

Physik-Institut

The search for third-generation leptoquarks

Arne Reimers, Ben Kilminster, <u>Izaak Neutelings</u>, Yuta Takahashi <u>izaak.neutelings@uzh.ch</u>

Seminar in Theoretical Particle Physics, Zurich, 08/11/2022

MOTIVATION

Standard Model's many symmetries...

	Quantity	Symmetries	Electromagnetic	Weak	Strong	
$\left(\right)$	Energy	Time translation	 ✓ 	v	 ✓ 	*
	Linear momentum	Spatial translation	v	V	v	
	Angular momentum	Rotations	 ✓ 	v	 ✓ 	
	Center-of-mass	Lorentz boosts	V	V	V	
U	Charge, color,	Gauge transformation	V	v	V	
	Isospin (uds)		v	X	X	
	Lepton number L		v	 Image: A set of the set of the	 ✓ 	
	B – L] Baryon i	number B acciden	tal ! 🖌	 Image: A second s	 ✓ 	
U	Lepton flavor		 ✓ 	 ✓ 	 ✓ 	
	Quark flavor		 ✓ 	X	v	
	Par	Parity P		X	 ✓ 	
	Charge conjugation C Time reversal T CP		v	X	 ✓ 	
			 ✓ 	X	 ✓ 	
			v	X	 ✓ 	
	СРТ		v	 ✓ 	 ✓ 	*

* fundamental to Lorentz-invariant gauge field theories, like the SM

Flavor universality in the SM

- SM gauge couplings cannot differentiate leptons
- only the Higgs can via Yukawa coupling

but by what mechanism?

why three generations ?

⇒ hopefully new physics can explain

 \Rightarrow probe LFU in Nature !

Straub [Moriond 2019], Aebischer et al. [arXiv:1810.07698]

Lepton flavor universality tests

$$R_{K^{(*)}} = \frac{\Gamma\left(B \to K^{(*)}\mu\mu\right)}{\Gamma\left(B \to K^{(*)}\mathrm{ee}\right)} = 1$$

$$R_{D^{(*)}} = \frac{\Gamma\left(B \to D^{(*)}\tau\bar{\nu}\right)}{\Gamma\left(B \to D^{(*)}\ell\bar{\nu}\right)} \sim 0.25^{\text{SM}}$$

measure $b \rightarrow s \ell \ell$ transitions

 $b \rightarrow c \ell \nu$ transitions

B anomalies at Belle, BaBar, LHCb

 \Rightarrow signs of new physics violating lepton flavor universality ?

decays into *lq*

 \Rightarrow carries L, B, color

scalar or vector boson

- coupling λ_{ea}

Leptoquarks

scalar or vector boson

Leptoquarks

- decays into ℓq
 ⇒ carries L, B, color
- fractional charge
- coupling $\lambda_{\ell q}$

B anomalies according to LQs

[Isidori group: arXiv:1706.07808, arXiv:1903.11517, arXiv:2103.16558]

Muon anomalous moment

LQ₃ SEARCHES AT CMS

LQ production at CMS

😌 large,

- model independent
- 🙂 resonant

- $: \sigma \propto \lambda^2$
- 🙁 b-PDF suppression
- $\stackrel{}{\simeq}$ width $\propto \lambda^2$

 $\sigma \propto \lambda^4$

- \mathbf{W} (PDF suppression)²
- 🙁 wide resonance

but kinematics largely independent of λ and mass

Exclusion in λ vs. mass space

pheno papers: <u>arXiv:1609.07138</u>, <u>arXiv:1810.10017</u>

LQ decay signatures at CMS

analyses often use a **parameter** β :

 $\mathcal{B} (\mathrm{LQ} \to q\ell) = \beta$ $\mathcal{B} (\mathrm{LQ} \to q'\nu) = 1 - \beta$

typical benchmarks $\beta = 0, 0.5, 1$

e.g. purely third-generation LQ₃:

$$\mathcal{B}(LQ_3 \to b\tau) = \beta$$
$$\mathcal{B}(LQ_3 \to t\nu_{\tau}) = 1 - \beta$$

LQ₃
$$\rightarrow$$
 b τ , t ν
EXO-19-015 (β = 0.5)

 $\frac{\text{arXiv:}2012.04178}{\beta} = 0.5, 137 \text{ fb}^{-1}$

$LQ_3LQ_3 \rightarrow t\nu b\tau / t\tau b\nu$

τ_h background

 $\mathbf{e}
ightarrow oldsymbol{ au}_{h}$ fake $\mu
ightarrow oldsymbol{ au}_{h}$ fake $j
ightarrow oldsymbol{ au}_{h}$ fake real $oldsymbol{ au}_{h}$

⇒ need for an efficient identification algorithm

$LQ_3LQ_3 \rightarrow t\nu b\tau / t\tau b\nu strategy$

$\frac{\text{arXiv:}2012.04178}{\beta} = 0.5, 137 \text{ fb}^{-1}$

- reconstruct top in fully hadronic final state:
 - 1. resolved: 3 AK4 jets
 - 2. boosted, partially merged
 - 3. boosted, fully merged
- four categories:
 - two b jet categories: 1b, ≥2b
 - resolved or boosted top
- fit scalar sum $p_{\rm T}$

 $S_{\rm T} = p_{\rm T}^t + p_{\rm T}^{\tau_{\rm h}} + p_{\rm T}^{\rm miss}$

• single + pair is one signal

 $LQ_3LQ_3 \rightarrow tvb\tau / t\tau bv$ results

no significant excess above the SM expectation observed

arXiv:2012.04178

 $\beta = 0.5, 137 \text{ fb}^{-1}$

LQ₃
$$\rightarrow$$
 b τ
EXO-19-016, HIG-21-001, (β = 1)

EXO-19-016

$LQ \rightarrow b\tau$ production at CMS

Summary of event categorization

EXO-19-016

Main backgrounds

$j \rightarrow \tau_h$ fake background estimation

- background from jets misidentified as $\tau_{\rm h}$
- most dominantly from QCD and W + jets
- data-driven "fake factor" method estimates the fake rate and distribution shape from dedicated control regions
- similar to ABCD method, except
 - 1. fake factors (FFs) + closure corrections are measured as a function of several variables: p_T , ΔR , #jets, m_{vis} , ...
 - 2. FFs are measured separately for 3 backgrounds (QCD, W+jets, ttbar) to take into account the relative contribution of their flavor composition

$$\mathrm{FF}(p_{\mathrm{T}}^{\tau_{\mathrm{h}}},\ldots) = \frac{N(\mathrm{Medium})_{\mathrm{DR}}}{N(\mathrm{VLoose \ \&\& \ !Medium})_{\mathrm{DR}}}$$

 $N_{\rm D} = N_{\rm A} \underbrace{\frac{N_{\rm C}}{N_{\rm B}}}_{\rm FF}$

Postfit S_T^{MET} **distributions in 0b & ≥1b**

2000 GeV λ = 2.5

for paper, add up distributions per year for full Run-2 plots

29

Postfit χ distributions in 0j

for paper, add up distributions per year for full Run-2 plots

Definition of signal strength

$$r(\text{total}) = r\left(\frac{\sigma_{\text{pair}}}{\sigma_{\text{tot}}}(\text{pair}) + \frac{\sigma_{\text{single}}}{\sigma_{\text{tot}}}(\text{single}) + \frac{\sigma_{\text{nonres}}}{\sigma_{\text{tot}}}(\text{nonres})\right)$$
$$\approx r\left(\frac{\sigma_{\text{pair}}}{\sigma_{\text{tot}}}(\text{pair}) + \frac{\lambda^2}{\sigma_{\text{single}}}\frac{\sigma_{\text{single}}^{\lambda=1}}{\sigma_{\text{tot}}}(\text{single}) + \frac{\lambda^4}{\sigma_{\text{tot}}}\frac{\sigma_{\text{nonres}}^{\lambda=1}}{\sigma_{\text{tot}}}(\text{nonres})\right)$$

Definition of signal strength

$$r(\text{total}) = r\left(\frac{\sigma_{\text{pair}}}{\sigma_{\text{tot}}}(\text{pair}) + \frac{\sigma_{\text{single}}}{\sigma_{\text{tot}}}(\text{single}) + \frac{\sigma_{\text{nonres}}}{\sigma_{\text{tot}}}(\text{nonres})\right)$$
$$\approx r\left(\frac{\sigma_{\text{pair}}}{\sigma_{\text{tot}}}(\text{pair}) + \lambda^2 \frac{\sigma_{\text{single}}^{\lambda=1}}{\sigma_{\text{tot}}}(\text{single}) + \lambda^4 \frac{\sigma_{\text{nonres}}^{\lambda=1}}{\sigma_{\text{tot}}}(\text{nonres})\right)$$

low sensitivity, but dominant at high mass, high λ

benchmarks

$$M = 1400 \text{ GeV}, \lambda = 1$$

 $M = 2000 \text{ GeV}, \lambda = 2.5$
sensitive
to pair
 $M = 2.5$

Combined upper limit, $\lambda = 1$

- no significant excess over the SM observed
- scalar (vector) LQ excluded up to 1.25 (1.95) TeV for λ = 2.5

Combined upper limit, $\lambda = 2.5$

- $\sim 3\sigma$ excess above M > 1800 TeV coming from nonresonant signal
- scalar (vector) LQ excluded up to 1.37 (1.96) TeV for λ = 2.5

Comparing production modes

pair production most sensitive at λ = 1, as expected

Comparing production modes

nonresonant production most sensitive at λ = 2.5, as expected

$LQ \rightarrow b\tau$ exclusion limits of λ and mass

Resonant + nonresonant

mass limit up to ~1.9 TeV

- ~3.5 σ excess in nonresonant channel
- no sensitivity to mass or coupling:

Reorder bins by S / (S+B)

- 1. fit total signal (pair+single+nonres)
- 2. reorder and stack χ , S_T^{MET} bins by S/(S+B)
- 3. group backgrounds by category

Reorder bins by S / (S+B)

Comparison EXO-19-016 & HIG-21-001

	EXO-19-019	HIG-21-001	
jet categories	"0j": veto jets <i>p</i> _T > 50 GeV "≥1j" with <i>p</i> _T > 50 GeV, <i>m</i> _{vis} > 100 GeV • "0b" = "0b≥1j" • "≥1b"	"No b tag" (no jet requirement) "B tag" with $p_T > 20$ GeV	
observables	χ , $S_{\rm T}^{\rm MET}$	$m_{ m T}^{ m tot}$	
Drell-Yan estimation	MC + Z $p_{\rm T}$ corrections from $\mu\mu$	Z p_T corrections from $\mu\mu$ Data-driven with "embedded" samples (from $\mu\mu$ events)	
$m{j} ightarrow au_{ m h}$ estimation	Data-driven, "fake-factor" method	Data-driven, "fake-factor" method	
	EXO 10.010		

EXO-19-016

<u>HIG-21-001, arXiv:2208.02717</u>

arXiv:2103.16558

 $\tau/
u_{ au}$

0

0.19

1

 $\mu/
u_{\mu}$

0

+0.01

-0.14

HIG-21-001: nonresonant $\tau\tau$ via vector LQ

HIG-21-001 arXiv:2208.02717

 $\lambda = \frac{g_U}{\sqrt{2}}$

- similar LQ result to EXO-19-016
- $\sim 2\sigma$ excess across mass spectrum

ATLAS: LQ \rightarrow b τ pair + single

new $b\tau\tau$ analysis with single + pair scalar LQ (no vector)

10

10

10

 10^{-2}

 10^{-3}

10

2000

m_{LQ} [GeV]

- no significant excess
- no nonresonant interpretation

Obs. limit

····· Exp. limit

Exp. ± 1σ

Exp. $\pm 2\sigma$

1500

 $\cdots \sigma(\tau LQ) + \sigma(LQ, \overline{LQ})$ λ=1.0

10

500

10

ATLAS Preliminary

√s=13 TeV. 139 fb⁻¹

1000

95% CL

m_{io} [GeV]

$LQ \rightarrow b\tau$ exclusion limits of λ and mass

CMS LQ summary

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#Leptoquark_summary_plot

$$LQ_3 \rightarrow b\nu$$

EXO-21-009

138 fb⁻¹ (13 TeV)

w

DY I Diboson

m_w=1.0 TeV m_w=5.0 TeV m_{OBH}=5.0 TeV----- EFT Tensor

CMS Preliminarv

Data

top

MisID

Events / bin width 10¹ 10⁻¹

 10^{-2}

 10^{-3}

 10^{-4} 10^{-5}

10³

Nonres. LQ interpretation of EXO-21-009

- target τ +MET events
- fit $m_{\rm T}$ to target W' $\rightarrow \tau \nu$ & other signals
- easily reinterpretated with nonresonant $\tau \nu$ via LQ in *t* channel
- $\sim 1\sigma$ across LQ mass, consistent with EXO-19-016 limit assuming LH couplings only
- first test of $b \rightarrow c\tau v$ at TeV scale

SUMMARY

Summary

- third-generation LQs are well motivated by theory and recent experimental results, like the B anomalies
- CMS has performed searches for several scenarios and resonant signatures
 - scalar, vector
 - single, pair production
 - new results with 138 fb⁻¹ probe in the 1.5–2 TeV region
- using signatures with τ or (b) jet may help tag NP that couples preferentially to higher generation fermions
- presented searches for nonresonant LQ production
 - (b)(b) $\tau\tau$ final state in different (b) jet categories
 - found nonresonant excess up to 3.4σ
 - cross checked between EXO-19-016 and HIG-21-001

137 fb⁻¹ (13 TeV

References

- Flavor Anomaly Workshop 2021
 https://indico.cern.ch/event/1055780/timetable/
- EXO-19-016 PAS http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-19-016/index.html
- EXO-21-009 <u>http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO-21-009/index.html</u>
- HIG-21-001 http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-21-001/
- B2G-21-004

http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-21-004/index.html

• CMS EXO results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#Leptoquark_summary_plot

LQ cross sections @ 13 TeV

Comparison EXO-19-016 & HIG-21-001

	EXO-19-019	HIG-21-001	
signal models	scalar or vector LQ \rightarrow b τ • single, pair LQ • nonres. $\tau\tau$	 MSSM φ → ττ via gg → (b)(b)φ vector LQ: nonres. ττ 	
channels	$e\tau_{h}, \mu\tau_{h}, \tau_{h}\tau_{h} + e\mu, \mu\mu$ $p_{T} > 50 \text{ GeV}$ ee ee $e\tau_{h}$ 23% ee	$e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ + $e\mu$ p_T > 15–40 GeV (trigger-dependent)	
jet categories	"0j": veto jets $p_T > 50 \text{ GeV}$ • m_{vis} bins [200,400,600,∞[GeV "≥1j" with $p_T > 50 \text{ GeV}$, $m_{\text{vis}} > 100 \text{ GeV}$ • "0b" = "0b≥1j" • "≥1b"	"No b tag" (<mark>no jet requirement</mark>) "B tag" with <i>p</i> _T > 20 GeV	
observables	$\chi = \exp(\Delta \eta)$ in 0j S_{T}^{MET} in 0b and ≥1b	$m_{ m T}^{ m tot}$	
Drell-Yan estimation	MC + Z p_{T} corrections from $\mu\mu$	Data-driven with "embedded" samples (from $\mu\mu$ events)	
$\boldsymbol{j} \rightarrow au_{h}$ estimation	Data-driven, "fake-factor" method	Data-driven, "fake-factor" method	

EXO-19-016

HIG-21-001, arXiv:2208.02717

$LQ \rightarrow b\tau$ exclusion limits of λ and mass

Resonant + nonresonant

- $\sim 3\sigma$ excess in nonresonant channel
- no sensitivity to mass or coupling

Signal	$m_{\rm LQ} = 1400 {\rm GeV}$		$m_{\rm LQ} = 2000 {\rm GeV}$				
	$\sigma_{\rm fit}$ [fb]	\overline{z}	$\sigma_{\rm fit} \ [{\rm fb}]$	z			
Scalar							
Pair	$0.24_{-0.45}^{+0.47}$	0.5	$0.22\substack{+0.41\\-0.39}$	0.0			
Single, $\lambda = 1$	$1.15\substack{+0.95\\-0.92}$	1.3	$0.64\substack{+0.68\\-0.65}$	1.0			
Single, $\lambda = 2.5$	$9.1^{+5.6}_{-5.3}$	1.7	18^{+11}_{-11}	1.7			
Nonres.	70^{+23}_{-22}	3.4	63^{+20}_{-19}	3.5			
Total, $\lambda = 1$	$1.7^{+1.9}_{-1.8}$	0.9	$9.6\substack{+6.2 \\ -5.9}$	1.7			
Total, $\lambda = 2.5$	43^{+16}_{-15}	2.9	62^{+20}_{-19}	3.4			
Vector, $\kappa = 0$							
Pair	$0.24_{-0.44}^{+0.46}$	0.0	$0.24_{-0.39}^{+0.41}$	0.0			
Single, $\lambda = 1$	$1.00\substack{+0.89\\-0.85}$	1.2	$0.60\substack{+0.66\\-0.63}$	1.0			
Single, $\lambda = 2.5$	$9.1^{+6.5}_{-6.2}$	1.5	25^{+18}_{-17}	1.4			
Nonres.	58^{+18}_{-17}	3.5	51^{+16}_{-15}	3.5			
Total, $\lambda = 1$	$1.2^{+1.5}_{-1.4}$	0.8	$7.7^{+5.1}_{-4.8}$	1.7			
Total, $\lambda = 2.5$	$12.2_{-6.8}^{+7.1}$	1.8	43^{+15}_{-14}	3.1			
Vector, $\kappa = 1$							
Pair	$0.24_{-0.44}^{+0.46}$	0.0	$0.24_{-0.39}^{+0.41}$	0.0			
Single, $\lambda = 1$	$1.00\substack{+0.89\\-0.85}$	1.2	$0.60\substack{+0.66\\-0.63}$	1.0			
Single, $\lambda = 2.5$	$9.1^{+6.5}_{-6.2}$	1.5	25^{+18}_{-17}	1.4			
Nonres.	58^{+18}_{-17}	3.5	51^{+16}_{-15}	3.5			
Total, $\lambda = 1$	$0.42^{+0.69}_{-0.66}$	0.6	$1.3^{+1.5}_{-1.4}$	0.5			
Total, $\lambda = 2.5$	$12.2_{-6.8}^{+7.1}$	1.8	43^{+15}_{-14}	3.1			

OTHER LQ ANALYSES

Third-generation LQ searches

 $LQ \rightarrow tv$ scalar pair (2016, arXiv:1902.08103) scalar/vector pair (2016, SUS-19-005) $LQ \rightarrow bv$ scalar/vector pair (2016, SUS-19-005) • LQ \rightarrow t τ , bv scalar single+pair (Run 2, EXO-19-015) scalar pair (Run 2, ATLAS-CONF-2020-029) $LQ \rightarrow t\nu, b\tau$ = 0.5 scalar pair (2016, arXiv:1902.08103) vector single+pair (Run 2, EXO-19-015) • LQ \rightarrow b τ scalar/vector scalar pair (2016, EXO-17-016) pair+single+nonresonant scalar single (2016, EXO-17-029) (Run 2, EXO-19-016) scalar pair (2016, arXiv:1902.08103) scalar/vector pair (Run 2, arXiv:2108.07665) $LQ \rightarrow t\tau$ scalar pair (2016, B2G-16-028) scalar pair (Run 2, ATLAS-CONF-2020-029) 23/06/22

LQ₃ models & signatures

- scalar LQ_S (S = 0), vector LQ_V (S = 1)
- decays into lq
 - \Rightarrow carries L, B, color
 - \Rightarrow fractional charge
- coupling λ_{lq}
- simplified models restrict to up or down type:

 $\begin{pmatrix} t \\ b \end{pmatrix} \underbrace{\longrightarrow} \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}$

• branching parameter β

$$LQ_3^{\rm u} \to t\nu, \ b\tau, \quad Q = +\frac{2}{3}$$
$$LQ_3^{\rm d} \to t\tau, \ b\nu, \quad Q = -\frac{1}{3}$$

$$\mathcal{B}\left(\mathrm{LQ} \to q\ell^{\pm}\right) = \beta$$
$$\mathcal{B}\left(\mathrm{LQ} \to q'\nu\right) = 1 - \beta$$

typical benchmarks $\beta = 0, 0.5, 1$

 $LQ_{3}^{u}\overline{LQ}_{3}^{u} \rightarrow t\nu t\nu, t\nu b\tau, b\tau b\tau$ $LQ_{3}^{d}\overline{LQ}_{3}^{d} \rightarrow t\tau t\tau, t\tau b\nu, b\nu b\nu$

$LQ_3LQ_3 \rightarrow b\nu b\nu$, tvtv

 $\frac{\text{arXiv:1909.03460}}{\beta} = 0, 137 \text{ fb}^{-1}$

reinterpret stop & sbottom searches with ≥2 jets + MET:

$$M_{\rm T2} = \min_{\vec{p}_{\rm T}^{\rm miss,1} + \vec{p}_{\rm T}^{\rm miss,2} = \vec{p}_{\rm T}^{\rm miss}} \left[\max\left(M_{\rm T}^{(1)}, M_{\rm T}^{(2)}\right) \right]$$

$LQ_3LQ_3 \rightarrow b\nu b\nu$, tvtv

- select events with ≥ 2 jets, large p_T^{miss} , $H_T > 250$ GeV
- cluster visible objects into 2 large pseudo-jets
- decompose p_{T}^{miss} to minimize

arXiv:1909.03460

 $\beta = 0, 137 \text{ fb}^{-1}$

$LQ_3LQ_3 \rightarrow b\nu b\nu$, tvtv strategy

- select 2 jets, veto charged lepton, τ_h
- fit M_{T2} in many bins of #jets, b tags, H_T

arXiv:1909.03460

 $\beta = 0, 137 \text{ fb}^{-1}$

$LQ_3LQ_3 \rightarrow bvbv$, tvtv results

arXiv:1909.03460

 $\beta = 0, 137 \text{ fb}^{-1}$

ATLAS LQ \rightarrow b τ

Run 2: arXiv:2108.07665

π^{\pm} π^{\pm} π^{\pm} π^{\mp} π^{\mp} π^{\pm} π^{\pm} π^{\pm} HCAL γ ECAL ν_{τ} ν_{τ} ν_{τ} π^0 . a_1^{\pm} π a_1^{\pm} ... ν_{τ} tracker τ^{\pm} $\tau^{\pm} \to \pi^{\pm} \nu_{\tau} \qquad \tau^{\pm} \to \rho^{\pm} \nu_{\tau} \to \pi^{\pm} \pi^{0} \nu_{\tau} \qquad \tau^{\pm} \to a_{1}^{\pm} \nu_{\tau} \to \pi^{\pm} \pi^{\mp} \pi^{\pm} \nu_{\tau} \qquad \tau^{\pm} \to \rho'^{\pm} \nu_{\tau} \to \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^{0} \nu_{\tau}$

HADRONIC TAU RECONSTRUCTION & IDENTIFICATION

$\tau_{\rm h}$ reconstruction

AK4 jet

- anti- $k_{\rm T}$, R = 0.4
- seed for $\tau_{\rm h}$ candidate

Decay mode reconstruction

- charged tracks (π^{\pm})
- ECAL clusters (π^0)

Identification

MVA to reject jets, e or $\boldsymbol{\mu}$

- lifetime
- isolation
- energy fractions

detector interactions of different decay modes

Map to τ_h reconstruction & identification

HPS algorithm

- → BDT against jet + BDT against e + cut-based against μ
- \rightarrow DNN "DeepTau" against jet/e/ μ

 \rightarrow BDT against jet + overlap removal e/ μ

→ RNN against jet + BDT against e

Tau Particle Flow

CMS: τ_h reconstruction & identification

Hadron-plus-strips (HPS) algorithm

- seed: AK4 jet of particle flow (PF) hadrons, e/γ
- signal cone + isolation cone
- assign τ_h decay mode by counting
 - charged hadrons
 - ECAL clusters (e/γ merged into "strips")

DeepTau algorithm

- convolutional deep neural network (DNN)
 - high level: τ lifetime, isolation, e/ γ kinematics, ...
 - PF hadron/ μ /e/ γ information in small $\eta \times \varphi$ cells of τ_h
- multiclassifier into $\tau_{\rm h}$, μ , e, or jet probabilities

69

CMS: τ_h reconstruction & identification

Hadron-plus-strips (HPS) algorithm

- seed: AK4 jet of particle flow (PF) hadrons, e/γ
- signal cone + isolation cone
- assign τ_h decay mode by counting
 - charged hadrons
 - ECAL clusters (e/γ merged into "strips")

DeepTau algorithm

- convolutional deep neural network (DNN)
 - high level: τ lifetime, isolation, e/ γ kinematics, ...
 - PF hadron/ μ /e/ γ information in small $\eta \times \varphi$ cells of τ_h
- multiclassifier into $\tau_{\rm h}$, μ , e, or jet probabilities

1ST & 2ND GENERATION

EXO-19-019, SMP-21-002

Introduction

Many models predict deviations in **high-** p_T **dilepton tails**, and may violate **lepton-flavor universality** ee/ $\mu\mu/\tau\tau$

Flavor Anomaly Workshop 2021: <u>https://indico.cern.ch/event/1055780/timetable/#b-425294-high-p_textt-searches</u> LQ models motivated by the B anomalies: <u>arXiv:1706.07808</u>, <u>arXiv:1903.11517</u>, <u>arXiv:2103.16558</u>

EXO-19-019, arXiv:2103.02708

$\mu\mu$, ee searches

- select high- p_T e⁺e⁻, $\mu^+\mu^-$
- good data-MC agreement over whole range, ۲ except small excess for $m_{ee} > 1.8 \text{ GeV}$

 $4.3 \pm 3.$

- resonant limits: spin-1 (Z', DM-mediator), spin-2 (graviton) ۲
- nonresonant limits: four-fermion contact interaction, graviton

Resonant $\mu\mu$, ee searches

Nonresonant $\mu\mu$, ee searches

- seperate $m_{\ell \ell}$ into bins of $\cos \theta^* < 0$ and $\cos \theta^* \ge 0$
- fit LL, LR, RL, RR helicity currents separately
- set limit on CI energy scale Λ

 θ^* : scattering angle w.r.t. z axis

in Collins-Soper frame CI: (four-fermion) contact

interaction

- differential ratio in two bins of η
- some deviation at high mass due to ee excess
- first-time test of LFU at TeV scale

Forward-backward asymmetry

- select e^+e^- , $\mu^+\mu^-$ ٠
- $m_{\ell\ell}$ > 170 GeV, low MET, veto b jets
- good data-MC agreement over whole range
- Z' can impact AFB through interference \Rightarrow set 4.4 TeV limit
- 2.4 σ discrepancy between ee/ $\mu\mu$ ($\Delta A_{FB} < 0$)

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}} = 0.612 \pm 0.005 (\text{stat}) \pm 0.007 (\text{syst})$$

$$\Delta A_{\rm FB} = A_{\rm FB}^{\mu\mu} - A_{\rm FB}^{\rm ee} = -0.026 \pm 0.010 (\rm stat) \pm 0.004 (\rm syst)$$

EXOT-2018-16, arXiv:2105.13847

Single production yield & efficiency

two competing effects when λ is increased:

- cross section $\sigma(\tau LQ) \sim \lambda^2$ at Breit-Wigner peak
- width increases, degrading efficiency
- pole at low mass of highly off-shell events increases yield, but degrades efficiency

 $\frac{\text{arXiv:}2012.04178}{\beta} = 0.5, 137 \text{ fb}^{-1}$

