#	Dates	Title	Exercise	(1=easy, 10=hard)	Tasks
1	22.2	Introduction	VESTA	2-3	Read Chap. 1
2	01.3	Crystal structures	Daniel - info	4	Read Chap. 2, Ex. 1
3	08.03	Reciprocal space	Discuss Ex. 1	6	Read Chap. 2, Ex. 2
4	15.03	Scattering Theory	Discuss Ex. 2	8-9	Read Chap. 3, Ex. 3
5	22.03	Crystal bindings	Discuss Ex. 3	5	Read Chap. 4, Ex. 4
6	29.03	Phonons	Discuss Ex. 4	5-6	Read Chap. 5, Ex. 5
7	05.04	Thermal properties	Discuss Ex. 5	5-6	Read Chap. 6, Ex. 6
8	12.04	Electron gasses, C _{el}	Discuss Ex. 6	5-6	Read Chap. 7, Ex. 7
	19.04	EASTER HOLIDAY		0	RECAP
9	26.04	Electronic band struc.	Discuss Ex. 7	5-6	Read Chap. 8, Ex. 8
10	03.05	Semi-conductors	Discuss Ex. 8	6	Read Chap. 9, Ex. 9
11	10.05	Fermi surfaces & Metals - I	Discuss Ex. 9	8	Read Chap. 9, Ex. 10
12	17.05	Fermi surfaces & Metals - II	Discuss Ex. 10	8	Read Chap. 9, Ex. 11
13	24.05	Guest lecture	Discuss Ex. 11		
14	31.05	Repetition		4	

#	Dates	Title	Tasks
10	03.05	Semi-conductors	Read Chap. 6: Motion in magnetic fields p. 163-167 Read Chap. 9: Introduction to Fermi surfaces p. 235-244 Read Chap. 9: Experimental methods in FS studies p. 255-265
11	10.05	Fermi surfaces & Metals - I	Read Chap. 9: Experimental methods in FS studies p. 255-265
12	17.05	Fermi surfaces & Metals - II	Read Chap. 9 : Calculation of energy bands 244 -255 (Perhaps an extra exercise)
13	24.05	Guest lecture	
14	31.05	Repetition	

Metals & Insulators

Metals and insulators: Resistivity

Semimetals & Semiconductors

Semimetals & Semiconductors

Valence and conduction band

Direct and indirect gap

Semiconductor gaps versus k_BT

Figure 4:

Band Structure of Semiconductors

Semiconductor gaps

 $E_{g}, \, \mathrm{eV}$ E_{σ}, eV 300 K 0 K 300 K Crystal 0 K Crystal Gap Gap Diamond SiC(hex) 5.4 3.0 i i Si d1.171.11 0.33 i Te d 0.744 HgTe^a -0.30Ge 0.66 į αSn d0.00 0.00 PbS 0.286 d 0.34 - 0.37d InSb PbSe 0.23 0.17i 0.165 0.27InAs d0.43 0.36PbTe i 0.190 0.29d InP d1.42 1.27CdS 2.5822.42GaP 2.322.25CdSe d 1.840 1.74ŧ GaAs d1.521.43 CdTe d 1.6071.44 GaSb dd 0.81 0.68 SnTe 0.3 0.18 AlSb i 1.651.6 d2.172Cu₂O

Table 1 Energy gap between the valence and conduction bands (i = indirect gap; d = direct gap)

^aHgTe is a semimetal; the bands overlap.

Electronic masses

Electron							
Crystal	m _e /m						
InSb	0.015						
InAs	0.026						
InP	0.073						
GaSb	0.047						
GaAs	0.066						
Cu_2O	0.99						

Reading Kittel carefully, following notation is adopted. m = is the free electron mass. m_e = effective crystal electron mass

Conduction Electron Concentration

Figure 1 Carrier concentrations for metals, semimetals, and semiconductors. The semiconductor range may be extended upward by increasing the impurity concentration, and the range can be extended downward to merge eventually with the insulator range.

Electronic mobility

Crystal Electrons		Holes	Crystal	Electrons	Holes	
				ya anya kata na manana kata na kata na Manana kata na kata na Manana kata na k		
Diamond	1800	1200	GaAs	8000	300	
Si	1350	480	GaSb	5000	1000	
Ge	3600	1800	PbS	550	600	
InSb	800	450	PbSe	1020	930	
InAs	30000	450	\mathbf{PbTe}	2500	1000	
InP	4500	100	AgCl	50		
AlAs	280		KBr (100 K)	100		
AlSb	900	400	SiC	100	10–20	

Table 3 Carrier mobilities at room temperature, in cm²/V-s

n- and p-type semiconductors

Doping – Performance Enhancement

Semiconductor Materials

Lanthanida sorias	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytlerbium 70
Lanthannue Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	lhorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	258	[259]

Diamond-type semiconductors

III – V compounds (GaAs, InSb)

Hole - doping

B³⁺

Electron - doping

Si⁴⁺

As⁵⁺

From Kittel

Concluding quiz

Does a semiconductor have a Fermi surface? (yes/no)

Does a semimetal have a Fermi surface? (yes/no)

Magnetic field

Human Brain

1 nG to 10 nG

Neodymium – iron – boron Nd₂Fe₁₄B Magnet

Earth

0.25 - 0.65 Gauss

Static 45 – Tesla Hybrid magnet

Fridge Magnets

50 Gauss

100 Tesla Pulsed magnet

