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1. Introduction

Physicists consider Relativity to be a theory about how the world works. Mathemati-
cians consider it as a particularly beautiful application of geometry and differential
equations. As a physicist in a maths school, I must remain agnostic.

Be that as it may, it is still a good idea to begin this course with a non-technical
discussion of the physical and mathematical ingredients of relativity. Figure 1.1 sum-
marizes what we are going to cover as a flowchart.
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Figure 1.1: A flowchart for relativity. The circles denote the parts of the Theory of Rela-
tivity. The boxed items are the ingredients that go in to make up the theory. The unboxed
items are applications of the theory.
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1.1 Lorentz Invariance

‘Relativity’ in everyday language means that what someone observes depends on which
way they are facing, how fast they are moving, and so on. This is not very useful
or profound. The technical meaning of Relativity, however, is something much more
specific and useful. It is about expressing physics in a way which doesn’t depend on
what the observer is doing.

The first, and probably most significant, aspect of this is the concept Lorentz
invariance. It is expressed as:

I. The laws of physics, suitably expressed, are the same for all inertial observers.
(An inertial observer is someone not in a gravitational fields and not accelerating.)

II. The speed of light in a vacuum is the same for all observers.
These are often called the two postulates of relativity. The first one looks innocuous

enough, but the second one seems very strange. Think of two spacecraft elsewhere in the
solar system shining light pulses towards the earth. The two spacecraft have a relative
speed of (say) 50 km/sec. What about the speeds of the two light pulses? Should they
differ by 50 km/sec? Experiments of this type reveal no difference in speed, even in
measurements accurate to 1 m/sec. How can we possibly make sense of this?

The way to make sense of it was pointed out by Lorentz, Poincaré and (most fully
and importantly) Einstein. We have to revise our notions of space and time.

Consider events, occurring at two different places and times, the separation in
space and time between them being (∆x,∆y, ∆z,∆t). The spatial distance between
them is of course (

∆x2 + ∆y2 + ∆z2
) 1

2 .

Let us define time as an extra dimension, and define a squared distance in four-
dimensional ‘space-time’ as

∆s2 = ∆x2 + ∆y2 + ∆z2 − c2∆t2, (1.1.1)

where c is the speed of light. (∆s2 may not be positive, so we won’t take the square
root.) As mathematicians, we are free to define anything we like and call it anything
we like [as long as we do it consistently]. The question is, it is useful?

Yes it is, because a concise way of stating postulates I and II above is that ∆s2 is
the same for all inertial observers. This is the principle of ‘Lorentz invariance’. This
is a piece of physics, subject to experimental tests. But it is a very sweeping piece
of physics, because it claims to apply to all of physics, including physics that is yet
to be discovered! When Einstein first wrote about it in 1905 Lorentz invariance was
controversial, but when Einstein died in 1955 it was just about the most secure thing in
physics. It still is—a lot of physics has been discovered since 1955, and it is all Lorentz
invariant.

1.2 Tensors

Although Lorentz invariance is a piece of physics, to follow up its consequences we
need to develop some mathematics. In particular, we need to develop a language for
coordinate systems and geometry in four-dimensional spacetime. This is tensor calculus.
Like any new language, this initially sounds and looks like gibberish. And also like any
language one gets used to it, until it becomes effortless.

1.1 Lorentz Invariance 1.2 Tensors
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1.3 Special relativity

The special theory of relativity, developed by Einstein in 1905, is about making
then-known physics Lorentz invariant. The dynamics developed by Newton and later
generations was not Lorentz invariant. Einstein showed how to modify Newtonian
dynamics to make it Lorentz invariant, which involved things like E = mc2. This new
‘relativistic’ dynamics is (as far as we now know) is how nature behaves.

One important thing is lacking in special relativity. In 1905 Einstein could not
make Newtonian gravity Lorentz invariant, and had to leave it out of the theory. It is
in this sense that special relativity is ‘special’ or ‘not general’. The general theory of
relativity, including gravity, would take another decade.

1.4 Electromagnetism

Strangely enough, long before anyone was thinking about Lorentz invariance, there was
one physical theory that was already Lorentz invariant. This was electromagnetism
(the theory of electric charges and electric and magnetic fields) as given by Maxwell’s
equations of 1869. Around 1900, it led to a crisis in physics. People realized that
electromagnetism was Lorentz-invariant, Newtonian dynamics was not. They couldn’t
both be right! Einstein eventually solved the problem in 1905 by modifying Newtonian
dynamics to make it consistent with electromagnetism. In fact his paper is called not
Theory of relativity but On the electrodynamics of moving bodies.

It turns out that Maxwell’s equations are a bit of a dress rehearsal for the more
complicated theory of gravity.

1.5 Principle of equivalence

The inertia of a body (i.e., how much force you have to apply to accelerate something) is
proportional to its mass. The gravitational force produced by a body is also proportional
to its mass. So are gravity and inertia of a body always in the same ratio? This
is an experimentally testable thing, and it appears to be true. This led Einstein to
formulate the ‘principle of equivalence of gravitational and inertial mass’ or principle
of equivalence for short. It states that you can make the effect of gravity go away
locally by going into free fall. So if you want to work out what physics looks like in
the presence of gravity, just use coordinates moving with a bungee-jumper and use the
zero-gravity equations in those coordinates.

Again, the principle of equivalence is a piece of physics, but to follow up its conse-
quences it helps to invent some more mathematics.

Now, things that stay fixed in space or move with constant speed (in fact, inertial
observers) move from event to event in space time in straight lines. In other words,
they connect events through paths of minimum distance, where distance is defined as
in (1.1.1). Bungee-jumper coordinates, on the other hand, are accelerating, and do not
minimize the distance (1.1.1). The principle of equivalence implies (and will see this
in gory detail later) that bungee-jumper coordinates will make the distance between
events minimal provided we redefine distance in a certain new way. This new kind
of distance—called the metric—agrees with (1.1.1) over infinitesimal regions, but not
over finite regions.

Mathematicians can and do define distances in whatever way they feel like. But
great mathematicians also have a sense for which definitions will turn out to be impor-
tant long after they are dead. Thus it happened that in the 19th century first Gauss

1.3 Special relativity 1.5 Principle of equivalence
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and then in more generality Riemann had already studied metrics that look like (1.1.1)
over infinitesimal regions. The subject is called Riemannian geometry. The principle of
equivalence tells us that gravity in effect puts a Riemannian metric on spacetime, and
bungee-jumpers follow the shortest-distance paths between events.

Actually Riemannian metrics are not that far from our intuition. Imagine you are
taking a plane from London to Tokyo. The shortest route on a map will take you sort
of east-south-east. But that’s not what any airline will do—they’ll take you far north,
nearly to the north pole, and then south again. Because, of course, the Earth is curved,
and distances on a map are okay over short distances but not between London and
Tokyo. We usually explain this by saying that the surface of the Earth is embedded in
three dimensions and a two-dimensional object like a map can’t get it quite right. But
Riemann showed that if you keep the two-dimensional map coordinates and cunningly
redefine the distance, there’s no need to worry about the third dimension.

Thus the principle of equivalence tells us that gravity induces a Riemannian metric,
and if we know what that metric is we can work out bungee-jumper coordinates and
calculate everything we want. This leads to an observational prediction, the so-called
gravitational redshift. But the principle of equivalence doesn’t tell us what that metric
is, for that we need one last piece of input.

1.6 General relativity

That last piece consists of Einstein’s field equations. These are essentially six coupled
differential equations. They are nevertheless a piece of physics, because they don’t
follow from anything simpler. But nobody knows how to express their physical content
in a simple way, which may be a sign that we don’t understand them properly. Einstein
wrote them down in an inspired guess. Others have tried their own guesses since then,
but all the evidence is that Einstein guessed correctly.

The result is called the general theory of relativity and was published in 1916.
It is no longer confined to inertial observers. Accelerating observers are now allowed,
as are of course gravitational fields.

1.7 Applications of general relativity

The differential equations (1916) and good evidence that they are the correct ones
(c. 1919) was only the beginning. Finding exact and approximate solutions, and working
out what they mean, has kept generations of researchers busy. We will have time only
for a few highlights.

The first of the exact solutions is Schwarzschild’s from 1917, for the metric around
a spherical mass. Using it we can work out the general relativistic effect of the sun.
Schwarzschild’s metric also predicts black holes.

Another exact solution is Friedmann’s, which is the metric associated with an
expanding universe and the basis of cosmology.

When gravitational fields are weak, approximate metrics are comparatively easy
to compute, and very useful. We’ll discuss one of their uses, gravitational lensing.

1.5 Principle of equivalence 1.7 Applications of general relativity
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1.8 Books

There are many many books on Relativity, at many different levels. The following are
some examples.
• For physical insight with a minimum of mathematics, try

Principles of Cosmology and Gravitation by M.V. Berry
and even the comic book

Einstein for Beginners
is surprisingly good for understanding special relativity (it doesn’t discuss general
relativity) and has plenty of historical material. If you’re curious to read some of
Einstein’s own writings, try

The Principle of Relativity
• Two well-known textbooks at about the level of this course are

A first course in general relativity by Bernard F. Schutz
and

Essential Relativity: Special, General and Cosmological, by W. Rindler.
Also similar to this course is

Classical Fields by James Binney,
not yet published, but on the web at

http://www-thphys.physics.ox.ac.uk/users/JamesBinney/

• The main source material for these lecture notes is
Gravitational and Cosmology by Steven Weinberg

but this is an advanced text which I don’t recommend trying to work through
yourself.
Notation is notoriously variable between different books in this subject. We will

follow Weinberg.

1.9 The attraction of General Relativity

People often speak of the beauty of General Relativity. But different people are drawn
to relativity for different reasons. The great contributors to relativity in recent times
have had very different styles. Thus Penrose and Hawking seem most attracted to
the mathematical elegance of the theory. Chandrasekhar loved the richness of the field
equations and their solutions. Feynmann was less interested in the mathematics as such,
he wanted to understand what all the physical concepts were about. Taylor is even less
interested in mathematics per se, he has devoted his life to observable applications.
Among authors of books, you can also sense their personalities. Thus Schutz seems
sympathetic to Penrose and Hawking, Weinberg and Berry are more in the mould of
Feynman, while Binney’s loyalties lie somewhere between Chandrasekhar and Feynman.

Einstein’s own views evolved during his lifetime. When he first developed the
theory, he put great emphasis on physical ideas and thought experiments. Later on,
he was drawn to the geometrical ideas, and spend the second half of his life trying out
more geometrically-motivated modifications and extensions of his theory.

You will have to decide for yourself where you belong. But I hope you will enjoy
this course.

1.8 Books 1.9 The attraction of General Relativity



2. Lorentz invariance

We develop notation for coordinates in four dimensions, and an idea which generalizes
rotations to spacetime.

2.1 Spacetime index notation

In order to write about 4D coordinate systems concisely, we use index notation. First
we say

(x0, x1, x2, x3) means (ct, x, y, z), (2.1.1)

i.e., we make c × time one of the coordinates. Note that the superscripts here are just
labels, not powers! Then, we agree to use Greek indices to denote any component.
Thus xα or xµ stands for any coordinate—so it’s really a way of referring to all the
coordinates. And we agree to use Roman indices for the spatial components. Thus xi

stands for any of x1, x2, x3, but not x0. We’ll also use boldface notation: x for the
spatial components and x for all four components.

Let us also define a 4D creature with two indices, η or ηαβ , which we may conve-
niently write as a matrix

η =


−1

1
1

1

 (2.1.2)

In index notation, the squared distance between infinitesimally close events is

ds2 =
∑
αβ

ηαβ dxαdxβ . (2.1.3)

This ds2 is known as the interval. If ds2 < 0 it is called a timelike interval, if > 0 a
spacelike interval, and if = 0 null or lightlike. Related to the interval is the important
concept of proper time, which equals dτ where dτ2 = −ds2.

Beware differences in convention between books! Some authors use the opposite
sign for η and ds2, and sometimes time becomes x4 rather than x0.

2.1 Spacetime index notation
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2.2 Summation convention

The summation convention is another device to save writing.

If the index appears twice in a term, once as a superscript and once as a subscript,
it is implied to be summed over. No

∑
is written. Using the summation convention,

our interval is just
ds2 = −dτ2 = ηαβ dxαdxβ . (2.2.1)

The summation convention will apply throughout this course, unless we explicitly
write ‘no sum’. A repeated index in a term is called a dummy index, because it can
be replaced by a different letter in that term of an equation. A non-dummy or free
index can also be changed of course, but we have to make the change in the whole
equation. We will often need to use index-changing tricks.

If the same index appears twice in a term, it must be once as a superscript and once
as a subscript, never twice as superscript or subscript; and it may never appear more
than twice in a term. Without these prohibitions, expressions could become ambiguous.
If you ever really need to write such prohibited things, you can suspend the summation
convention with ‘no sum’. But you may find you never need to.

A small supplement to the summation convention: if a superscript (subscript)
appears in the denominator of a derivative it counts as a subscript (superscript).

Exercise 2.1

Write the following in index notation:

dφ =
∂Φ
∂x0

dx0 +
∂Φ
∂x1

dx1 +
∂Φ
∂x2

dx2 +
∂Φ
∂x3

dx3

a1x
1x0 + a2x

2x0 + a3x
3x0

Evaluate
∂

∂xµ
Aαβxαxβ

where Aαβ is constant.

2.3 Relativistic units

It is a common practice among relativists to measure time in equivalent lengths. It’s
like measuring distances in light years but the other way round. Thus 29.9792457 cm
becomes a way of saying 1 nanosecond.

In such units, the speed of light is just 1, so we can dispense with writing the c’s.
This saves a lot of writing, but if you want to convert something to (say) SI units, you
have to put all the c’s back. To do this, you need to replace every time t by ct, and
every speed v by v/c.

Some authors use similar tricks to save write the gravitational constant G or
Planck’s constant h̄, or both. But we won’t do that.

2.2 Summation convention 2.3 Relativistic units
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2.4 Lorentz transformations

Lorentz invariance means that the interval (2.2.1) when measured in different inertial
coordinate systems remains the same. This implies that different inertial coordinate
systems must be somehow related.

The general relation between cartesian coordinate systems in spacetime is

x′α = Λα
β xβ + aα, subject to Λα

γ ηαβ Λβ
δ = ηγδ. (2.4.1)

It is easy to verify that (2.4.1) does preserve the interval.

Derivation Just substitute.

ηαβ dx′αdx′β = ηαβ Λα
γ dxγ Λβ

δ dxδ = ηγδ dxγdxδ.

tu

The transformation (2.4.1) is also the most general transformation that preserves the
interval. (See e.g., p 27 of Weinberg.) It is called a Lorentz transformation.

The expression (2.4.1) is very opaque–what does it mean? Specifically, what does
Λα

β mean (since aα is simply a translation in spacetime)? In fact, Λα
β is a kind of

rotation in spacetime.
Spatial rotations
1

1

cos ϕ − sin ϕ

sin ϕ cos ϕ

 ,


1

cos ϕ sin ϕ

1

− sin ϕ cos ϕ

 ,


1

cos ϕ − sin ϕ

sin ϕ cos ϕ

1

 . (2.4.2)

are already familiar. The three matrices in (2.4.2) represent rotations by ϕ about the
x, y, z axes respectively.

A rotation-like thing where the time axis is involved is called a boost and is
composed of

cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

1

1

 ,


cosh ϕ sinh ϕ

1

sinh ϕ cosh ϕ

1

 ,


cosh ϕ sinh ϕ

1

1

sinh ϕ cosh ϕ

 . (2.4.3)

To see what a boost actually does, let’s rewrite the last line using

v = tanhϕ, γ = 1/
√

1− v2, (2.4.4)

to get 
γ γv

γv γ

1

1

 ,


γ γv

1

γv γ

1

 ,


γ γv

1

1

γv γ

 . (2.4.5)

This amounts to moving the coordinate system with velocity v, while keeping the origin
the same.

To summarize, a Lorentz transformation is an arbitrary combination of transla-
tions, spatial rotations, and boosts.

2.4 Lorentz transformations 2.4 Lorentz transformations
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2.5 Transformation conventions

Different books use different conventions for interpreting coordinate transformations.
The following is the convention these notes will follow.

We imagine two sets of spacetime coordinates, “room” coordinates and “trolley”
coordinates which may be rotated or moving with respect to room coordinates. The
three matrices (2.4.2), which we may denote as

Rx(ϕ), Ry(ϕ), Rz(ϕ) (2.5.1)

transform from trolley coordinates to room coordinates when the trolley is rotated. The
three matrices (2.4.5), which we may denote as

Bx(v), By(v), Bz(v) (2.5.2)

transform from trolley coordinates to room coordinates when the trolley is given a
velocity. For the inverse transformations (i.e., going from room to trolley coordinates)
we use R and B matrices with minus the argument.

Transformations can be composed: thus Rz(ϕ)Bx(v)Rz(−ϕ) amounts to rotating
the trolley about z by ϕ, then giving a boost of v along its new x axis, and finally
rotating about z by −ϕ.

The only new formula you really need to remember is that a boost along x is

(
t, x, y, z

) trolley moves−−−−−−−→
along x

(
γ[t + vx], γ[x + vt], y, z

)
, γ = 1/

√
1− v2 ≥ 1 (2.5.3)

and boosts along y and z have analogous formulas.

Many books have a boost formula that looks like (2.5.3) but with −v instead of v.
Such a formula represents transforming from room coordinates to trolley coordinates,
the reverse convention to ours. Either convention is fine, but getting them mixed up is
lethal.

Exercise 2.2

A laser beam is at angle θ to the x-axis in room coordinates. Write down possible
spacetime coordinates for the emission and detection of a photon from this laser beam.
Transform these to a trolley boosted by v along x.

2.5 Transformation conventions Exercise 2.2
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Figure 2.1: Spacetime diagram showing two events and some light paths.

2.6 Spacetime diagrams

Spacetime diagrams are plots of sections of spacetime, and often used for illustrations.
They show x0 as if it were a spatial axis, so one or two of xi have to be suppressed.

Points on a spacetime diagram are of course events. The spacetime trajectories of
particles are called world lines; they are parallel to the t axis for stationary objects
and inclined for moving objects. Light paths are always at 45◦. The region between
lights paths from an event is called a light cone, and it marks the past and future of
an event. Figure 2.1 illustrates.

A boost has the effect of making the coordinate axes oblique on a spacetime dia-
gram. The rotation angle is arctan v.

Figure 2.2 uses a boost to illustrate why past and future depend on space as well
as time. Here we imagine a little demonstration happening on a moving trolley. Two
light pulses set out from the same point on the trolley, they are reflected at the same
time from different points on the trolley and return to the initial point. In room
coordinates, the emitting and detecting points are not the same, and the reflections are
not simultaneous.

x

t t’

x’

Figure 2.2: Here the solid axes refer to the room. The dashed inclined axes refer to a trolley
moving forwards along x. (The inclination of the axes shown here would amount to v ' 0.25.)
Events which are co-spatial or simultaneous in the trolley frame are not so in the room frame.

2.6 Spacetime diagrams 2.6 Spacetime diagrams
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2.7 Some Lorentzian effects

An immediate consequence of Lorentz transformations is time dilation, or ‘moving
clocks run slower’ or

dt = γ dτ (2.7.1)

Derivation In the fixed-clock frame dτ is just the time differential, but in the
moving-clock frame dτ =

√
dt2 − dx2. Since dτ is Lorentz invariant, dt must get

bigger, by a factor of
(
1− (dx/dt)2

)−1/2
, or γ. tu

This presupposes that we know where the clock is and correct for its motion. If we just
measure the arrival times of light pulses from a moving clock the answer is different. If
a clock is emitting light pluses at intervals of ∆τ while moving at speed v at angle θ to
our line of sight, we will receive the ticks at intervals of

∆t = γ(1 + v cos θ)∆τ. (2.7.2)

Derivation In our frame, the light ticks are emitted γ∆τ apart. But the distance
the light has to travel to get to us has changed by v cos θ × γ∆τ . tu

This is the relativistic Doppler effect.
Another consequence is relativistic length contraction: moving objects appear

shortened by γ in the direction of motion.
There is a subtlety involved in the meaning of length. Imagine a fish at rest in

room coordinates, lying along the x direction. To measure its length we measure the x
coordinates of its head and tail, and it doesn’t matter if we make these two measure-
ments at different times. However, to measure the fish’s length in the coordinates of a
trolley with Bx(v), we must measure head and tail coordinates at the same trolley-t.

Derivation Say the trolley coordinate (t, x) for tail and head are (0, 0) and (0, l). In
room coordinates, the same events would be (0, 0) and (γvl, γl). Thus, a fish-length
of γl in the room has become a length of l in the trolley. tu

The observation requires two friends at different places on the trolley with synchronized
clocks. Their measurements won’t be simultaneous in room coordinates.

Finally, velocities don’t add in the usual way. If we apply two successive boosts in
the same direction, the boost velocities v1 and v2 don’t add linearly. The boost ‘angles’
ϕ1 and ϕ2 do add linearly, however. The net velocity is

v1 + v2

1 + v1v2
(2.7.3)

Derivation We use the identities

cosh(ϕ1 + ϕ2) = cosh ϕ1 cosh ϕ2 + sinh ϕ1 sinh ϕ2,

sinh(ϕ1 + ϕ2) = sinh ϕ1 cosh ϕ2 + cosh ϕ1 sinh ϕ2.

Multiplying the boost matrices shows that the result is a boost with ϕ+ϕ2. Working
out tanh(ϕ1 + ϕ2) gives the result.

An alternative derivation would be to compose two boosts: Bx(v1)Bx(v2). tu

2.7 Some Lorentzian effects 2.7 Some Lorentzian effects
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2.8 The ultimate speed?

The velocity addition formula brings up the well-known consequence of relativity that
one can’t accelerate things to speeds faster than light.

It is important to be precise about the ultimateness of the speed of light. The speed
of light is the fastest signalling speed. This means that no particles or anything else
that carries information can go faster than light. There is nothing to prevent formally
superluminal speeds which don’t carry information, e.g., a spotlight moving across a
stage.

There is also some literature on ‘tachyons’, particles which always move faster than
light. These do not seem forbidden by relativity. But we have no idea about how they
might interact with light or ordinary particles and hence carry information.

2.8 The ultimate speed? 2.8 The ultimate speed?



3. Special Relativity

We introduce the mathematical ideas of vectors and tensors in spacetime, and the
physical ideas of relativistic dynamics.

3.1 Contravariant and covariant vectors

A vector is something with magnitude and direction. We can express these properties
as components in a coordinate system. On the other hand, we don’t want the magni-
tude and direction of a vector to change whenever we change coordinate system; for
that not to happen, the components must change in a suitable way under coordinate
transformations.1

In fact, vectors are defined in terms of their transformation properties. Vectors in
relativity are 4-tuples of numbers which transform in one of two ways. Contravariant
vectors transform like the coordinate differentials,

v′α = Λα
β vβ (3.1.1)

while covariant vectors transform inversely to the coordinate differentials

w′α = Λ β
α wβ (3.1.2)

Here Λ β
α is the inverse of Λα

β :

Λα
β Λ γ

α = δγ
β (3.1.3)

where δα
γ is the Kronecker delta.

The archetypical contravariant vector is displacement. The archetypical covariant
vector is the gradient of a scalar.

Derivation For a scalar φ

∂φ

∂x′α
=

∂xβ

∂x′α
∂φ

∂xβ
= Λ β

α
∂φ

∂x′β
(3.1.4)

tu

Some books call contravariant vectors just ‘vectors’ and covariant vectors ‘one forms’.
For this course, up vectors and down vectors will do.

1 They may also change as a function of spacetime location, but that is a separate issue.

3.1 Contravariant and covariant vectors
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3.2 Raising and lowering indices

In relativity, contravariant and covariant vectors are really two different ways of writing
the same thing. We can freely change from one to the other using metric. (In non-
metric spaces, one can’t do that, and contravariant and covariant vectors are different
species of things.)

To see how to do this, let us first define ηαβ as the inverse of ηαβ :

ηαγηβγ = δα
β (3.2.1)

(As it happens, ηαβ is numerically equal to ηαβ , but writing it with indices up lets
us use the summation convention, and also helps prepare for a more general situation
later.) We have

Λ γ
α ηαβ Λ δ

β = ηγδ (3.2.2)

corresponding to the second part of (2.4.1).

Derivation Easiest to see by considering

Λα
γ ηαβ Λβ

δ = ηγδ

as a matrix equation and inverting. tu

We now have
Λ β

α = ηαγηβδ Λγ
δ . (3.2.3)

Derivation From the definitions

Λ γ
α Λα

β = δγ
β = ηεβηγε = ηαδηγε Λδ

ε Λα
β . (3.2.4)

tu

We can now use ηαβ (ηαβ) to define a covariant (contravariant) dual for any contravari-
ant (covariant) vector, thus:

vα = ηαβvβ , wα = ηαβwβ , (3.2.5)

and the dual vectors will satisfy the appropriate transformation properties.

Derivation

v′α = ηαβv′β = ηαβ Λβ
γ vγ = ηαβηγδ Λβ

γ vδ = Λ δ
α vδ. (3.2.6)

and similarly wα in (3.2.5) is covariant. tu

This is known as lowering and raising indices.

3.2 Raising and lowering indices 3.2 Raising and lowering indices
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3.3 Tensors

A tensor is defined as a quantity which transforms like the product of vectors. Thus
fαβ is a tensor with two up indices if

f ′γδ = Λγ
α Λδ

β fαβ (3.3.1)

holds.

The rank of a tensor is the number of indices. Thus a scalar is a tensor of rank 0,
a vector is a tensor of rank 1, and so on.

We have already come across two curious second-rank tensors, η and the Kro-
necker delta, whose components don’t change at all. The unchanging components do
nevertheless satisfy the appropriate transformation laws.

Derivation From the definitions

Λ γ
α Λβ

δ δα
β = Λ γ

α Λα
δ = δ′γδ

Λα
γ Λβ

δ ηαβ = η′γδ

Λ γ
α Λ δ

β ηαβ = η′γδ

(3.3.2)

tu

For this reason η is known as the metric tensor—metric because it defines a distance
i.e., the interval.

Tensors can be produced from other tensors in several ways.

(a) A linear combination of tensors with the same indices is a tensor. This is obvious
from the transformation laws.

(b) A direct product of two tensors (meaning expressions of the type vαfµν) is a
tensor, as is again obvious from the transformation laws.

(c) Contraction, or setting an upper and a lower index equal and then summing,
produces a tensor with rank reduced by two.

Derivation Consider

f ′αβ = Λα
γ Λ δ

β fγ
δ. (3.3.3)

Contracting gives

f ′αα = Λα
γ Λ δ

α fγ
δ = δδ

γfγ
δ = fγ

γ .

The argument immediately generalizes to arbitrary rank. tu

A direct product combined with a contraction is called an inner product. If the inner
product of something and a tensor is a tensor, then that something is also a tensor.

3.3 Tensors 3.3 Tensors
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Derivation Suppose we are given that

f ′αβv′β = Λα
β fβγvγ (3.3.4)

and that vγ is a tensor, but we aren’t told about f ′αβ .

Define f̃αβ to equal fαβ in one coordinate system and transform it like

f̃ ′αβ = Λα
γ Λβ

δ fγδ. (3.3.5)

Then (
f̃ ′αβ − f ′αβ

)
v′β = Λα

γ Λβ
δ fγδv′β − Λα

γ fγδvδ. (3.3.6)

Substituting v′β = Λ ε
β vε makes the right hand side zero. And since the com-

ponents of v′β can be varied arbitrarily by changing coordinate system, the term in

brackets must also be zero. Hence f̃ ′αβ = f ′αβ .

Again, this argument generalizes to arbitrary rank. tu

This is called the quotient rule.
(d) Differentiating a tensor with respect to the coordinates increases the rank by one

covariant index. The derivation (3.1.4) for the gradient of a scalar generalizes.

But not everything with indices on it is a tensor. In particular, Λα
β and Λ β

α cannot

possibly be tensors; they don’t even have components in any one coordinate system, since they

relate different coordinate systems.

3.4 Gradient, divergence, curl, Laplacian

We adopt the shorthand

φ,α ≡
∂φ

∂xα

φ,α ≡ ηαβ ∂φ

∂xβ

(3.4.1)

and so on with any tensor in place of φ.

In this notation φ,α denotes the gradient of φ. We can also take the gradient of a vector

or any tensor.

Divergence are of the type vα
,α. We can take the divergence of any vector or higher rank

tensor.

Curl has a non-obvious generalization. The curl of vα is defined as

vα,β − vβ,α (3.4.2)

i.e., as not a vector but a second-rank antisymmetric tensor. In three dimensions (but only in

three dimensions) it is possible to define a vector which carries exactly the same information

as a second-rank antisymmetric tensor, and thus defining curl of a vector as a vector works.

In general we can take curls of higher rank tensors too.

The Laplacian is a gradient contracted with a divergence. Thus

∇2φ ≡ φ,α
,α (3.4.3)

3.3 Tensors 3.4 Gradient, divergence, curl, Laplacian
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Exercise 3.1

Evaluate the expressions

xα
,β

(
=

∂xα

∂xβ

)
and xα

,α

and show that
curl (φxα) = xαφ,β − ηβγxγφ,α

fαβ
,β = fα ,β

β

3.5 Four-momentum

Consider a particle of mass m and define

pα = m
dxα

dτ
(3.5.1)

which clearly is a vector because τ is invariant.

Consider now

fα =
dpα

dτ
(3.5.2)

which is also a vector. Now, in the instantaneous rest frame of the particle dt = dτ ; hence

f0 = 0 and f i is the Newtonian force. Thus (3.5.2) is the Lorentz-invariant generalization of

Newtonian dynamics, and pα is a vector generalizing 3D momentum to spacetime: it is called

the four-momentum. In the absence of external forces, four-momentum is conserved.

The four-momentum is fundamental in relativistic dynamics. In four-dimensional notation

it looks simple, but when we try to interpret in 3D and time, weird and wonderful things

happen. Let us examine the space and time parts of pα separately. We have

p0 = mγ = m + 1
2mv2 + O(v4)

pi = mγvi = mvi + O(v2)
(3.5.3)

Compared with Newtonian dynamics the mass seems to be enhanced by a factor of γ. Also,

since in Newtonian dynamics, 1
2mv2 is the kinetic energy, mass seems to increase in amount

by the kinetic energy. This is nothing but the statement of E = mc2. It suggests that mass

and energy are mutually convertible, but does not prove it; convertibility is an extra physical

postulate. We will call p0 the mass-energy.

Since pα is a vector,
√
−ηαβpαpβ is a scalar. For a single particle it equals the mass m.2

The pα for a system of particles is the sum of their individual four momenta; the corresponding

scalar is called the total mass which may be different from the sum of individual masses.

2 Some books refer to mγ as ‘relativistic mass’ or even just ‘mass’. We won’t do this because we’d
then need a new name, such as ‘rest mass’ for m. We’ll reserve ‘mass’ for the scalar m.

Exercise 3.1 3.5 Four-momentum
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3.6 Force in 4 and 3 dimensions

Although relativistic dynamics calculations are usually simplest in 4D notation, it is also useful

to have transformation formulas for forces in 3D notation.

The relativistic form of Newton’s second law, equation (3.5.2), in full, is

(f0, fx, fy, fz) = m
d

dτ
(γ, γvx, γvy, γvz). (3.6.1)

In the particle’s instantaneous rest frame, we have

(0, Fx, Fy, Fz) = m
d

dτ
(1, vx, vy, vz), (3.6.2)

where F is the Newtonian force. Now F is a 3D vector and does not transform like part
of a 4D vector under boosts; however f i, which happens to equal Fi in the particle’s
instantaneous frame, is part of a vector. So we can transform (3.6.2) out of its special
frame and into an arbitrary inertial frame; applying a Lorentz transformation and using
dt = γdτ , we get

(vFx, Fx, Fy/γ, Fz/γ) = m
d

dt
(γ, γvx, γvy, γvz). (3.6.3)

The space part of the right hand side here is a rate of change of momentum, so we
interpret the space part of the left hand side as the 3D force. Thus we have derived
how ordinary 3D force changes under a Lorentz transformation:

(Fx, Fy, Fz)
particle moves−−−−−−−→

along x
(Fx, Fy/γ, Fz/γ) (3.6.4)

We see from (3.6.4) that a moving particle feels less force transverse to its direction
of motion. One consequence is that acceleration need not be parallel to force, a very
non-Newtonian feature of relativistiv dynamics. Meanwhile the time component of
(3.6.3) expresses the rate of change of the particle’s mass-energy, another completely
non-Newtonian concept.

An odd feature of equation (3.6.3) is that it gives derivatives of vi, and also the
derivative of γ which of course isn’t independent. Fortunately, the derivative of γ is the
same value as implied by the derivatives of vi.

Derivation

fi

m
=

d

dτ
(γvi) = γ

dvi

dτ
+ vi

dγ

dτ
= γ

dvi

dτ
+ γ3vj

dvj

dτ
vi;

vifi

m
= γvi

dvi

dτ

(
1 + γ2vjvj

)
= γ3vi

dvi

dτ
=

dγ

dτ
,

(3.6.5)

where we have used the identity

dγ

dτ
= γ3vi

dvi

dτ
. (3.6.6)

(We have used the summation convention for both-down Roman indices here.) tu

3.6 Force in 4 and 3 dimensions 3.6 Force in 4 and 3 dimensions
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3.7 Energy-momentum tensor

The four-momentum lets us describe the dynamics of particles or systems of particles.
But if the system we are interested in has a very large number of particles, a description
in terms of individual particles becomes too complicated to be useful. We then think of
the system as a fluid, and describe the dynamics of infinitesimal elements of fluid. The
relevant dynamical quantity is the fluid density ρ(x), and the dynamics is described
through an energy-momentum tensor.

The simplest kind of fluid consists of particles with no random motions; relativists
call it dust. In this case the energy momentum tensor is defined as

Tαβ = ρ(x)
dxα

dτ

dxβ

dτ
. (3.7.1)

With all components displayed, (3.7.1) becomes

Tαβ = γ2ρ(x)


1 vx vy vz

vx v2
x vxvy vxvz

vy vyvx v2
y vyvz

vz vzvx vzvy v2
z

 . (3.7.2)

In the instantaneous rest frame of the fluid element the only nonzero component is
T 00 = ρ. In general Tαβ is the flux of the α-component of momentum through a
surface of constant xβ . Hence the name.

The divergence of the energy-momentum tensor is the density of external (rela-
tivistic) force. To see this, we expand Tαβ

,β as

T 0β
,β = γ2

(
∂ρ

∂t
+

∂

∂xj
(ρvj)

)
,

T iβ
,β = viT 0β

,β + γ2ρ

(
∂vi

∂t
+ vj ∂vi

∂xj

)
.

(3.7.3)

Derivation To get the second line, we write

T iβ
,β = γ2

(
∂

∂t
(ρvi) +

∂

∂xj
(ρvivj)

)
and then expand and regroup. tu

The upper line in (3.7.3) is zero by mass conservation (i.e., the continuity equation).
To interpret the second line in (3.7.3), we can go to the instantaneous rest frame of
the fluid element, where the expression is simply ρ dvi/dt, i.e., the force density; in the
absence of external forces it is zero.

Thus the equations of motion for a fluid are

Tαβ
,β = 0 (3.7.4)

In the presence of external forces, there will be additional terms. We could put
new force terms in (3.7.4). But it turns out that new forces are always divergences. For

3.7 Energy-momentum tensor 3.7 Energy-momentum tensor
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these reason, it is the convention to incorporate new forces by modifying the definition
(3.7.1) of the energy-momentum tensor, leaving (3.7.4) unchanged.

The next simplest case is called the perfect fluid. In this the particles in any fluid
element have random motions, but inside a fluid element there is no preferred direction
for the random velocities. To see how Tαβ will change, we go to the instantaneous
rest frame of the fluid element, and consider it as made up of many sub-elements with
random velocities with no preferred direction but averaging to zero. Averaging over the
random velocites, we will get

Tαβ
inst rest fr = ρ(x)


1

0
0

0

 + p(x)


0

1
1

1

 (3.7.5)

where p(x) is the mean square velocity in any direction. The Lorentz invariant gener-
alization of (3.7.5) is

Tαβ = ρ(x)
dxα

dτ

dxβ

dτ
+ p(x)

(
dxα

dτ

dxβ

dτ
+ ηαβ

)
. (3.7.6)

and the p-dependent terms in full are

p(x)


0

1
1

1

 + γ2p(x)


v2 vx vy vz

vx v2
x vxvy vxvz

vy vyvx v2
y vyvz

vz vzvx vzvy v2
z

 (3.7.7)

as expected. The spatial part of the divergence of (3.7.7) is ∇p + O(v). The interpre-
tation of p(x) is fluid pressure.

3.7 Energy-momentum tensor 3.7 Energy-momentum tensor



4. Cartesian Tensors in 3D

In which1 we express vector and tensor analysis for ordinary three dimensions in index
notation, assuming cartesian coordinates. Since the metric is identity and there is no
distinction between contravariant and covariant, we will write all indices down. The
summation convention applies with down indices.

4.1 Cartesian coordinate transformations

The general form for cartesian coordinate transformations is the spatial part of the
Lorentz transformation (2.4.1), thus

x′i = Λijxj + ai, subject to ΛikδklΛlj = δij . (4.1.1)

In this case Λij comprises rotations and inversions.

Vectors and tensors are defined as before, only now there is no difference between
the definitions of contravariant and covariant.

The dot product, gradient, and divergence from ordinary vector analysis are easy
to write down in index notation. A dot product looks like uivi, a gradient looks like
∂iφ, and a divergence like ∂iui. Here we are using the symbol ∂i as the index form for
∇, and the convention that in a product it applies only to the next expression. (The
comma notation can also be used.)

The cross product and curl need some more notation.

4.2 The permutation tensor

Consider εijk defined as {
ε123 = ε231 = ε312 = 1
ε321 = ε132 = ε213 = −1
all others = 0.

(4.2.1)

In other words, ε123 = 1 and εijk is antisymmetric in any pair of indices. It is called
the permutation tensor or the Levi-Civita tensor. As the name suggests, it is a
tensor of rank 3.

Derivation Consider

ε̃ijk = ΛipΛjqΛkr εpqr . (4.2.2)

From the form of (4.2.2), ε̃ijk is antisymmetric in any pair of indices. Furthermore
ε̃123 = det |Λ|. Since (4.1.1) implies that det |Λ| = ±1, we have ε̃ijk = ± εijk .
Thus εijk as defined in (4.2.1) transforms like a 3rd rank tensor, except for
the factor of ±1. tu

1 This chapter is for background and/or revision only, and is not examinable.

4.2 The permutation tensor
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Because it changes sign under inversion, εijk is sometimes called a pseudotensor.
The permutation tensor satisfies a very important identity:

εrmn εrpq = δmpδnq − δmqδnp (4.2.3)

Derivation We prove (4.2.3) by verifying the possible cases.

(i) If all of 1, 2, 3 are included in m, n, p, q then both sides give 0. The LHS gives
0 because r cannot be different from all of m, n, p, q. The RHS gives 0 because
we cannot have m = p, n = q and we cannot have n = q, m = p.

(ii) If m = n or p = q then both sides give 0. If only one of these is true, both
terms on the RHS are 0; if both are true, the terms on the RHS cancel.

(iii) If m = p 6= n = q then both sides give +1. The ε terms have the same sign.

(iv) If m = q 6= n = p then both sides give −1. tu

4.3 The cross product, and curl

We can now write the cross product w = u×v and the curl ∇×u respectively as

wi = εijk ujvk, εijk ∂juk. (4.3.1)

These two definitions make use of the fact that in 3D we can associate a vector vi

with any second rank antisymmetric tensor aij :

vi = 1
2 εijk ajk, aij = εijk vk. (4.3.2)

Derivation We verify that the second part of (4.3.2) follows from the first.

aij = 1
2 εijk εklm alm = 1

2 (δilδjm − δjlδim)alm = 1
2 (aij − aji) = aij .

tu

A permutation tensor can be defined in any number of dimensions; the rank equals the
number of dimensions. But it is most useful in three dimensions, for the above reason.

Exercise 4.1

Express and derive the following identities in index notation.

∇·(φu) = φ∇·u +∇φ·u
∇×(φu) = φ∇×u +∇φ×u

∇·(u×v) = v·∇×u− u·∇×v

∇×(u×v) = u∇·v − v∇·u + v·∇u− u·∇v

∇×∇×u = ∇∇·u−∇·∇u

∇(u·v) = u×∇×v + v×∇×u + u·∇v + v·∇u

4.2 The permutation tensor Exercise 4.1



5. Electromagnetism

In this part we will study electromagnetism as an example of a relativistic theory. We
won’t really go into applications of the theory at all (that could easily fill a degree in
electrical engineering), but we will develop the basic equations of electromagnetism in
relativistic notation, and introduce some important ideas that we will meet again when
we come to gravity in general relativity.1

5.1 Fields

Electromagnetism is all about how electrically charged particles interact. This interac-
tion does not happen directly—that would imply instantaneous communication between
charges—it is mediated by a field, which carries information at the speed of light. In
one sense fields are an abstraction invented to describe the interaction of particles. On
the other hand, fields can do such complex things that they can seem even more im-
portant than the particles. People working with them speak of “the world where the
electric field is not a symbol merely, but something that crackles”.

The equations of electromagnetism come in two sets. First, there are Maxwell’s
equations giving the electromagnetic field in terms of the charges. In four-dimensional
notation, the electromagnetic field is a second-rank antisymmetric tensor, usually writ-
ten Fαβ ; in three dimensional notation, this can be split into two parts: an electric field
E and a magnetic field B. Then there is the equation for the Lorentz force, which
gives the effect of the field on charges.

5.2 A thought experiment

Suppose we have some charges, at rest, producing an electric field. In particular, a
charge q1 at (0, 0, 0) produces a field2

E = q1
r̂

4πr2
. (5.2.1)

Now we introduce an extra particle (“the particle”) with charge q and mass so small it
has negligible effect on the field or the other charges. The particle will feel a force

qE. (5.2.2)

So far so good, and we could go on and develop electrostatics, but we won’t do that.
Instead, we ask: what is the force if the particle is moving? This question can only be
answered through experiment, and the answer is that (5.2.2) always gives the force on
a charge from an electric field—in the “lab” frame where the field is expressed, not the
particle’s rest frame—regardless of how the particle is moving, and regardless of what
charges caused the electric field.

That (5.2.2) is general tells us that (5.2.1) is not general; if the charge is moving,
the field is different. If the particle is moving along x with some γ, the force in the

1 The two sections on Thought Experiments and the section on Dipole Radiation are not examin-
able.

2 Equation (5.2.1) also serves to define the units we will use.

5.2 A thought experiment
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particle’s rest frame (which we can get by reversing equation 3.6.4) must be the same
as the force if the particle is stationary and the charge is moving along −x. Thus we
get

(Ex, Ey, Ez)
charge moves−−−−−−−→

along x
(Ex, γEy, γEz). (5.2.3)

Now suppose both the particle and charge are moving along x with the same
velocity. Using (5.2.3) and then (3.6.4) in reverse, we get (Fx, γ2Fy, γ2Fz) for the force
in the particle frame—but this can’t be right because in this frame both the charge
and the particle are at rest! Have we shown that (5.2.2) is inconsistent with Lorentz
invariance?

Not necessarily: it is possible that a new effect appears that counteracts the elec-
tric field when both charge and particle are moving. In fact, given the experimental
generality of (5.2.2) we are forced to predict a new field, and you can guess what that
field is.

Exercise 5.1

Suppose that

• (5.2.2) applied in the particle’s instantaneous rest frame, but not generally; and

• the electric field transformed like

(Ex, Ey, Ez)
charge moves−−−−−−−→

along x
(aEx, bEy, bEz).

Now do the following:

(i) move the charge along +x with some γ, and write down how the force changes on
a stationary charge; then

(ii) move both charge and particle along −x with the same γ, thus deriving the force
on a moving particle from an electric field; and then

(iii) let both charge and particle move along x with the same γ and work out the force
in the particle frame.

Are there any choices of a, b which don’t need an extra field for consistency?

5.2 A thought experiment Exercise 5.1
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5.3 Another thought experiment

Consider a charged wire along the x axis, with charge λ per unit length. At a point
(0, r, 0) the electric field will be

Ey =
λ

2πr
. (5.3.1)

Derivation

Ey =
λ

4π

∫ ∞

−∞

r

(r2 + x2)3/2
dx =

λ

2πr
(5.3.2)

tu

Next let the wire move along x with some γ. In accordance with (5.2.3), the new field
will be

Ey =
γλ

2πr
. (5.3.3)

Another interpretation is that length contraction has increased the effective λ by a
factor of γ.

Now we make things interesting. Take two wires, coaxial with x; one has charge
λ per unit length and moves along +x with (v0, γ0), and the other has opposite charge
and moves with the same speed in the opposite direction. So there is charge transport
but no net charge.

But suppose the particle is moving along +x with (v, γ). In the particle frame, the
wires will have velocities of (using the velocity addition formula 2.7.3)

v+ =
v0 − v

1− v0v
, v− =

v0 + v

1 + v0v
, (5.3.4)

and corresponding γ-factors γ+ and γ−, and charge densities of

λ+ = γ+(λ/γ0), λ− = γ−(λ/γ0). (5.3.5)

We have
γ+ − γ− = −2vγv0γ0. (5.3.6)

Derivation Just insert (5.3.4) and simplify. tu

Hence the total charge per unit length in the particle frame is −2vγλv0 and the force
−qvγλv0/(πr). In the no-field frame, the force becomes −qvλv0/(πr). And defining
the current I as the rate of charge transport or 2λv0, we have for the force:

Fy = −q
vI

2πr
. (5.3.7)

Notice that (5.3.7) does not depend on the separate velocities of the wires, only on the
total rate of charge transport.

5.3 Another thought experiment 5.3 Another thought experiment
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5.4 The equations of electromagnetism

Electromagnetism can be written very concisely in relativistic notation. The ingredients
are (i) the source vector Jα, i.e., electric charges and their motions, (ii) A ghostly vector
Aα called the potential which arises from the source, (iii) the field tensor, which is
the curl of the potential, and (iv) the relativistic force density fα of the field on other
sources. The equations are

Fαβ
,β = Jα where Fαβ = −(Aα,β −Aβ,α) (Maxwell’s equations)

FαβJβ = fα (Lorentz force)
(5.4.1)

and everything in electromagnetism follows.
Now let us work out what (5.4.1) means!
There are four ingredients.
First the source: Jα, which is the four-dimensional velocity vector associated with

the electric charge density ρe

Jα = ρe
dxα

dτ
= (ρe, Jx, Jy, Jz). (5.4.2)

The spatial part of Jα is the 3D current density J.
Next we have the potential: from (5.4.1) we see that Jα gives Aα via a linear

second-order differential equation. We will return to that equation later. The common
names for A0 and Ai are the electric potential Φ and the magnetic vector potential
A:

Aµ = (Φ, Ax, Ay, Az), Aµ = (−Φ, Ax, Ay, Az). (5.4.3)

Third is the field tensor Fαβ . Since Fαβ is antisymmetric, we can associate it with
two 3D vectors, say E and B, thus:

Fαβ =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 , Fαβ =


0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 . (5.4.4)

Then (5.4.1) implies

E = −∇Φ− ∂A
∂t

, B = ∇×A, (5.4.5)

and
∇·E = ρe, ∇×B− ∂E

∂t
= J. (5.4.6)

Derivation Inserting (5.4.3) and (5.4.4) into the the upper right equation in
(5.4.1) gives

Fαβ =


0 Ax,t + Φ,x Ay,t + Φ,y Az,t + Φ,z

0 Ay,x −Ax,y Az,x −Ax,z

0 Az,y −Ay,z

0

 (5.4.7)

5.4 The equations of electromagnetism 5.4 The equations of electromagnetism
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with the lower triangle implied by antisymmetry, and this is the same as
(5.4.5).

Inserting (5.4.4) into the upper left equation in (5.4.1) gives
Ex,x + Ey,y + Ez,z

Bz,y −By,z − Ex,t

Bx,z −Bz,x − Ey,t

By,x −Bx,y − Ez,t

 =


ρe

Jx

Jy

Jz


which is the same as (5.4.6). tu

And fourth, we have the Lorentz force

f = ρeE + J×B f0 = J·E. (5.4.8)

As we have already seen, the magnetic field acts in a rather odd way. To feel it, (i) a
charge has to be moving, and (ii) the force is always perpendicular to the motion of
the charge; (ii) means—and the fact that f0 doesn’t depend on B means the same
thing—that a magnetic field never does any work!

5.5 Gauge invariance

I implied in the previous section that the potential Aα is strange even by the standards
of relativity. That’s because it can’t be measured! Only its curl can. We see from
Fαβ = −(Aα,β −Aβ,α) that adding an arbitrary gradient to the potential thus,

Aα −→ Aα + φ,α (5.5.1)

This type of non-uniqueness is known as gauge invariance, and transformations
of the type (5.5.1) are called gauge transformations. We will meet gauges again
when we consider the field equations for gravity.

5.6 The retarded potential

We can use the gauge freedom (5.5.1) to our advantage. In particular we can choose a φ
so that Aα

,α = 0. This is called the Lorentz gauge. In this case, Maxwell’s equations
simplify to

Fαβ = −(Aα,β −Aβ,α) where ∇2Aα = −Jα. (5.6.1)

The physically admissible solution to the wave equation (5.6.1) is

Aα(t,x) =
1
4π

∫
Jα(t− r,x′)

r
d3x′, r ≡ |x− x′|. (5.6.2)

It is called the retarded potential and it is has the same form as the potential in
electrostatics, only retarded in time. Despite its appearance (5.6.2) is Lorentz-invariant.
We won’t derive it here. (For derivation, see p. 19 of Binney, or any advanced electro-
magnetism text such as Classical Electrodynamics by J.D. Jackson.).

From the form (5.6.2) we can easily deduce several simple facts about electromag-
netism. For example: a current-carrying wire will have the A parallel to it and B
circulating around it. A solenoid (made up by stacking loops of wire) has B parallel
to it. So does a natural magnet like a compass needle. Two parallel wires will attract
if they carry parallel currents and repel if they carry anti-parallel currents. (We have
already derived this last fact from completely different reasoning!)

5.4 The equations of electromagnetism 5.6 The retarded potential
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5.7 Dipole radiation

We might conclude from (5.6.2) that since at large distances the potentials fall off like
1/r, the fields would fall off 1/r2. This is true for static charges and currents, but for
time varying charges and currents, there is an important new effect.

For a localized Jα, viewed from large r, r is almost independent of x′ in (5.6.2).
So we may write for the magnetic potential

A =
1

4πr

∫
J(t− r,x′) d3x′. (5.7.1)

But the integral in (5.7.1) equals the rate of change of the dipole moment, i.e.,∫
J(x) d3x =

dp
dt

, where p =
∫

ρe(x) d3x. (5.7.2)

Derivation

dp

dt
=

∫
∂ρe

∂t
x d3x = −

∫
(∇·J) x d3x =

∫
(J·∇) x d3x =

∫
J d3x. (5.7.3)

tu

Thus

A(t,x) =
1

4πr

(
dp
dt

)
(t−r)

(5.7.4)

and so if the dipole moment is time varying the fields fall off as 1/r.

5.8 The field energy-momentum tensor

The tensor
Tαβ = Fα

γF βγ − 1
4ηαβFγδ F γδ (5.8.1)

has divergence equal to minus the force density:

Tαβ
,β = −fα (5.8.2)

Derivation

Tαβ
,β = Fα

γFβγ
,β + FβγFα

γ,β − 1
2Fγδ F γδ,α (5.8.3)

We can rearrange the last two terms a little:

FβγFα
γ,β = Fβγ Fαγ,β = −Fβγ F γα,β = −Fβγ Fαβ,γ

Fγδ F γδ,α = Fβγ Fβγ,α
(5.8.4)

and thus rewrite (5.8.3) as

Tαβ
,β = Fα

γFβγ
,β − 1

2Fβγ

(
Fαβ,γ + F γα,β + Fβγ,α

)
(5.8.5)

Using Maxwell’s equations, the bracketed part is zero, and the remaining term on
the right is −Fα

γJγ = −fα. tu

5.7 Dipole radiation 5.8 The field energy-momentum tensor
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Thus Tαβ in (5.8.1) can be interpreted as an energy-momentum tensor.
In full Tαβ looks like

1
2
(E2 + B2) EyBz − EzBy EzBx − ExBz ExBy − EyBx

EyBz − EzBy
1
2
(E2 + B2)− E2

x −B2
x −ExEy −BxBy −ExEz −BxBz

EzBx − ExBz −EyEx −ByBz
1
2
(E2 + B2)− E2

y −B2
y −EyEz −ByBz

ExBy − EyBx −EzEx −BzBx −EzEy −BzBy
1
2
(E2 + B2)− E2

z −B2
z


(5.8.6)

Despite its ghastly appearance (5.8.6) can tell us several interesting things.
First, the electromagnetic field carries energy: the energy density is T 00 = 1

2 (E2 +
B2). However Tα

α, which for a fluid was the rest mass density, is zero. Which suggests
interpreting the electromagnetic field as a fluid consisting of massless particles.

Second, the field carries momentum: T 0i is E×B, usually called the Poynting
vector.

Third, the field exerts pressure. For example, if the only nonzero field component
is Ex then Tαβ becomes

1
2E2

x


1

−1
1

1

 (5.8.7)

Comparing with (3.7.5) we can interpret this as a pressure perpendicular to the field
and tension (negative pressure) along the field.

5.8 The field energy-momentum tensor 5.8 The field energy-momentum tensor



6. Calculus of Variations

The calculus of variations is about finding paths such that some integral along the path
is extremized.

6.1 Statement of the problem

We want to find a path xµ(ω) connecting two given points xini and xfin [ω being a
parameter for the path] such that the integral of some given function L(x, ẋ, ω) along
the path is extremized. Or rather, the integral is stationary:∫ xfin

xini

L(x, ẋ, ω) dω stationary (6.1.1)

By this we mean that the value of the integral along the desired path xµ(ω) equals the
value along an infinitesimally close path xµ(ω) + δxµ(ω). Another way of writing is

δ

∫ xfin

xini

L(x, ẋ, ω) dω = 0 (6.1.2)

By the way, δxµ(ω) = 0 at the endpoints, since the latter are given.

This is kind of a zero-derivative property, only for functionals instead of functions.

6.2 The Euler-Lagrange equations

Remarkably, the integral condition (6.2.0) can be reduced to a set of differential equa-
tions. We have ∫ xfin

xini

(
∂L

∂xµ
δxµ +

∂L

∂ẋµ
δẋµ

)
dω = 0 (6.2.1)

Integrating by parts and using the fact that δxµ = 0 at the ends gives∫ xfin

xini

(
∂L

∂xµ
− d

dω

(
∂L

∂ẋµ

))
δxµ dω = 0 (6.2.2)

Since this must be true under arbitrary path-variations δxµ we have

∂L

∂xµ
=

d

dω

(
∂L

∂ẋµ

)
(6.2.3)

known as the Euler-Lagrange equations.

6.2 The Euler-Lagrange equations
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6.3 A special case

There are many variants and special cases of the Euler-Lagrange equations. One inter-
esting special case is when L has no explicit dependence on ω:

L− ẋµ ∂L

∂ẋµ
= const (6.3.1)

Derivation Equation (6.2.3) is equivalent to

∂L

∂ω
− d

dω

(
L− ẋµ ∂L

∂ẋµ

)
= 0 (6.3.2)

(Just use the chain rule to verify). If the first term is zero, then (6.3.1)
follows. tu

6.4 The brachistochrone problem

This is the classic calculus of variations problem, first solved by Newton, no less. We
have two points, and we want to connect them by a curved track such that a body
sliding frictionlessly down the track under gravity takes the minimum time.

Let x be the horizontal distance (and independent variable) and y the vertical
distance, measured downwards. Say the sliding body starts from rest at (0, 0). The
velocity of the body at a point (x, y) on the track is ∝ √y. The differential arclength
along the track is

√
1 + y′2 dx. Thus the travel time is ∝∫

y−
1
2 (1 + y′2)

1
2 dx (6.4.1)

Applying equation (6.3.1) and simplifying, we get

y(1 + y′2) = const (6.4.2)

This is nonlinear a differential equation which we need to solve. There is no general
method for doing this, so we basically have to guess.

First note a useful property of (6.4.2): if y = f(x) is a solution for const = 1 then

y = c1f

(
x− c2

c1

)
(6.4.3)

will be a solution for const = c1. So we really need to write down a solution of (6.4.3)
for one value of the constant. Let us put const = 2. Then, as we can verify, a solution
is

y = 1− cos θ, x = θ − sin θ (6.4.4)

It is a cycloid.

Exercise 6.1

What is the shape adopted by electric transmission wires?
To solve this, consider a path problem similar to the above; but instead of min-

imizing y−
1
2 times the arclength, we have to minimize y times the arclength, because

it’s the potential energy and will get minimized by the wire.
Derive the equation analogous to (6.4.2) for this case and try to guess the answer.

The answer is called a catenary.

6.3 A special case Exercise 6.1



7. Principle of Equivalence

The principle of equivalence of gravitational and inertial mass is a physical assertion
about the nature of gravity. It implies the mathematical statement that spacetime has
a Riemannian metric.

7.1 Freely falling frames

In the Newtonian theory, gravity causes a force on a body that is proportional to
that body’s mass. The theory is inconsistent with relativity and must be modified.
But the basic principle that gravitational force is proportional to mass (which, we
recall, measures inertia)—and therefore that gravitational mass is the same as inertial
mass—does not disagree with special relativity provided we interpret mass as relativistic
mass-energy. This is the principle of equivalence.

The principle of equivalence is a new piece of physics, it is not implied by what we
have done so far. But it is experimentally well tested, most importantly by a class of
experiments known as Eötvös experiments. (See pp. 27–28 of Binney for an account of
these.)

Now, in an accelerating frame, a body experiences ‘fictitious’ forces proportional
to the inertial mass. (This is a tautology really, it’s just another way of saying that the
frame is accelerated.) If the principle of equivalence applies, then fictitious forces can
be used to cancel the gravitational forces. In other words, in any gravitational field,
there are (accelerated) frames in which the gravitational forces vanish. This prompts
the following formal statement of the principle of equivalence (quoting from Weinberg):
At every space-time point in an arbitrary gravitational field it is possible to choose a
“locally inertial coordinate system” such that, within a sufficiently small region of the
point in question, the laws of nature take the same form as in unaccelerated Cartesian
coordinate systems in the absence of gravitation. Such coordinates are also known as
freely falling frames.

In other words, we can locally nullify the effect of a gravitational field, thus making
special relativity applicable, by choosing a freely falling frame. “Locally” is important—
outside a small neighbourhood, the gravitational field may have changed, and the same
cartesian coordinates will not be freely-falling any more.

7.2 Metrics and Geodesics

Even if we know that freely-falling coordinates exist, it would be cumbersome to have to
transform into them every time we wanted to calculate anything. Fortunately, we can
use the principle of equivalence to derive the effect of gravity in arbitrary coordinates.

Consider a particle moving under gravitational (and no other) forces. In freely
falling coordinates (call them ξα) the equation of motion of the particle is

d2ξα

dτ2
= 0, dτ2 = −ηαβ dξα dξβ . (7.2.1)

In an arbitrary coordinate system xµ (which may be curvilinear, rotating, accelerating),
the equations of motion are

d2xλ

dτ2
+ Γλ

µν

dxµ

dτ

dxν

dτ
= 0, dτ2 = −gµν dxµ dxν (7.2.2)

7.2 Metrics and Geodesics
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where

Γλ
µν =

∂xλ

∂ξα

∂2ξα

∂xµ∂xν
(7.2.3)

is called a Christoffel symbol or affine connection, and

gµν =
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ , gλµgµν = δλ

ν (7.2.4)

is the metric tensor, about which more presently. The first equation in (7.2.2) is
called a geodesic equation; and we will interpret it soon.

Derivation The expression (7.2.4) for the metric follows immediately from the
chain rule.

To get the geodesic equation, we rewrite the first equation in (7.2.1) as

0 =
d

dτ

(
∂ξα

∂xµ

dxµ

dτ

)
=

∂ξα

∂xµ

d2xµ

dτ2
+

∂2ξα

∂xµ∂xν

dxµ

dτ

dxν

dτ
(7.2.5)

and then multiply by
(
∂xλ/∂ξα

)
. tu

For a massless particle (7.2.2) does not apply, since dτ = 0; instead we have

d2xλ

dσ2
+ Γλ

µν

dxµ

dσ

dxν

dσ
= 0, gµν

dxµ

dσ

dxν

dσ
= 0 (7.2.6)

which is called a null geodesic.

Derivation Use σ = ξ0 instead of τ in the previous derivation. tu

7.2 Metrics and Geodesics 7.2 Metrics and Geodesics
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7.3 Tensors redefined

We defined tensors in connection with inertial coordinates and Lorentz transformations
in chapter 3. But since we are now concerned with general coordinate systems and
arbitrary coordinate transformations, we need to generalize those definitions.

Now comes the cunning bit. In chapter 3, we carefully avoided making use of
various special properties of ηαβ , ηαβ , and Λα

β and Λ β
α . The properties we did use

were:
(i) ηαβ , ηαβ are symmetric and inverses of each other;
(ii) Λα

β and Λ β
α are inverses of each other; and

(iii) Λα
β and Λ β

α are constants.
Item (iii) we used only to show that the derivative of a vector or higher rank tensor

is a tensor.
So if we amend our definitions slightly:

ηαβ → gαβ , ηαβ → gαβ , Λα
β → ∂x′α

∂xβ
, Λ β

α → ∂xβ

∂x′α
(7.3.1)

we can carry over all the properties of tensors we derived in chapter 3, with one excep-
tion. The exception is that the derivatives vectors or higher rank tensors (of the type
vα

,β or Fαβ
,λ) are not tensors—generalizing the definition of a gradient will take a little

more work. But the derivative of a scalar is a still vector.
The old definitions amended in (7.3.1) remain as special cases of the new ones.
If a tensor has all components zero in one coordinate system, that remains true

in any coordinate system. This fact is occasionally useful in recognizing tensors and
non-tensors.

7.4 Christoffel symbols

The Christoffel symbol was defined in (7.2.3) in terms of freely-falling coordinates.
However, it can be expressed in terms of the metric:

Γµ
αβ = 1

2gµν (gνα,β + gβν,α − gαβ,ν) (7.4.1)

Derivation Define

Γµαβ = gµνΓν
αβ .

From the definition (7.2.3) we get

Γµαβ =
∂2ξγ

∂xα∂xβ

∂ξδ

∂xµ
ηγδ.

From the definition (7.2.4) we have

gµα,β =
∂

∂xβ

(
∂ξγ

∂xµ

∂ξδ

∂xα

)
ηγδ =

(
∂2ξγ

∂xβ∂xµ

∂ξδ

∂xα
+

∂ξγ

∂xµ

∂2ξδ

∂xβ∂xα

)
ηγδ. (7.4.2)

7.3 Tensors redefined 7.4 Christoffel symbols
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Permuting indices gives

gαβ,µ =

(
∂2ξγ

∂xµ∂xα

∂ξδ

∂xβ
+

∂ξγ

∂xα

∂2ξδ

∂xµ∂xβ

)
ηγδ

gβµ,α =

(
∂2ξγ

∂xα∂xβ

∂ξδ

∂xµ
+

∂ξγ

∂xβ

∂2ξδ

∂xα∂xµ

)
ηγδ

(7.4.3)

Collating and exploiting the symmetry of ηγδ gives

Γµαβ = 1
2

(
gµα,β + gβµ,α − gαβ,µ

)
, (7.4.4)

from which (7.4.1) follows. tu

The purpose of this section is mainly to show that the equations of motion (i.e., 7.2.2
and 7.2.6) can be written without explicit reference to freely falling coordinates. The
formula (7.4.1) isn’t usually the most efficient way to calculate Christoffel symbols.

7.5 Variational form

Important differential equations in physics often turn out to have an equivalent varia-
tional form. This is so for the geodesic equations (7.2.2). In the variational form, the
worldline xα(τ) of a particle between two fixed events is given by∫ (

gµν
dxµ

dτ

dxν

dτ

)
dτ stationary, or

∫
dτ stationary (7.5.1)

The two statements in (7.5.1) are equivalent, because the expression in parenthesis is
just (dτ/dτ)2 = 1. The second form provides a nice interpretation—the proper time is
stationary—but the first form is more useful for calculation.

Applying the Euler-Lagrange equations (6.2.3) to the first statement in (7.5.1)
gives

d

dτ

(
gλν

dxν

dτ

)
= 1

2gµν,λ
dxµ

dτ

dxν

dτ
(7.5.2)

which is just the geodesic equations.

Derivation Using dots to mean d/dτ , (7.5.2) gives

gλν ẍν + gλν,µẋν ẋµ = 1
2gµν,λẋµẋν (7.5.3)

which we can rewrite as

gλν ẍν + 1
2 (gλν,µ + gλµ,ν − gµν,λ)ẋµẋν = 0 (7.5.4)

which on raising indices gives the geodesic equation (7.2.2). tu

7.4 Christoffel symbols 7.5 Variational form
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7.6 Gravitational time dilation

The principle of equivalence doesn’t tell us how to calculate determine gµν completely, it
just tells us about dynamics once we have gµν . To determine the metric in the presence
of gravity we need to input more physics.

We can, however, make a start at calculating gµν by requiring that the Newtonian
limit be reproduced.

If the gravitational field is weak then

gµν = ηµν + hµν , (7.6.1)

where hµν is small. Consider such a situation, and further assume (i) the field is static,
i.e., hµν,t = 0, (ii) a particle is moving in this field slowly, i.e., dxi/dτ � dt/dτ . In that
case the geodesic equations give

d2xi

dt2
= 1

2g00,i. (7.6.2)

Derivation We take (7.5.2) to leading order, which gives

d2t

dτ2
= 0,

d2xi

dτ2
= 1

2g00,i

(
dt

dτ

)2

.

(7.6.3)

The first equation in (7.6.3) implies that dt/dτ is a constant, from which the
second equation implies (7.6.2). tu

Comparing with the Newtonian equation of motion d2xi/dt2 = −Φ,i (Φ being the
Newtonian gravitational potential) gives

g00 = −(1 + 2Φ).

Equation (7.6.3) is general for static weak fields; we can now forget the slow-moving
particle we used to derive it. Consider the interval between two events at the same point
in this metric. We get

dt = (1− Φ) dτ. (7.6.4)

Comparing with the time dilation formula (2.7.1) from special relativity, we see that
clocks run slower in a gravitational field.

7.6 Gravitational time dilation 7.6 Gravitational time dilation



8. Curvature

We study derivatives of the metric and find that they are related to curvature of space-
time.

8.1 Gravity versus coordinate systems

We have seen that gµν differs from ηµν when we have gravity, or even when we don’t
have gravity but have curvilinear or accelerated coordinates. Can we disentangle the
gravitational and coordinate-system contributions?

We know that we can make special relativity hold locally, even if there is a grav-
itational field. Can we make it hold beyond a small neighbourhood? In general we
cannot. That is, at any point we can make gµν = ηµν and gµν,λ = 0 by choosing a
cunning coordinate system, but we cannot make gµν,λσ = 0.

Derivation Consider the neighbourhood of an arbitrary event, which we can take to
be the origin without loss of generality. We have the metric g′αβ in some coordinates

x′ and want to change to some new coordinates x such that gµν(x) looks as much
like ηµν as possible.

We have
gµν = Λα

µ Λβ
ν g′αβ . (8.1.1)

Taylor expanding, we have

gµν(x) = gµν(0) + gµν,λ(0)xλ + 1
2gµν,λσ(0)xλxσ + . . .

= Λα
µ Λβ

ν g′αβ +
[
2Λα

µ,λ Λβ
ν g′αβ + Λα

µ Λβ
ν g′αβ,λ

]
xλ+[(

Λα
µ,λσ Λβ

ν + Λα
µ,λ Λβ

ν,σ

)
g′αβ + Λα

µ,λ Λβ
ν g′αβ,λ+

1
2 Λα

µ Λβ
ν g′αβ,λσ

]
xλxσ + . . .

(8.1.2)

In (8.1.2) the commas are all derivatives with respect to x, and all the Λ and g′ terms
on the RHS are evaluated at the origin and hence are constants. The Λ constants
are for us to choose, because we are defining the transformation x′ → x.

Let us compare the upper and lower equations in (8.1.2). In gµν there are 10
numbers, and we can set them all to the corresponding elements of ηµν , because we
have 16 numbers Λµ

α (0) to play with. In fact we have six numbers to spare, so
we can stick on an extra boost and rotation. In gµν,λ there are 40 numbers, and
we can set them to zero by choosing Λµ

α,λ(0) suitably; this is because Λµ
α,λ is

symmetric in µ, λ (refer to the definition 7.3.1) and hence has 40 independent
components. In gµν,λσ there are 100 numbers, whereas in Λα

µ,λσ has only 80
numbers, because of symmetry with respect to µ, λ, σ.

Thus there are 20 numbers in gµν,λσ at any point that cannot in general
be removed by a coordinate transformation. For N dimensions the answer is
N2(N2 − 1)/12—see page 159 of Schutz. tu

We conclude that the effect of gravity is lurking in 20 numbers in the second derivative
of the metric.

8.1 Gravity versus coordinate systems
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8.2 Covariant derivatives

So now we want to study derivatives, and eventually second derivatives of the metric.
But the derivative of a tensor with respect to the coordinates, such as gµν,λ which we
have already used, is not a tensor. It carries information about the coordinate system
in a way tensors do not.

Nevertheless, there is an obvious way to differentiate a tensor so as to get another
tensor: we can transform to a freely falling frame, work out the derivative there (where
it will be a tensor, because special relativity applies) and then transform back using the
appropriate tensor transformation rule. This is known as covariant differentiation
and can be expressed without explicit reference to freely falling frames. We denote it
by semicolons instead of commas. The formulas are

Aµ
;λ = Aµ

,λ + Γµ
νλAν Aµ;λ = Aµ,λ − Γν

µλAν

Fµ
ν ;λ = Fµ

ν,λ + Γµ
σλFσ

ν − Γσ
νλFµ

σ

(8.2.1)

and so on.

Derivation Suppose we have vector Aα(x), whose components in a freely-falling
frame are Ãµ(ξ). Consider the rate of change of Ãµ along a curve ξ(ω).

dÃµ

dω
=

dxκ

dω

∂Ãµ

∂xκ
=

dxκ

dω

∂

∂xκ

(
∂ξµ

∂xα
Aα

)
=

dxκ

dω

(
∂ξµ

∂xα

∂Aα

∂xκ
+

∂2ξµ

∂xκ∂xα
Aα

)
.

(8.2.2)

Multiplying by ∂xν/∂ξµ gives

dAν

dω
=

dxκ

dω

(
∂Aν

∂xκ
+ Γν

καAα

)
, (8.2.3)

and the covariant derivative for an up index follows.

Now consider

d

dω

(
AµBµ

)
=

dxκ

dω

(
Aµ

,κBµ + AµBµ,κ

)
=

dxκ

dω

(
Aµ

;κBµ − Γµ
καAαBµ + AµBµ,κ

)
=

dxκ

dω

[
Aµ

;κBµ + Aµ
(
Bµ,κ − Γα

κµBα

)] (8.2.4)

which gives the answer for a down index. tu

With the definition of covariant derivatives in hand, we can express any expression from
special relativity in a general coordinate system. All we have to do is replace commas
in the special-relativistic equations with semi-colons. This is worth emphasizing: any
equation involving only tensors and first derivatives of tensors that is valid in a freely
falling frame will become valid in general coordinate systems if coordinate derivatives
are replaced by covariant derivatives.

8.2 Covariant derivatives 8.2 Covariant derivatives
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8.3 Parallel displacement

The strange-looking formulas for covariant derivatives actually have a simple geomet-
rical meaning. The derivative of a vector measures how much it changes between the
events x and x + dx. But in a non-inertial coordinate system the axes also change be-
tween the two events. So to differentiate in a way that’s not influenced by the writhings
of a coordinate system, we need to take the vector at x + dx, find its components with
respect to the coordinate axes at x and then compare with the vector at x. The Γ
terms in the covariant derivative do this job of transplantation.

More formally
dAλ = Γλ

µνAµ dxν (8.3.1)

defines the parallel displacement of a vector.
Parallel displacement is easily visualized in two dimensions: one slowly moves the

vector along while keeping its orientation relative to the surface fixed. If we parallel-
displace through a closed path, we return to the same vector only if the surface is flat,
not if it is curved—see the Figures on pp. 164–165 of Schutz, or p. 39 of Binney.

8.4 Riemann-Christoffel tensor

For sufficiently smooth functions (which are all we will be concerned with) partial
derivatives commute. Covariant derivatives, on the other hand may not commute,
because the involve parallel displacement.

An interesting and important thing is that commutator of covariant derivatives
can be expressed in terms of a tensor.

Aµ
;αβ −Aµ

;βα = Rµ
δαβAδ (8.4.1)

where
Rµ

δαβ = Γµ
αδ,β − Γµ

βδ,α + Γµ
γβΓγ

αδ − Γµ
γαΓγ

βδ (8.4.2)

Derivation

Aµ
;αβ = Aµ

;α,β + Γµ
γβAγ

;α − Γγ
αβAµ

;γ

= (Aµ
,α + Γµ

αγAγ),β + Γµ
γβ(Aγ

,α + Γγ
αδAδ)

− Γγ
αβ(Aµ

,γ + Γµ
γδAδ)

= Aµ
,αβ + Γµ

αδ,βAδ + Γµ
αδAδ

,β + Γµ
δβAδ

,α + Γµ
γβΓγ

αδAδ

− Γγ
αβAµ

,γ − Γγ
αβΓµ

γδAδ

(8.4.3)

On substracting Aµ
;βα only the second and fifth terms in the last expression sur-

vive. tu

The expression Rµ
δβα in (8.4.2) is a tensor by the quotient rule. It is known as the

Riemann-Christoffel curvature tensor.
In a freely falling frame, the Γ are zero but their derivatives are not, and we have

Rαβµν = 1
2 (gαµ,βν − gαν,βµ + gβν,αµ − gβµ,αν) (8.4.4)

Derivation In a freely falling frame, expanding out the Γ derivatives gives

Rα
βµν = Γα

βµ,ν − Γα
βν,µ

= 1
2gασ(gσβ,µν + gσµ,βν − gβµ,σν − gσβ,νµ − gσν,βµ + gβν,σµ)

(8.4.5)

Here the first and fourth terms cancel, and lowering the first index gives (8.4.4). tu

8.3 Parallel displacement 8.4 Riemann-Christoffel tensor
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Although the Riemann-Christoffel tensor has 256 components, only 20 are indepen-
dent because of its many symmetries: Rαβµν is antisymmetric in α, β and in µ, ν, and
moreover Rαβµν = Rµναβ .

Derivation The symmetries are evident from the form of (8.4.4). Because of
the antisymmetries, there are 6 independent possibilities for the first pair of
indices and 6 for the last pair. But since the first and last pair of indices can
be swapped, that leaves 21 components. Finally, the identity

Rαβµν + Rανβµ + Rαµνβ = 0, (8.4.6)

also verifiable from (8.4.4) leaves 20 independent components. tu

The 20 independent components of the curvature hint that curvature has something to
do with gravity.

8.5 Ricci Tensor

Contractions of the Riemann-Christoffel tensor turn out to be important enough to
merit their own names. The Ricci tensor is defined as

Rµν = Rα
µαν

= Γα
αµ,ν − Γα

µν,α + Γα
βµΓβ

αν − Γα
αβΓβ

µν

(8.5.1)

Because of the symmetries, any other contraction would at most change the sign. The
Ricci tensor is symmetric.

A useful identity that slightly simplifies the the Ricci tensor is

Γα
αµ = (ln

√
),µ

√
means

√
det |gγδ| (8.5.2)

Derivation From (7.4.1) we have

Γα
αµ = 1

2gαβgαβ,µ (8.5.3)

Since gαβ is the inverse matrix of gαβ we have

gαβ =
1

det |gγδ|
∂

∂gαβ
det |gγδ| (8.5.4)

and hence

Γα
αµ = 1

2

∂gαβ

∂xµ

1

det |gγδ|
∂

∂gαβ
det |gγδ|

= 1
2

1

det |gγδ|
∂

∂xµ
det |gγδ| = (ln

√
),µ

(8.5.5)

(No sum over γ, δ in this derivation.) tu

A further contraction
R = gµνRµν (8.5.6)

is called the Ricci scalar.

8.4 Riemann-Christoffel tensor 8.5 Ricci Tensor
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8.6 The Bianchi identities

The Bianchi identity is

Rαβµν;λ + Rαβλµ;ν + Rαβνλ;µ = 0. (8.6.1)

Derivation Equation (8.6.1) with commas instead of semicolons (i.e., in a freely
falling frame) follows from the antisymmetry of Rαβµν with respect with µ, ν and the
commutativity of ordinary derivatives. We then replace commas with semicolons. tu

Contracting twice leads to

(Rµν − 1
2Rgµν);ν = 0 (8.6.2)

The tensor inside the brackets is called the Einstein tensor.

Derivation Contracting the Bianchi identity, thus

gβνgαµ(Rαβµν;λ + Rαβλµ;ν + Rαβνλ;µ) = 0 (8.6.3)

gives
gβν(Rβν;λ −Rβλ;ν + Rµ

βνλ;µ) = 0 (8.6.4)

because gαµ can go through a covariant derivative, and further

R;λ −Rν
λ;ν −Rµ

λ;µ = 0 (8.6.5)

and raising indices leads to (8.6.2). tu

8.6 The Bianchi identities 8.6 The Bianchi identities



9. Field Equations

We now introduce Einstein’s field equations, the last and most remarkable ingredient
of the General Theory of Relativity. The principle of equivalence told us the effect
of the gravitational field (i.e., the metric) on matter. The field equations specify that
gravitational field is generated.

9.1 Einstein’s field equations

In developments so far, we have come across two important second-rank tensors, both
symmetric and with zero divergence. One is the Einstein tensor, and it comes from
studying the geometry of spacetime, and its zero divergence is a geometrical identity.
The other is the energy-momentum tensor, and it comes from studying the dynamics
of matter and energy. The contents of the energy-momentum tensor depend on the
system. For dust we have (cf. equation 3.7.2)

Tαβ = γ2ρ

(
1 vj

vi vivj

)
(9.1.1)

for a perfect fluid we have (cf. equation 3.7.5)

Tαβ = γ2ρ

(
1 vj

vi vivj

)
+ p

(
0 0
0 δij

)
+ γ2p

(
v2 vj

vi vivj

)
(9.1.2)

and for electromagnetic field we have (cf. equation 5.8.6)

Tαβ =
(

1
2 (E2 + B2) (E×B)j

(E×B)i
1
2 (E2 + B2)δij − EiEj −BiBj

)
(9.1.3)

But in each case zero divergence (that is to say Tαβ
,β = 0) is a dynamical property.

Einstein’s field equations are the assertion that these two very different tensors are
in fact equal:

Rµν − 1
2Rgµν = −8πGTµν (9.1.4)

Here G is the Newtonian gravitational constant. (We could set G = 1 by a suitable
choice of units.) The proportionality constant is set so as to give the correct Newtonian
limit, which we will verify later.

Recall that Rµν consists of gµν and its first and second derivatives (quoting 8.5.1
and 7.4.1)

Rµν = Γα
αµ,ν − Γα

µν,α + Γα
βµΓβ

αν − Γα
αβΓβ

µν

Γµ
αβ = 1

2gµν (gνα,β + gβν,α − gαβ,ν)
(9.1.5)

Thus it is symmetric and therefore has 10 independent components. Thus, the field
equations are 10 second-order partial differential equations for the 10 independent com-
ponents of gµν . But the zero-divergence property expresses 4 relations between these
equations, so there are actually only 6 independent differential equations. This leaves
four degrees of freedom in gµν ; these are known as gauge conditions or coordinate
conditions and are analogous to the gauge freedom we found in the electromagnetic
field.

The field equations are not a consequence of anything that has come before. Ein-
stein just guessed that these equations describe the gravitational field. But we can gain
some understanding of why he guessed these particular equations by studying special
cases.

9.1 Einstein’s field equations
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The field equations are coupled nonlinear partial differential equations, so exact solu-
tions are very very hard to come by. But if the gravitational fields are not too strong,
meaning that gµν is not too different from ηµν , approximate solutions are fairly easy to
find and very useful.

10.1 Weak-field metrics

In the weak field regime, we write

gµν = ηµν + hµν

gµν = ηµν − hµν (10.1.1)

and neglect all terms of O(h2). We have

hµν = (numerically)hµν (10.1.2)

.

Derivation Taking gαβ = gαµgβνgµν to O(h) leads to

hαβ = hµνηαµηβν (10.1.3)

and nonzero terms survive only when α = µ and β = ν. tu

We have to be a little careful when using the weak field approximation. In particular
we have to restrict ourselves to nearly-inertial coordinates, otherwise (10.1.3) will not
apply. Also, not that while gµν is certainly a tensor, the separate pieces ηµν and hµν

may not be tensors. (See pp. 200–201 of Schutz for a longer discussion of this point.)
In the weak field approximation, the Ricci tensor simplifies considerably. Neglect-

ing O(h2) gives
Rµν = 1

2

[
hλ

λ,µν + hµν
,λ

,λ − hλ
µ,λν − hλ

ν,λµ

]
(10.1.4)

Derivation Using

Rµν = Γλ
λµ,ν − Γλ

µν,λ + O(h2)

Γγ
αβ = ηγδ

[
hαδ,β + hβδ,α − hαβ,δ

]
+ O(h2)

(10.1.5)

gives

Rµν = 1
2ηλσ

[
hλσ,µν + hµσ,λν − hλµ,σν

−hνσ,µλ − hµσ,νλ + hµν,σλ

]
+ O(h2)

(10.1.6)

and hence (10.1.4). tu

10.1 Weak-field metrics
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10.2 The harmonic gauge

We can simplify further by applying a gauge transformation. In the weak field regime
a gauge transformation is a coordinate transformation of the type

x′µ = xµ + εµ(x) (10.2.1)

where εµ is of O(h). It has the effect of changing the metric thus

h′µν = hµν − εµ,ν − εν,µ (10.2.2)

while leaving the Ricci tensor unchanged.

Derivation To derive (10.2.2), consider

g′µν =
∂x′µ

∂xα

∂x′ν

∂xβ
gαβ

=
(
δµ
α + εµ

,α

) (
δν
β + εν

,β

)(
ηαβ − hαβ

)
= ηµν − hµν + εµ,ν + εν,µ

(10.2.3)

Now inserting (10.2.2) into the Ricci tensor (10.1.4) we get

R′µν = Rµν + 1
2

[
− 2ελ

,λµν − εµ,ν
,λ

,λ − εν ,µ
,λ

,λ

+ ελ
,µλν + εµ

,λ
,λν + ελ

,νλµ + εν
,λ

,λµ

] (10.2.4)

and the extra terms all cancel. tu

A suitable gauge transformation will give us

Rµν = 1
2hµν

,λ
,λ (10.2.5)

This is known as the harmonic gauge and is analogous to the Lorentz gauge in
electromagnetism.

Derivation Under a gauge transformation

h′λµ,λ − 1
2h′λλ,µ = hλ

µ,λ − 1
2hλ

,λµ − ελ
,µλ − εµ

,λ
,λ + ελ

,λµ (10.2.6)

Here the third and fifth terms on the right cancel. Hence by choosing εµ such that

εµ
,λ

,λ = hλ
µ,λ − 1

2hλ
λ,µ (10.2.7)

we can make
h′λµ,λ − 1

2h′λλ,µ = 0 (10.2.8)

in which case three of the terms in (10.1.4) will cancel, and

R′µν = 1
2h′µν

,λ
,λ

from which (10.2.5) without loss of generality. tu

Writing ∇2hµν for hµν
,λ

,λ we get

∇2hµν = −16πG
(
Tµν − 1

2Tηµν

)
(10.2.9)

This is a wave equation, and has exactly the same form as the Maxwell’s equations
in (5.6.1). In particular it predicts the existence of gravitational waves, analogous to
electromagnetic waves. (But note that the electromagnetic equation 5.6.1 is exact,
whereas 10.2.9 is a weak-field approximation.)

10.2 The harmonic gauge 10.2 The harmonic gauge
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10.3 The Post-Newtonian metric

By this we mean the case of slow-moving matter. The leading term in the energy-
momentum tensor is simply

Tµν = ρ


1

0
0

0

 (10.3.1)

and (10.2.9) has the solution

hµν = −2Φ


1

1
1

1

 (10.3.2)

where Φ is the Newtonian potential, i.e., the solution of ∇2Φ = 4πGρ.

Derivation We have T = −ρ, leading to

∇2hµν = −8πGρ


1

1

1

1

 (10.3.3)

tu

The interval is

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)ηij dxi dxj (10.3.4)

The fact that g00 = −(1 + 2Φ) is enough to reproduce Newtonian dynamics in the
low-velocity limit (cf. equation 7.6.3). The (1 − 2Φ) term describes the leading order
deviations from Newtonian dynamics, and this approximation is often known as post-
Newtonian dynamics.

10.3 The Post-Newtonian metric 10.3 The Post-Newtonian metric
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10.4 Gravitational lensing

When we look for null-geodesics in the post-Newtonian metric, we find that gravity has
two interesting effects on light.

The first (though historically later) effect is the Shapiro time delay. The speed
of light is always the same, provided the correct metric is used to calculate distances.
But if we just use the Euclidean line element dl =

√
ηij dxi dxj then light seems to be

slowed down and light travel time increased, by

∆t = −2
∫

Φ dl (10.4.1)

Derivation Since for light, ds2 in (10.3.4) must be zero, we have

dt =
(

1− 2Φ

1 + 2Φ

) 1
2 √

ηij dxi dxj ' (1− 2Φ) dl (10.4.2)

tu

This effect is measurable in radar echos from other planets in the solar system, and is
one of the experimental tests of general relativity.

A useful interpretation of the Shapiro time delay is to think of light as travelling
through a medium of refractive index (1 − 2Φ). This makes a nice analogy with glass
lenses.

The second important effect is the deflection of light rays. A weak gravitational
field can cause only a very small change in light paths, but an effective transverse
acceleration of

d2x⊥
dt2

= −2
∂Φ
∂x⊥

(10.4.3)

is measurable.

Derivation To find a null geodesic, we use (7.5.1) but with a different parameter
σ in place of τ , and use ds2 = 0 as a constraint. (This is equivalent of 7.2.6.)
The parameter σ can later be eliminated in favour of t.

The Euler-Lagrange equations are

d

dσ

[
(1 + 2Φ)

(
dt

dσ

)]
= 0

d

dσ

[
(1− 2Φ)

(
dxk

dσ

)]
= −Φk

[(
dt

dσ

)2

+ ηij

(
dxi

dσ

)(
dxj

dσ

)] (10.4.4)

Using the ds2 = 0 condition, the second equation becomes

d2xk

dσ2
= −2Φk

(
dt

dσ

)2

+ O(h2) (10.4.5)

Now the first equation in (10.4.4) makes (dt/dσ) a constant at leading order.
Using this fact to change variables in (10.4.5) from σ to t and taking the
transverse part gives (10.4.3). tu

The deflection formula (10.4.3) is the basis of gravitational lensing, a trendy topic in
astrophysics.

10.4 Gravitational lensing 10.4 Gravitational lensing



11. The Schwarzschild Solution

There are very few known exact solutions of the field equations. Of these, the Schwarz-
schild solution is the best understood. It is the metric produced by a spherical mass.

The section on Kruskal-Szekeres coordinates is not examinable.

11.1 A static spherical system

To look for the metric produced by a spherical mass, we start by making an ansatz
(= a guess) that the metric is static and spherical. (We don’t know in advance that
any such solution exists, but if look for one we can at least expect to reach either an
inconsistency or a valid solution.)

With no gravity, the interval is

ds2 = −dt2 + dr2 + r2 dθ2 + r2 sin2 θ dφ2. (11.1.1)

With gravity, but if the metric is still static and spherical the metric will change, but
not that much. Static implies that replacing t by −t should make no difference, so no
terms odd in dt can appear in the interval. The angular part of the interval must be of
the form

gθθ(dθ2 + sin2 θ dφ2) (11.1.2)

with gθθ depending only on r, since every event is assumed to lie on the surface of a
sphere, and on a sphere the interval is of the form (11.1.2).

The above argument applies to any symmetric second-rank tensor derived from
gµν . In particular, the Ricci tensor must be

Rµν =


Rtt(r)

Rrr(r)
Rθθ(r)

sin2 θRθθ(r)

 (11.1.3)

because the scalar Rµν dxµ dxν must have the same static and spherical-symmetry prop-
erties as the interval.

For the metric tensor itself, we can simplify further: by redefining r we can make
gθθ anything we like, and we choose to make it r2. Thus the interval

ds2 = −eν(r) dt2 + eλ(r) dr2 + r2 dθ2 + r2 sin2 θ dφ2 (11.1.4)

actually expresses the most general static spherical metric.

A word of caution about the metric (11.1.4). The ‘radial’ coordinate r is effectively
defined not as the distance from the centre but as circumference by 2π of a circle at
constant r. A circle at constant r may not even have a centre—see the cover of Schutz.

11.1 A static spherical system
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11.2 Geodesics and Christoffel symbols

The condition ∫ (
−eν ṫ2 + eλṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

)
dτ stationary (11.2.1)

where dots denote d/dτ , gives the geodesic equations:

d

dτ

(
eν ṫ

)
= 0

d

dτ

(
eλṙ

)
+ 1

2ν′eν ṫ2 − 1
2λ′eλṙ2 − rθ̇2 − r sin2 θ φ̇2 = 0

d

dτ

(
r2θ̇

)
− r2 sin θ cos θ φ̇2 = 0

d

dτ

(
r2 sin2 θ φ̇

)
= 0

(11.2.2)

Simplifying, we can read off the nonzero Christoffel symbols:

Γt
tr = Γt

rt = 1
2ν′

Γr
tt = 1

2ν′eν−λ Γr
rr = 1

2λ′

Γr
θθ = −re−λ Γr

φφ = −r sin2 θ e−λ

Γθ
rθ = Γθ

θr = 1
r Γθ

φφ = − sin θ cos θ

Γφ
rφ = Γφ

φr = 1
r Γφ

θφ = Γφ
φθ = cot θ (11.2.3)

11.3 Ricci Tensor

We now have to put all the pieces from (11.2.3) into the Ricci tensor

Rµν = Γα
αµ,ν − Γα

µν,α + Γα
βµΓβ

αν − Γα
αβΓβ

µν (11.3.1)

Further, on inserting (11.1.4) in (8.5.2) we have

(ln
√

) = 1
2 (ν + λ) + 2 ln r + ln | sin θ| (11.3.2)

With all these substitutions, the Ricci tensor is

Rtt = − 1
2eν−λ

(
ν′′ + 1

2ν′2 − 1
2λ′ν′ + 2

ν′

r

)
Rrr = 1

2

(
ν′′ + 1

2ν′2 − 1
2λ′ν′ − 2

λ′

r

)
Rθθ = −1 + 1

2e−λr (ν′ − λ′) + e−λ

Rφφ = sin2 θ Rθθ

(11.3.3)

Derivation

Rtt = −Γr
tt ,r + 2Γr

ttΓ
t

tr − Γr
tt (ln

√
),r

Rrr = (ln
√

),rr − Γr
rr,r + Γt

rt
2 + Γr

rr
2 + Γθ

θr
2 + Γφ

φr
2 − Γr

rr (ln
√

),r

Rθθ = (ln
√

),θθ − Γr
θθ,r + Γr

θθΓθ
θr + Γθ

θrΓ
r

θθ + Γφ
θφ

2 − Γr
θθ (ln

√
),r

(11.3.4)

tu

11.2 Geodesics and Christoffel symbols 11.3 Ricci Tensor
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11.4 Solution for the metric

Outside our spherical mass, we have Tµν = 0, and hence the components in (11.3.3)
must be equated to zero.

Taking Rtt + Rrr = 0 we get λ′ + ν′ = 0, and thus λ + ν constant. Inspecting
(11.1.4) we see that we can set that constant to zero by rescaling t. Thus we have

λ = −ν (11.4.1)

Inserting (11.4.1) into (11.3.3) we get

Rtt = − 1
2

eν

r
(reν)′′

Rrr = 1
2

e−ν

r
(reν)′′

Rθθ = (reν)′ − 1

Rφφ = sin2 θ Rθθ

(11.4.2)

Now it is easy to see that the solution to Rµν = 0 is

eν = e−λ = 1− rs/r (11.4.3)

rs being a constant of integration. In other words, the metric is

ds2 = −(1− rs/r)dt2 +
dr2

1− rs/r
+ r2

(
dθ2 + sin2 θ dφ2

)
(11.4.4)

The constant rs is called the Schwarzschild radius. It must equal Gm where m is the
spherical mass, because we need gtt = 1 − 2Gm/r at large r to reproduce Newtonian
dynamics.

11.4 Solution for the metric 11.4 Solution for the metric
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11.5 Perihelion precession

We now consider the dynamics of a planet in the Schwarzschild metric, and the first
major success of general relativity.

The equations of motion of a planet (assumed too light to alter the metric) are the
geodesic equations (11.2.2).

We can integrate three of the four geodesic equations immediately. The third
equation says that θ̇ = 0 if θ = π/2. So we choose our axes such that

θ = 1
2π (11.5.1)

initially, and it will stay that way. The third equations says that

r2φ̇ = const = h (say). (11.5.2)

This is Kepler’s second law (a planet sweeps equal area in equal time) from classical
celestial mechanics, and as we see here it continues to hold in general relativity. The
first equation in (11.2.2) says that

(1− rs/r)ṫ = const = γ (say). (11.5.3)

Equations (11.5.1) and (11.5.2) are statements that angular momentum is conserved,
while (11.5.3) is a relativistic generalization of energy conservation.

We could continue now with the second equation in (11.2.2), but we get an easier
differential equation if we take (dτ/dτ)2 = 1 and substitute the metric and the above
constants of motion into it:

γ2 − ṙ2

1− rs/r
− h2

r2
= 1 (11.5.4)

We could integrate (11.5.4), but it is rather awkward. It gets simpler if we (i) change
the dependent variable from r to u = 1/r, and (ii) change the independent variable
from τ to φ. Then ṙ = −hu′ where a prime denotes d/dφ.

Derivation
ṙ = −u−2u̇ = −u−2φ̇u′ = −hu′ (11.5.5)

tu

We get

u′2 + u2 =
γ2 − 1

h2
+

rsu

h2
+ rsu

3 (11.5.6)

Differentiating, we get two equations: u′ = 0 (a circular orbit) and the more interesting

u′′ + u = 1
2rs/h2 + 3

2rsu
2 (11.5.7)

In classical celestial mechanics, the last term does not appear. (Which is still a
very decent approximation, because the constant 3

2rs is typically much smaller than
the constant 1

2rs/h2: ∼ 10−6 for Mercury) Also, in classical celestial mechanics, the

11.5 Perihelion precession 11.5 Perihelion precession
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constant 1
2rs/h2 is conventionally written as 1/(a(1− e2)). In other words we have the

equation
u′′ + u = a−1(1− e2)−1 (11.5.8)

which has the solution

r =
1
u

=
a(1− e2)
1− e cos φ

(11.5.9)

i.e., an ellipse with semi-major axis a, eccentricity e, and the sun at one focus.
We can’t solve exactly for the effect of the 3

2rsu
2 in (11.5.7) but we can get an

approximate solution using perturbation theory.

Digression: Perturbation theory There is general technique for approximately
solving differential equations like

d2x

dt2
+ x = A + εx2 (11.5.10)

where ε is small. (In this digression, x, t, τ have no spacetime significance, they are
just variables.) The trick is to expand our variables as power series in ε.

x = x0 + εx1

τ = t(1 + εk1) ⇒
d

dt
= (1 + εk1)

d

dτ

(11.5.11)

where k1 is a constant we are free to choose. We can go to any order in ε.

We substitute (11.5.11) in (11.5.10). Collecting terms without ε gives

d2x0

dτ2
+ x0 = A (11.5.12)

for which a solution is

x0 = A + B cos τ (11.5.13)

where B is an integration constant; the other integrations constant has been chosen
to eliminate a sin τ term.

Next we substitute (11.5.13) and (11.5.11) in (11.5.10), and collect terms of
O(ε):

d2x1

dτ2
+ x1 − 2k1B cos τ = A2 + 2AB cos τ + B2 cos2 τ (11.5.14)

Now, terms involving cos τ in the equation are dangerous, because they lead to terms
like 1

2τ sin τ in the solution for x1, which will make x1 blow up; terms like cos 2τ
in the equation only produce periodic terms in the solution. However, if we choose
k1 = −A (as we are free to do) then the dangerous terms cancel.

The solution for x to order ε is

x = A + B cos(t− εAt) + ε× 〈constant and periodic terms〉 (11.5.15)

We could find the periodic terms easily, and we can go to higher order too. But the
main effect of the εx2 term is an apparent slowing down of the unperturbed periodic
solution, by a factor (1− εA). tu
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Applying perturbation theory we get

r =
a(1− e2)
1− e cos φ̃

, φ̃ = φ

(
1−

3
2rs

a(1− e2)

)
(11.5.16)

which amounts to a forward-precessing ellipse.
Einstein did a version of the above calculation circa 1916 (using an approximate

metric—the Schwarzschild solution was still in the future) and found he could account
for the observed perihelion shift in Mercury. This was the first major success of his
theory.1 More recently, perihelion precession has been tested much more precisely in
binary pulsars, where the general relativistic effect is larger (∼ 10−4); Taylor and Hulse
received the Physics Nobel prize in 1993 for their work on general relativity in binary
pulsars.

11.6 The horizon

The surface r = rs is a strange place, and the simplest example of something relativists
call a horizon. First of all, gtt = 0, so the trajectory r = rs is null rather than spacelike.
Then, inside r = rs gtt and grr change sign, so r = const is spacelike and all timelike
trajectories have ṙ < 0. An observer inside r = rs is “carried down to r = 0 as surely
as you and I are carried into next year.”

Although grr becomes singular at r = rs, there is nothing singular about the
horizon itself. Inspecting the Christoffel symbols in (11.2.3), we can see that none of
them contain the dangerous eλ = 1/(1 − rs/r), so none of them or their derivatives
becomes singular at r = rs. Thus neither Rαβµν nor any contraction of it will be
singular. The singularity of grr is really only a coordinate singularity, and is just a
consequence of the fact that Schwarzschild coordinates happen to assign t = ∞ to any
event on the horizon. To see this, consider the geodesic for a particle falling radially to
r = rs. The coordinate time for reaching rs

t(rs) =
∫ rs

r0

dt

dτ

dτ

dr
dr (11.6.1)

is infinite, but the proper time

τ(rs) =
∫ rs

r0

dτ

dr
dr (11.6.2)

remains is finite.

Derivation Taking equations (11.5.3) and (11.5.4), and putting h = 0 for radial
geodesics, we have

dt

dτ
=

γ

1− rs/r
,

dr

dτ
=

√
γ2 + rs/r − 1 (11.6.3)

whence clearly the integral (11.6.1) will blow up but the integral (11.6.2) will
not. tu

1 Incidentally, you may find the observed precession of Mercury’s perihelion variously quoted as
43 arcsec/century, 532 arcsec/century and 5600 arcsec/century. The middle number is the correct one.
The large number arises because observations are made from the Earth, whose spin axis is precessing;
after correcting for that one gets the middle number. This precession is dominated by perturbation
from Jupiter (i.e., classical dynamics), and after subtracting that out one gets 43 arcsec/century, which
is the general relativistic effect.
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Thus, an observer can pass into a horizon in a finite time (provided they can withstand
the tidal forces). But not out again of course.

11.7 Kruskal-Szekeres coordinates

The cure for the coordinate singularity is a new coordinate system, the Kruskal-Szekeres
coordinates

r′ =
√

r/rs − 1 er/2rs cosh(t/2rs)

t′ =
√

r/rs − 1 er/2rs sinh(t/2rs)
or

r′ =
√

1− r/rs er/2rs sinh(t/2rs)

t′ =
√

1− r/rs er/2rs cosh(t/2rs)

(11.7.1)

where the upper or lower pair is adopted according to the sign of r/rs− 1. The interval
in these coordinates is

ds2 =
4rs

3

r
er/2rs

(
− dt′2 + dr′2

)
+ r2

(
dθ2 + sin2 θ dφ2

)
(11.7.2)

Note that in (11.7.2) r is not a coordinate but a function of t′, r′.

Derivation Differentiating (11.7.1) gives

dr′ =
er/2rs

2rs

√
r/rs − 1

(
(r/rs − 1) sinh(t/2rs)dt + r/rs cosh(t/2rs)dr

)
dt′ =

er/2rs

2rs

√
r/rs − 1

(
(r/rs − 1) cosh(t/2rs)dt + r/rs sinh(t/2rs)dr

)
or

dr′ =
er/2rs

2rs

√
1− r/rs

(
(1− r/rs) cosh(t/2rs)dt− r/rs sinh(t/2rs)dr

)
dt′ =

er/2rs

2rs

√
1− r/rs

(
(1− r/rs) sinh(t/2rs)dt− r/rs cosh(t/2rs)dr

)
(11.7.3)

and then taking −dt′2 + dr′2 we recover the first two terms in the Schwarzschild
interval. tu

There is no singularity at r = rs, but there is a singularity at r = 0.

Figure 11.1 shows a spacetime diagram in Kruskal-Szekeres coordinates and it
nicely summarizes Schwarzschild geometry.
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Figure 11.1: Spacetime diagram with Kruskal-Szekeres coordinates. Light rays are always
at 45◦ to the axes on this plot. (This is true in all special-relativity spacetime diagrams but not
always in general relativity.) Lines of constant r are hyperbolae; these are timelike if r > rs,
spacelike if r < rs. The hyperbola r = 0 is a singularity and is ‘the end of spacetime’. Lines
of constant t are straight lines through the origin. The limit of the constant-r and constant-t
curves is the horizon.

11.8 Black holes

The concept of a horizon—a surface on which dτ2 = 0 and which is one-way permeable
by timelike geodesics—is quite general and does not require spherical symmetry or
time-independence. The presence of a horizon is sort of a formal definition of a black
hole.

The most general stationary black hole—at least if there is no charge—has the
so-called Kerr metric, which is a rotating generalization of the Schwarzschild metric. A
Kerr black hole has several features not present in a Schwarzschild bkac hole, notably
an ergosphere, a region outside the horizon where all timelike geodesics are rotating.

There is a remarkable connection between horizons and thermodynamics. The two
most important aspects of this were discovered by Hawking.

The first is Hawking’s area theorem, which says that within general relativity the
area of a horizon can only increase, never decrease. So two black holes can merge and
produce a new horizon larger than either, but a black hole cannot split. This leads to
the interpretation of the area of the horizon as a sort of entropy.

The second aspect is about how the area of a black hole can decrease, which is
through quantum field theory. The effect originates in vacuum fluctuations. A vacuum
in quantum field theory is a very active place, where virtual particles are continually
created and destroyed. These particles cannot be directly observed because their energy
times their lifetime is below the bounds given by the uncertainty principle

∆E ∆t ≤ h/(4π) (11.8.1)

where h is Planck’s constant. If a pair of virtual particles is created just outside the
horizon, one of them may fall in before they annihilate each other again; the other
particle then has a chance to escape and become a real particle. The effect is of par-
ticles quantum tunnelling out through the horizon. For a black hole of mass M , the
characteristic energy of particles escaping in this way is(mPl

4π

)2 1
M

(11.8.2)
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where mPl =
√

hc/G = 5.46× 10−5g is known as the Planck mass.

Heuristic derivation We take the maximum distance a virtual pair can separate
in the lifetime allowed by (11.8.1) as half the circumference

1
2∆t = 2πGM (11.8.3)

and take ∆E as the typical energy. tu

Hawking actually found that black holes should radiate with a temperature correspond-
ing to the characteristic energy (11.8.2).
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12. Cosmology

In which General Relativity predicts an expanding universe.

12.1 The Cosmological Principle

The cosmological principle is that on large-enough scales and at a given time, the
universe looks the same everywhere and there are no distinguished directions, i.e., the
universe is homogeneous and isotropic. But the universe evolves with time.

This is a physical assumption. It could be wrong, but there is a fair body of
observational evidence that it is true. Hence it is a working hypothesis for most work
in cosmology at present.

What exactly ‘large-enough’ means is still uncertain, but it appears to be ∼> 108

light-years. On smaller scales, there are clear structures: clusters of galaxies, galaxies,
stars and so on. But the average properties (density, temperature, curvature, and so
on) over large volumes appear to be the same.

12.2 The Robertson-Walker Metric

The cosmological principle implies that the metric can be put in a rather simple form.
First we can set g00 = 1; it cannot depend on space, and any time-dependence we can
eliminate by redefining the time coordinate. Then we can set g0i = 0; this quantity
specifies a spatial direction and if it were impossible to set it to zero that would imply
a distinguished direction, contradicting isotropy. Also, homogeneity implies that the
time dependence is the same everywhere, so we can factor out the spatial and time
dependencies of the rest of the metric, thus

ds2 = −dt2 + a2(t) g̃ij(x) dxi dxj (12.2.1)

where a(t) is called the scale factor and g̃ij (and other symbols with tildes later in
this chapter) refer to 3D space. Further invoking isotropy at the origin, we can use
spherical polar coordinates and write

ds2 = −dt2 + a2(t)
(
eλ(r) dr2 + r2 dθ2 + r2 sin2 θ dφ2

)
(12.2.2)

Requiring the curvature to be constant further restricts the metric to the Robertson-
Walker form

ds2 = −dt2 + a2(t)
(

dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

)
(12.2.3)

Here k is a constant; we could make it one of −1, 0, 1 if we want to, by rescaling r.

Derivation Consider the case of a(t) = 1. We then have just the spherically sym-
metric metric (11.1.4) with ν = 0. Putting ν = 0 in the corresponding Ricci
tensor (11.3.3) and raising one index, we have

Rt
t = 0

Rr
r = −e−λ λ′

r

Rθ
θ = Rφ

φ = e−λ

(
1

r2
− 1

2

λ′

r

)
− 1

r2

(12.2.4)
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From this, the Ricci scalar is

R =
2

r2

((
re−λ

)′
− 1

)
(12.2.5)

This must be constant in space, and we set it to −6k. Integrating (12.2.5) gives

eλ =
1

1− kr2 + C/r
(12.2.6)

The integration constant C must be zero to avoid a singularity at the origin.
Substituting back in (12.2.4) gives

Ri
j = −2k δi

j (12.2.7)

Below we will call this R̃i
j , as it refers to a subspace of constant t. tu

12.3 Cosmological redshift

In our universe the scale factor a(t) is growing with time. We infer this because of an
observational consequence: cosmological redshift.

Light emitted at time temit and observed elsewhere at time tobs has its wavelength
increased by a factor

λobs

λemit
=

a(tobs)
a(temit)

(12.3.1)

The factor in (12.3.1) is conventionally written as 1 + z, and z is called the redshift.

Derivation Without loss of generality we can put the observer at the origin. This
means that observed light travels at constant θ, φ. Say the emitter is at r = remit.

Consider one wave crest in the light ray. Since ds2 = 0 for light∫ tobs

temit

dt

a(t)
=

∫ remit

0

dr√
1− kr2

(12.3.2)

For the next wave crest∫ tobs+δtobs

temit+δtemit

dt

a(t)
=

∫ remit

0

dr√
1− kr2

(12.3.3)

Since the right hand sides of (12.3.3) and (12.3.2) are the same, the left hand sides
must be equal, hence∫ temit

temit+δtemit

dt

a(t)
=

∫ tobs

tobs+δtobs

dt

a(t)
(12.3.4)

Assuming a(t) does not change much in δtemit or δtobs we have

δtemit

a(temit)
=

δtobs

a(tobs)
(12.3.5)

whence (12.3.1) follows because the speed of light remains unity. tu
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12.4 Ricci tensor

Under the cosmological principle, the Ricci tensor has only two independent compo-
nents.

Rtt = 3
ä

a

Rij = −
(

ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)
gij

(12.4.1)

Derivation From the condition∫ (
− ṫ2 + a2g̃ij ẋ

iẋj
)

dτ stationary (12.4.2)

we write down the geodesic equations

ẗ + ȧaẋiẋj = 0

g̃kj ẍ
j + 2(ȧ/a)g̃kj ṫẋ

j +
(
g̃kj,l − 1

2 g̃lj,k

)
ẋlẋj = 0

(12.4.3)

and (after multiplying the second of these by g̃ik) we read off the nonzero Christoffel
symbols

Γt
ij = ȧag̃ij Γi

tj =
ȧ

a
δi
j Γi

lj = Γ̃i
lj (12.4.4)

Substituting in the Ricci tensor

Rµν = Γα
αµ,ν − Γα

µν,α + Γα
βµΓβ

αν − Γα
µνΓβ

βα (12.4.5)

we get

Rtt = Γα
αt,t − Γα

tt ,α + Γα
βtΓ

β
αt − Γα

tt Γβ
βα

= Γi
it,t + Γi

jtΓ
j

it = 3(ȧ/a),t + 3(ȧ/a)2 = 3ä/a

Rti = Γα
αt,i − Γα

ti ,α + Γα
βiΓ

β
αt − Γα

ti Γβ
βα

= Γj
li Γ

l
jt − Γl

tiΓ
j

jl =
(
Γj
li δl

j − δl
iΓ

j
jl

)
(ȧ/a) = 0

Rij = R̃ij − Γt
ij ,t + Γt

liΓ
l

tj + Γl
tiΓ

t
lj − Γt

ijΓ
l

lt

= R̃ij − (ȧag̃ij),t + ȧag̃li
ȧ

a
δl
j +

ȧ

a
δl
iȧag̃lj − 3ȧag̃ij

ȧ

a

= R̃ij − (äa + 2ȧ2)g̃ij

(12.4.6)

Also, from (12.2.7) R̃ij = −2kg̃ij . tu
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12.5 Energy-momentum tensor

Under the cosmological principle, the energy-momentum tensor must be of the form

Tµ
ν =


−ρ

p
p

p

 (12.5.1)

This is because spatial isotropy implies that the spatial part must be a multiple of δi
j ,

and that T i
t = 0. Moreover ρ and p can depend only on t. Of course ρ(t) and p(t) are

just functions, but the form of (12.5.1) reminds us of the perfect fluid in (3.7.5). We
can expect that ρ and p will turn out to be density and pressure.

Because of homogeneity, there is only one nontrivial component to the equation
T β

α,β = 0, and that is for α = 0. This equation simplifies to

d

da
(a3ρ) = −3a2p (12.5.2)

Derivation

Tβ
t;β = Tβ

t,β − Γγ
βtT

β
γ + Γβ

βγT γ
t

= T t
t,t −

ȧ

a
δi
jT

j
i +

ȧ

a
δi
iT

t
t

= −ρ̇− 3
ȧ

a
p− 3

ȧ

a
ρ

(12.5.3)

where in the second line we have used the Christoffel symbols (12.4.4) and the fact
that Tβ

α is diagonal. Equating to zero gives (12.5.2). tu

The relation between ρ and p depends on what is in the universe.

(i) If it is dust (matter) dominated then p = 0 and (12.5.2) gives

ρ ∝ a−3 (12.5.4)

(ii) If it is radiation dominated, then p = 1
3ρ (see the energy-momentum tensor for

electromagnetism) and
ρ ∝ a−4 (12.5.5)

(iv) A third possibility is that the universe is dominated by a weird thing called ‘vacuum
energy’, which has p = −ρ. Note that pressure is negative in this case. It gives

ρ = const (12.5.6)

For historical reasons, this third case is sometimes known as the cosmological
constant.
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12.6 The Friedmann equation

The energy momentum tensor (12.5.1) and the Ricci tensor (12.4.1) both have two
independent components. We can now combine them in the field equations. (If they
had unequal numbers of independent components, it would mean that the cosmological
principle was inconsistent with the field equations.)

The field equations reduce to the single equation

ȧ2 + k =
8πG

3
ρa2 (12.6.1)

This is known as the Friedmann equation. Friedmann developed the idea of an evolving
universe circa 1922.

Derivation From (12.5.1) we can express Tµν − 1
2Tgµν as

T00 − 1
2Tg00 = 1

2 (ρ + 3p)

Tij − 1
2Tgij = 1

2 (ρ− p)gij

(12.6.2)

Combining (12.6.2) and (12.4.1) gives

3
ä

a
= −4πG(ρ + 3p)

ä

a
+ 2

ȧ2

a2
+ 2

k

a2
= 4πG(ρ− p)

(12.6.3)

and we can eliminate ä between these two equations. tu

It is usual to define a ‘critical density’

ρcrit =
3

8πG

(
ȧ

a

)2

(12.6.4)

in which case (12.6.1) becomes

ȧ2 + k =
ρ

ρcrit
ȧ2 (12.6.5)

This shows that k is negative, zero, or positive (and recall that we can make one of
−1, 0, 1 by choosing units of length suitably) according to whether ρ is less than, equal
to, or greater than ρcrit. Thus k, which is a geometrical constant appearing in the
metric, is connected to the density ρ.

At present ȧ > 0, i.e., we live in an expanding universe. The sign of k is not known,
but the latest indications are that it is zero.

12.7 Conformal time

Sometimes it is convenient to introduce a variable η [unrelated to the ηαβ of special
relativity] such that

dη = a dt (12.7.1)

and η is called the conformal time. The Robertson-Walker metric then takes the form

ds2 = a2(η)
(
−dη2 +

dr2

1− kr2
+ r2 dθ2 + r2 sin2 θ dφ2

)
(12.7.2)
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