
Summary Lecture 8

April 26, 2017

In the lecture 8 we looked at materials containing freely moving electrons.
These electrons can be viewed as moving in a square potential well with
length L. Their kinetic energy is quantized and can only have certain values.
The solution to their movement is a plane wave with energies and momenta:

Ψ = a · eikx

E =
~2k2

2m

kx = 0;±2π

L
;±4π

L
; ...

(1)

We use the Fermi Dirac distribution to model their kinetic energy. Since they
are freely moving and can interact with one another inside their pocket, the
Pauli exclusion principle dictates, that every electron in the quantum system
has a unique energy, due to the antisymmetric properties of the electron’s
and (fermions in general) wave function. The distribution holds for every
fermion:

f(E) =
1

exp(E−µ
kbT

) + 1
; ; where µ is the chemical potential.
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The function gives the average number of particles occupying a specific state
in the system. If the temperature changes, we can observe a shift. At T = 0,
the distribution is a pure step function, where no electron is found with
energy above the Fermi energy EF . This energy is more generally defined as:

EF = kB · TF =
~2k2F
2m

, where TF is the Fermi temperature and kF the Fermi momentum. Since
the energy of the electrons can be written as:

E =
~2

2m
(k2x, k

2
y, k

2
z)

For different ki the electrons span a sphere in k-space.
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On the surface of the sphere we find the maximum kinetic energy, or the Fermi
energy. From this and the fact that for every Energy we have a degencery
due to ± half integer spin, we attain the expressions:

kF =

(
3π2N

V

)1/3

EF =
~2

2m

(
3π2N

V

)2/3

For the Fermi momentum and energy. This means as a general rule that the
more electrons we have in the volume of a unit cell, the higher the Fermi
energy is. We now seek to attain the formula for the density of states from
which we will compute the electronic heat capicty. It is found with:

D(E) =
dN

dE
=

V

2π2
·
(

2m

~2

)3/2

·
√
E ≈ 3N

2E

Integrating the Fermi-Dirac distribution we then get the number of Orbitals
for the Fermi energy at infinity:∫ ∞

0

f(E)D(E) =

∫ EF

0

D(E)dE = N

∫ EF

0

ED(E)dE = U0∫ ∞
0

f(E)D(E)EdE = U(T )

We then look at the area under the curve:
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U(T ) = EE<EF
+ UE>EF

; U(T ) > U0(∫ EF

0

+

∫ ∞
EF

)
EFF (E)D(E) =

∫ EF

0

dEEFD(E)

U(T ) =

∫ ∞
0

f(E)D(E)(E − EF )dE + C

To find the heat capacity of the electrons we then get:

Cel =
dU

dT
=

∫ ∞
0

df(E)

dT
D(E)(E − EF )dE

≈ D(EF )− k2BT
∫
dx

(2)

Or the exact value, which is linearly dependent on the temperature.

Cel = π2NkB
T

2TF
= γ · T

The accumulated heat capacity for both the phonon and electronic terms is
then:

CV = γT + AT 3
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CV
T

= γ + AT 2

We therefore see, that for very low temperatures, the electronic heat capacity
dominates, and inversely for higher temperatures, the phonon heat capacity.
In the lecture we defined resistivity as:

ρ =
A

l
·R

It is therefore material specific. Kittel defines it as:

ρ =
m

ne2τ

From Physics II we vaguely remember that the mean collision time is quadratic
anti-proportional to the temperature: τ ≈ T−2. It follows that for the resis-
tivity: ρ ≈ T 2.
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