{(3)}_{\rm dec} = L^{-1}_{\rm dec} = 789(15)\,{\rm MeV}$

Massive coupling

 $\alpha_{\rm GF}^{(0)}(\mu_{\rm dec}^{(0)}) \stackrel{\rm def.}{=} \alpha_{\rm GF}^{(3)}(\mu_{\rm dec}^{(3)}, M) \quad \Rightarrow \quad \mu_{\rm dec}^{(0)} = \mu_{\rm dec}^{(3)} + \mathcal{O}(M^{-2}) \sim \mu_{\rm dec}$

Master formula 2.0

$$\frac{\Lambda_{\overline{\mathrm{MS}}}^{(0)}}{\mu_{\mathrm{dec}}} = P_{0,3}^{(n\operatorname{-loop})} \left(M/\Lambda_{\overline{\mathrm{MS}}}^{(3)} \right) \frac{\Lambda_{\overline{\mathrm{MS}}}^{(3)}}{\mu_{\mathrm{dec}}} + \mathcal{O}(\alpha_{\star}^{n-1}) + \mathcal{O}\left(\frac{\mu_{\mathrm{dec}}^2}{M^2}\right)$$

- ► Determine $\alpha_{\text{GF}}^{(3)}(\mu_{\text{dec}}, M)$ such that $L_{\text{dec}}^{-1} = \mu_{\text{dec}} \ll M \ll a^{-1}$ $L_{\text{dec}}/a \sim 50 \quad \mu_{\text{dec}} \sim 800 \,\text{MeV} \Rightarrow M \sim 10 \,\text{GeV}$
- $\blacktriangleright \text{ Compute } \Lambda_{\overline{\mathrm{MS}}}^{(0)}/\mu_{\mathrm{dec}} = (\Lambda_{\overline{\mathrm{MS}}}^{(0)}/\Lambda_{\mathrm{GF}}^{(0)})\varphi_{\mathrm{GF}}^{(0)}(\alpha_{\mathrm{GF}}^{(0)}(\mu_{\mathrm{dec}}))$

(Appelquist, Carazzone '75; ...)

Large-mass limit

Effective action

$$\mathcal{L}_{\text{QCD}} \approx \mathcal{L}_{\text{YM}} + \frac{1}{M^2} \mathcal{L}_{2,\text{dec}} + \dots \qquad \mathcal{L}_{\text{YM}} = \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu}$$
$$\langle \mathcal{O}_{\text{GF}} \rangle_{\text{QCD}} = \langle \mathcal{O}_{\text{GF}} \rangle_{\text{YM}} - \frac{1}{M^2} \int d^4x \langle \mathcal{O}_{\text{GF}} \mathcal{L}_{2,\text{dec}}(\boldsymbol{x}) \rangle_{\text{YM}}^{\text{conn}} + O(M^{-3})$$

 $O(1/M^2)$ counterterm

$$\mathcal{L}_{2,\text{dec}} = \sum_{i=1}^{2} d_i (g^2) \mathcal{D}_i$$

$$\mathcal{D}_1 = \frac{1}{g^2} \text{tr} \left(D_\mu F_{\mu\nu} D_\rho F_{\rho\nu} \right) \qquad \mathcal{D}_2 = \frac{1}{g^2} \text{tr} \left(D_\mu F_{\rho\nu} D_\mu F_{\rho\nu} \right) - \frac{23}{7} \mathcal{D}_1$$

 $O(1/M^2)$ contribution

 $\left[\alpha_{\star} \equiv \alpha_{\overline{\mathrm{MS}}}^{(3)}(m_{\star}) \right]$

$$\alpha_{\rm GF}^{(3)}(\mu,M) - \alpha_{\rm GF}^{(0)}(\mu) \propto \frac{1}{M^2} \sum_{i=1}^2 \alpha_{\star}^{\hat{\gamma}_i^{\mathcal{D}} - 2\hat{\gamma}_{\rm m}} d_i(\alpha_{\star}) \int \mathrm{d}^4 x \, \langle \mathcal{O}_{\rm GF} \mathcal{D}_i^{\rm RGI}(\boldsymbol{x}) \rangle_{\rm YM}^{\rm conn} + \dots$$

• LO anomalous dim: $\hat{\gamma}_m = 4/9$; $\hat{\gamma}_1^{\mathcal{D}} = 0$; $\hat{\gamma}_2^{\mathcal{D}} = 7/11$

(Husung et al. '20; Husung '21)

• Matching: $d_i(\alpha_\star) = \hat{d}_i \alpha_\star + O(\alpha_\star^2)$

Continuum limit

Symanzik effective action

(Symanzik '82; Sheikholeslami, Wohlert '85; Lüscher et al. '96; ...; Husung et al. '22; Husung '23)

$$\mathcal{L}_{\text{latt}} \approx \mathcal{L}_{\text{QCD}} + \frac{1}{\Lambda_{\text{UV}}} \mathcal{L}_1 + \frac{1}{\Lambda_{\text{UV}}^2} \mathcal{L}_2 + \dots \qquad \Lambda_{\text{UV}} = a^{-1}$$

$$\langle \mathcal{O}_{\rm GF} \rangle_{\rm latt} = \langle \mathcal{O}_{\rm GF} \rangle_{\rm QCD} - a \int d^4 x \, \langle \mathcal{O}_{\rm GF} \mathcal{L}_1(x) \rangle_{\rm QCD}^{\rm conn} + O(a^2)$$

O(a) counterterms

$$\mathcal{L}_1 = \sum_{i=1}^3 c_i(g^2) \mathcal{O}_i \quad \Leftarrow \quad \mathsf{Consequence of breaking SU}_{\mathrm{A}}(N_{\mathrm{f}}) \text{ symmetry}$$

 $\mathcal{O}_1 = \overline{\psi}\sigma_{\mu\nu}F_{\mu\nu}\psi \qquad \mathcal{O}_2 = M^2\overline{\psi}\psi \qquad \mathcal{O}_3 = \frac{M}{4g^2}F^a_{\mu\nu}F^a_{\mu\nu}$

O(a)-improvement

• Add irrelevant ops. to \mathcal{L}_{latt} which cancel \mathcal{L}_{1} -contributions

$$\begin{split} \mathcal{L}_{\text{latt}} &\to \mathcal{L}_{\text{latt}} + ac_{\text{sw}}(g_0^2)\overline{\psi}\sigma_{\mu\nu}F_{\mu\nu}^{\text{latt}}\psi \\ m_{\text{q}} &\to m_{\text{q}}(1 + b_{\text{m}}(g_0^2)am_{\text{q}}) \qquad g_0^2 \to g_0^2(1 + b_{\text{g}}(g_0^2)am_{\text{q}}) \end{split}$$

▶ \mathcal{O}_1 and \mathcal{O}_2 effects removed, but residual $\mathrm{O}(g_0^6 a M)$ -effects from \mathcal{O}_3

Continuum limit

Symanzik effective action

(Symanzik '82; Sheikholeslami, Wohlert '85; Lüscher et al. '96; ...; Husung et al. '22; Husung '23)

$$\mathcal{L}_{\text{latt}} \approx \mathcal{L}_{\text{QCD}} + \frac{1}{\Lambda_{\text{UV}}} \mathcal{L}_1 + \frac{1}{\Lambda_{\text{UV}}^2} \mathcal{L}_2 + \dots \qquad \Lambda_{\text{UV}} = a^{-1}$$

$$\langle \mathcal{O}_{\rm GF} \rangle_{\rm latt} = \langle \mathcal{O}_{\rm GF} \rangle_{\rm QCD} - a \int d^4 x \, \langle \mathcal{O}_{\rm GF} \mathcal{L}_1(x) \rangle_{\rm QCD}^{\rm conn} + O(a^2)$$

O(a) counterterms

$$\mathcal{L}_1 = \sum_{i=1}^3 c_i(g^2) \mathcal{O}_i \quad \Leftarrow \quad \mathsf{Consequence of breaking SU}_{\mathrm{A}}(N_{\mathrm{f}}) \text{ symmetry}$$

 $\mathcal{O}_1 = \overline{\psi}\sigma_{\mu\nu}F_{\mu\nu}\psi \qquad \mathcal{O}_2 = M^2\overline{\psi}\psi \qquad \mathcal{O}_3 = \frac{M}{4g^2}F^a_{\mu\nu}F^a_{\mu\nu}$

O(a)-improvement

• Add irrelevant ops. to \mathcal{L}_{latt} which cancel \mathcal{L}_{1} -contributions

$$\begin{split} \mathcal{L}_{\text{latt}} &\to \mathcal{L}_{\text{latt}} + ac_{\text{sw}}(g_0^2)\overline{\psi}\sigma_{\mu\nu}F_{\mu\nu}^{\text{latt}}\psi \\ m_{\text{q}} &\to m_{\text{q}}(1 + b_{\text{m}}(g_0^2)am_{\text{q}}) \qquad g_0^2 \to g_0^2(1 + b_{\text{g}}^{\text{NLO}}(g_0^2)am_{\text{q}}) \end{split}$$

▶ \mathcal{O}_1 and \mathcal{O}_2 effects removed, but residual $\mathrm{O}(g_0^6 a M)$ -effects from \mathcal{O}_3

Large-mass continuum limit

Symanzik eff. action

(Symanzik '82; Sheikholeslami, Wohlert '85; Lüscher et al. '96; ...; Husung et al. '22; Husung '23)

$$\mathcal{L}_{\text{latt}} \approx \mathcal{L}_{\text{QCD}} + \partial \mathcal{L}_1 + a^2 \mathcal{L}_2 + \dots \qquad \mathcal{L}_2 = \sum_{i=1}^{18} b_i(g^2) \mathcal{B}_i$$

 $O(a^2)$ contribution

$$\Delta(a) \equiv \alpha_{\rm GF}^{(3)}(\mu, M, a) - \alpha_{\rm GF}^{(3)}(\mu, M, 0)$$

Large-mass expansion

$$\left[\ \mu \ll M \ll a^{-1} \ \right]$$

$$\mathcal{L}_{\text{QCD}} \approx \mathcal{L}_{\text{YM}} + \frac{1}{M^2} \mathcal{L}_{2,\text{dec}} + \dots$$
$$\mathcal{B}_i \approx M^2 d_{i0} \mathcal{D}_0 + \sum_{j=1}^2 d_{ij} \mathcal{D}_j + \dots \qquad \mathcal{D}_0 = \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu}$$

Conclusion

 $\Delta(a) = \mathcal{O}(a^2 M^2) + \mathcal{O}(a^2 \mu^2)$

LO anomalous dim:

•
$$\hat{\gamma}^{\mathcal{B}}_{\min} = -1/9$$
 for $\mathrm{O}(a^2 M^2)$ term

• Only partial info available for $O(a^2\mu^2)$ term

(Husung et al. '22; Husung '23)

Large-mass continuum limit

Symanzik eff. action

(Symanzik '82; Sheikholeslami, Wohlert '85; Lüscher et al. '96; ...; Husung et al. '22; Husung '23)

$$\mathcal{L}_{ ext{latt}} pprox \mathcal{L}_{ ext{QCD}} + \partial \mathcal{L}_{ ext{L}} + a^2 \mathcal{L}_2 + \dots \qquad \mathcal{L}_2 = \sum_{i=1}^{18} b_i (g^2) \mathcal{B}_i$$

 $O(a^2)$ contribution

$$\Delta(a) \propto a^2 \sum_{i=1}^{18} \left[\alpha_{\overline{\text{MS}}}^{(3)}(a^{-1})\right]^{\hat{\gamma}_i^{\mathcal{B}}} b_i(\alpha) \int d^4x \, \langle \mathcal{O}_{\text{GF}} \, \mathcal{B}_i^{\text{RGI}}(x) \rangle_{\text{QCD}}^{\text{conn}} + \dots$$

e-mass expansion
$$\left[\begin{array}{c} \mu \ll M \ll a^{-1} \end{array} \right]$$

Large-mass expansion

$$\mathcal{L}_{\text{QCD}} \approx \mathcal{L}_{\text{YM}} + \frac{1}{M^2} \mathcal{L}_{2,\text{dec}} + \dots$$
$$\mathcal{B}_i \approx M^2 d_{i0} \mathcal{D}_0 + \sum_{j=1}^2 d_{ij} \mathcal{D}_j + \dots \qquad \mathcal{D}_0 = \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu}$$

Conclusion

 $\Delta(a) = \mathcal{O}(a^2 M^2) + \mathcal{O}(a^2 \mu^2)$

LO anomalous dim:

•
$$\hat{\gamma}^{\mathcal{B}}_{\min} = -1/9$$
 for $O(a^2 M^2)$ term

Only partial info available for $O(a^2 \mu^2)$ term

(Husung et al. '22; Husung '23)

Continuum limit of the massive coupling

Global fit ansatz

$$\bar{g}_z^2 = C(z) + p_1 [\alpha_{\overline{\text{MS}}}^{(3)}(a^{-1})]^{\hat{\Gamma}} (a\mu_{\text{dec}})^2 + p_2 [\alpha_{\overline{\text{MS}}}^{(3)}(a^{-1})]^{\hat{\Gamma}'} (aM)^2 \pm \mathcal{O}(aM)$$

$$\bar{g}_z^2/(4\pi) = \alpha_{\rm GF}^{(3)}(\mu_{\rm dec}, M, a) \qquad z = M/\mu_{\rm dec}$$

Remarks

- p_1, p_2 are *z*-independent; we find $p_1 \ll p_2$
- Γ, Γ' , and aM varied to assess systematics
- Estimate of residual O(aM) effects using $\delta b_g = b_g^{NLO}$
- Final results consider: $aM \leq 0.4$, $z \geq 4$, $\hat{\Gamma} = \hat{\Gamma}' = 0$

Large-mass extrapolation of $\Lambda^{(3)}_{\overline{\mathrm{MS}}}$

The coupling from decoupling

More decoupling

$$\Lambda_{\overline{\mathrm{MS}}}^{(3)} \xrightarrow{P_{3,4}^{(5\text{-loop})}(M_c/\Lambda_{\overline{\mathrm{MS}}}^{(4)})} \Lambda_{\overline{\mathrm{MS}}}^{(4)} \xrightarrow{P_{4,5}^{(5\text{-loop})}(M_b/\Lambda_{\overline{\mathrm{MS}}}^{(5)})} \Lambda_{\overline{\mathrm{MS}}}^{(5)} \xrightarrow{\beta_{\overline{\mathrm{MS}}}^{(5\text{-loop})}} \alpha_{\overline{\mathrm{MS}}}^{(5)}(m_Z)$$

Final result

$$\begin{aligned} &\alpha_{\overline{\rm MS}}^{(5)}(m_Z) = 0.11823(69)(42)_{aM}(20)_{\hat{\Gamma}_m}(9)_{3\to 5} = 0.1182(8) \\ \\ & {\rm FLAG} \; {\bf 21}: \; \alpha_{\overline{\rm MS}}^{(5)}(m_Z) = 0.1184(8) \quad {\rm PDG} \; {\bf 21}: \; \alpha_{\overline{\rm MS}}^{(5)}(m_Z) = 0.1179(9) \quad \ ({\rm FLAG}\; {\bf 21}: {\rm PDG}\; {\bf 21}) \\ \end{aligned}$$

Conclusions & Outlook

Conclusions

- Heavy-quark decoupling is a **powerful** tool for extracting α_s
- ► Allows us to replace the non-perturbative running from µ_{dec} to µ_{PT} in N_f = 3 QCD with that in **pure Yang Mills**
- Current precision $\alpha_s(m_Z) \approx 0.7\%$ is comparable with the **most precise** lattice determinations
- Uncertainty is currently dominated by:
 - 1. Physical units of the scale $\mu_{
 m dec}$
 - **2.** Residual O(aM) uncertainty
 - 3. Pure-gauge running

Outlook

- Short-term: Reanalysis of α_s with no residual O(aM) uncertainty (coming soon)
- ▶ Mid-term: Compute $\Lambda_{\overline{\rm MS}}^{(0)}/\mu_{\rm dec}$ with 1/3 of the uncertainty ($\approx 0.5\%$)
- Long(er)-term: More precise scale determination

BACKUP

What was done

1. Match ${
m SF}_
u o \overline{
m MS}$ schemes at $\mu_n = 2^n \mu_0 = 2^n / L_0$ using

 $\alpha_{\overline{\mathrm{MS}}}(s\mu_n) = \alpha_{\nu}(\mu_n) + c_1^{\nu}(s)\alpha_{\nu}^2(\mu_n) + c_2^{\nu}(s)\alpha_{\nu}^3(\mu_n) \qquad c_1^{\nu}(s^*) = 0 \qquad |c_2^{\nu}(s^*)| \lesssim 1$

- 2. Extract $\Lambda_{\overline{MS}}/\mu_0$ from $\alpha_{\overline{MS}}(s\mu_n)$ using 5-loop $\beta_{\overline{MS}}$ -function
- 3. Assess size of PT truncation errors (of $O(\alpha^2)$ in $\Lambda_{\overline{\rm MS}}/\mu_0$) through *s*-parameter dependence around s^*

High-energy matching

What was done

1. Match ${
m SF}_
u o \overline{
m MS}$ schemes at $\mu_n = 2^n \mu_0 = 2^n/L_0$ using

 $\alpha_{\overline{\mathrm{MS}}}(s\mu_n) = \alpha_{\nu}(\mu_n) + c_1^{\nu}(s)\alpha_{\nu}^2(\mu_n) + c_2^{\nu}(s)\alpha_{\nu}^3(\mu_n) \qquad c_1^{\nu}(s^*) = 0 \qquad |c_2^{\nu}(s^*)| \lesssim 1$

- **2.** Extract $\Lambda_{\overline{MS}}/\mu_0$ from $\alpha_{\overline{MS}}(s\mu_n)$ using 5-loop $\beta_{\overline{MS}}$ -function
- 3. Assess size of PT truncation errors (of $O(\alpha^2)$ in $\Lambda_{\overline{MS}}/\mu_0$) through *s*-parameter dependence around s^*

Non-perturbative decoupling tests

(Athenodorou et al. '18)

Non-perturbative decoupling tests

(Knechtli et al. '17)

Pure Yang-Mills running

