
1. Introducing Galaxies

Galaxies are a slippery topic in astronomy at present. Galaxies are much less well
understood than say stars; certainly our understanding is changing (and hopefully im-
proving) noticeably each year. The standard texts/references are Galactic Astronomy
by Binney and Merrifield, and Galactic Dynamics by Binney and Tremaine. The Phys-
ical Universe by Shu is more elementary, but very insightful and always repays reading.

The reason galaxies are difficult to understand is that they are made of three very
different kinds of things. There are stars of course, but there’s also the interstellar
medium (which produces stars, and is in turn fed by dying stars), and dark matter
(about which we know very little, except that it’s there). And these three all influence
each other. We’ll study each of these, and to a small extent how they influence each
other. Some galaxies (more of them in earlier epochs) have ‘active nucleii’ which can
vastly outshine the starlight, but we won’t go into that—we’ll confine ourselves to
‘normal’ galaxies.

There are three broad categories of galaxies:

Disc galaxies

These have masses of 106M� to 1012M�. The discs brightness tend to be roughly
exponential, i.e.,

I(R) = I0 exp[−R/R0] (1.1)

I0 is ∼ 102L� pc−2. The scale radius R0 is ' 4 kpc for the Milky Way. The visible
component is ' 95% stars (dominated by F and G stars for giant spirals), and the rest
dust and gas. The more gas-rich discs have spiral arms, and arms are regions of high
gas density that tend to form stars; clumps of nascent stars are observed as H II regions.
Disc galaxies have bulges which appear to be much the same as small ellipticals. All
disc galaxies seem to be embedded in much larger dark halos; the ratio of total mass to
visible stellar mass is ' 5, but we don’t really have a good mass estimate for any disc
galaxy.

Elliptical galaxies

These have masses from 106M� to 1012+M�. There are various functional forms around
for fitting the surface brightness, of which the best known is the de Vaucouleurs model

I(R) = I0 exp
[
−(R/R0)

1
4

]
. (1.2)

with I0 ∼ 105L� pc−2 for giant ellipticals. (To fit to observations, one typically un-
squashes the ellipses to circles first. Also, the functional forms are are only fitted
to observations over the restricted range in which I(R) is measurable. So don’t be
surprised to see very different looking functional forms being fit to the same data.) The
visible component is almost entirely stars (dominated by K giants for giant ellipticals),
but there appears to be dark matter in a proportion similar to disc galaxies. Ellipticals
of masses ∼< 1011M� rotate as fast as you’d expect from their flattening; giant ellipticals
rotate much slower, and tend to be triaxial—more on this later.

At the small end of ellipticals, we might put the globular clusters, even though
they occur inside galaxies rather than in isolation. These are clusters of masses from
104M� to 106.5M�, consisting exclusively of very old stars.
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Irregulars

Everything else! They tend to have strong emission lines, and their starlight is domi-
nated by B,A and F types. Basically, they look like they’ve just been shaken up and
are responding by forming stars.

Problem 1.1: Instead of functional forms for the surface brightness I(R), people sometimes
pick a functional form for the 3D density ρ(r). These are related by the projection

I(R) = 2

∫ ∞
R

rρ(r) dr√
r2 −R2

which is easily worked out numerically if not analytically.

A popular example are the Dehnen models:

ρ(r) =
q

4π

rq

r3(1 + r)q+1

where q is an adjustable parameter. Here the normalization is chosen so that ρ integrates to
unity. The special case of q = 1 (called the Jaffe model) is particularly important because it
is found to fit the observed I(R) of ellipticals at least as well as de Vaucouleurs’ profile.

What is the potential of a mass distribution with a Jaffe ρ(r)? [10]

The Dehnen models have an interesting limit as q → 0. What is it? [5]

Example [The fundamental plane for ellipticals] If we assume that all ellipticals have the
same constant mass to light ratio and the same form for the mass distribution (only scalable)
then M ∝ I0R2

0, where I0 is a characteristic surface brightness and R0 a characteristic radius.
The virial theorem implies M ∝ R0σ

2
0 where σ0 is a characteristic velocity dispersion (if we

assume dispersion dominates rotation). So under these assumptions we’d expect

R0I0σ
−2
0 = constant. (1.3)

Observationally, ellipticals are found to satisfy

R0I
0.9
0 σ−1.4

0 = constant (1.4)

to within observational uncertainties. In the space of logR0, log I0, log σ0, equation (1.4) is of
course a plane, and it is called the fundamental plane. Deviation from the virial prediction
presumably has something to do with varying mass to light, but nobody seems to have much
idea of why it’s a very good correlation in practice.

In diffuse dwarf ellipticals, I(R) falls off faster than in giant ellipticals or compact dwarf
ellipticals, so M ∝ I0R2

0, wouldn’t have the same proportionality factor. And observationally,
diffuse dwarf ellipticals don’t lie on the fundamental plane. tu

Problem 1.2: Suppose some category of galaxies has I(R) = I0 f(R/R0) with all galaxies
having the same I0 and function f but different galaxies having different R0. If the mass to
light is constant everywhere then show that

L ∝ v4

where L is the total luminosity and v is a characteristic velocity. [10]

For spirals, the L ∝ v4 relates the total light to the disc rotation velocity (as measured
in radio or infrared), and is called the Tully-Fisher relation. In ellipticals (with v identified
with the velocity dispersion) it is called the Faber-Jackson relation. Tully-Fisher is important
in distance scale work.
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Hubble types

On the whole, galaxy classification probably shouldn’t be taken as seriously as stel-
lar classification, because there isn’t (yet) a clear physical interpretations of what the
gradations mean. But some physical properties do clearly correlate with the so-called
Hubble types, so it’s worth learning about these at least.

Figure 1.1: The tuning fork diagram of Hubble types.

Figure 1.1 shows the Hubble types. Ellipticals go on the left, labelled as En, where
n = 10(1− 〈axis ratio〉). Then the lenticulars or disc galaxies without spiral arms: S0
and SB0. Then spirals with increasingly spaced arms, Sa etc. if unbarred, SBa etc. if
barred.

The left ones are called early types, and the right ones late types. People once
thought this represented an evolutionary sequence, but that’s long been obsolete. (Our
current understanding is that, if anything, galaxies tend to evolve towards early types.)
But the old names are still used.

We never see ellipticals flatter than about E7. The reason (as indicated by sim-
ulations and normal mode analyses) seems to be that a stellar system any flatter is
unstable to buckling, and will eventually settle into something rounder.

Note that bulges get smaller as spiral arms get more widely spaced. Theory for
spiral density waves predicts that the spacing between arms is proportional to the disc’s
mass density.
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Handwaving dynamics

Stars are so compact on the scale of a galaxy that a stellar system behaves like a
collisionless fluid (except in the cores of galaxies and globular clusters), resembling a
plasma in some respects. Gas and dust are collisional. This leads to two very important
differences between stellar and gas dynamics in a galaxy.

1) Gas tends to settle into discs, but stars don’t.
2) Gravity must be balanced by motion in stellar and gas dynamics, but in equilib-

rium gas must follow closed orbits (and in the same sense), but stars in general
don’t. Two streams of stars can go through each other and hardly notice, but
two streams of gas will shock (and probably form stars). You could have a disc
of stars with no net rotation (just reverse the directions of motion of some stars),
but not so with a disc of gas. People sometimes speak of ‘rotation-support’ and
‘pressure-support’ balancing self-gravity. Pressure support refers to the high veloc-
ity dispersion (compensating for low net-rotation) that comes from reversing stellar
motions; this stellar dynamical pressure needn’t be isotropic. Observationally gas
dispersions are never more than ' 10 km/sec while stellar dispersions can easily be
' 300 km/sec.
We can start putting together a general picture now. (The rest of this paragraph

varies from well-accepted to controversial to wildly speculative, so don’t take it too seri-
ously.) Primordial gas will tend to form rotating discs. Differential rotation in the discs
will cause spiral density waves, enhancing density along spiral arms and preferentially
forming stars. A bulge-less stellar disc is actually unstable to buckling, and produces
a bulge with part of its mass. (That’s what simulations indicate.) A bulge formed
this way will be rotationally supported like the disc that gave rise to it. Meanwhile
the disc will continue to form stars, so disc stars will tend to be younger than a bulge
stars. Discs that have turned almost all their gas into stars will have stellar discs, but
no spiral arms. Now, a disc galaxy can be disrupted by the gravitational influence of
another galaxy. It can be a merger of two or more galaxies, or the tidal disruption of
a single galaxy; both tending to disrupt discs and produce irregulars with much star
formation, then ellipticals. Disruptions of single galaxies will tend to produce rotation-
ally supported ellipticals; but for mergers the angular momentum vectors will tend to
cancel, producing pressure support. So we might expect giant ellipticals to be pressure
supported. But even a completely gas-free elliptical will generate gas from its dying
stars. This second-generation gas will of course settle into discs, and there we might
see spiral arms all over again. . .And all this while, dark matter (whatever it is) will be
finding gravitational potential wells in the neighbourhood of galaxies and form halos
(sort of like polarization clouds) around them.

Note, by the way, that all galaxies appear to have some stars ∼ 1010yr old. Ev-
idently galaxies all formed fairly early, though they have merged or been otherwise
disrupted much more recently.

To end this introductory chapter, let’s look at a picture that says rather a lot—it’s a
very deep photograph of the Sombrero galaxy: Figure 1.2. (You may have across a
gorgeous colour poster of this galaxy.) Is it an elliptical with a large embedded disc or
a spiral or lenticular with an extra large bulge? But in Figure 1.2 the main galaxy is
just an inset within a much larger dark halo. And what is that diffuse fan to the NE
and the loop to the SW? Almost certainly traces of past encounters with other galaxies.
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Figure 1.2: A recent deep photograph by David Malin of the Sombrero galaxy (aka M 104
and NGC 4594) with a ‘normal’ image inset to the same scale. The scale bar is 30′.



2. Stellar Dynamics

A system of stars behaves like a fluid, but one with unusual properties. In a normal
fluid two-body interactions are crucial in the dynamics, but stellar encounters are very
rare. Instead stellar dynamics is mostly governed by interaction of individual stars with
the mean gravitational field of all the other stars.

The virial theorem

Before going into the main material on stellar dynamics, it is worth deriving this basic
result. It states for any system of particles bound by an inverse-square force law, the
time-averaged kinetic energy (say 〈T 〉) and the time-averaged potential energy (say
〈V 〉) satisfy

2 〈T 〉+ 〈V 〉 = 0. (2.1)

To prove this, consider the quantity

F =
∑
i

miẋi · xi (2.2)

where mi are the masses. Clearly

dF

dt
= 2T +

∑
i

miẍi · xi. (2.3)

If F is bounded then the long-time average 〈dF/dt〉 will vanish. Thus

2 〈T 〉+
∑
i

mi 〈ẍi · xi〉 = 0. (2.4)

If the system is gravitationally bound, we have

2 〈T 〉 −G
∑
ij

mimj

〈
(xi − xj)
|xi − xj |3

· xi
〉

= 0. (2.5)

Interchanging the dummy indices in the second term and adding, we have

2 〈T 〉 − 1
2G
∑
ij

mimj

〈
1

|xi − xj |

〉
= 0. (2.6)

But the second term is now just minus the total potential energy, which proves the
result (2.1).

The virial theorem provides an easy way to makes rough estimates of masses,
because velocity measurements can give 〈T 〉. But it is prudent to consider virial mass
estimates as order-of-magnitude only, because (i) generally one can measure only line-
of-sight velocities, and getting T = 1

2

∑
imiẋ2

i from there requires more assumptions
(e.g. isotropy of the velocity distribution); and (ii) the systems involved may not be in
a steady state, in which case of course the virial theorem does not apply—clusters of
galaxies are particularly likely to be quite far from a steady state.
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Two important time scales

Consider a stellar system of size R, having N stars each of mass m; the stars are
distributed roughly homogeneously, with v being a typical velocity, and the system is
in dynamical equilibrium. Then from the virial theorem

v2 ' NGm/R. (2.7)

The crossing time (sometimes called dynamical time)

Tcross =
R

v
='

√
R3

NGm
or

1√
Gρ

. (2.8)

The relaxation time is how long it takes for a star’s velocity to be changed significantly
changed from two-body interactions. To estimate this, consider first one encounter,
with a star going past another with impact parameter b. The change δv in the star’s
velocity due to this encounter is

δv = Gmb

∫ ∞
−∞

dt

(b2 + v2t2)
3
2

=
2Gm
bv

. (2.9)

(Note that this will be perpendicular to the direction of motion.) Next we consider all
the encounters in one crossing time with impact parameters in the range (b, b + db).
There are 2Nbdb/R2 of these, since the surface density of stars is N/(πR2). The δv’s
due these encounters will tend to cancel, so we add their squares and then integrate
over b to get the total change in v2 over one crossing time:

∆v2(Tcross) =
∫ R

bmin

(
2Gm
bv

)2 2N
R2

b db = 8N
(
Gm

Rv

)2

ln
(

R

bmin

)
. (2.10)

The relaxation time Trelax is the time needed for ∆v2 ' v2. Thus

Trelax =
v2

∆v2(Tcross)
× Tcross =

1
8N ln(R/bmin)

(Rv)3

(Gm)2
. (2.11)

It’s easier to remember Trelax in crossing times. Taking R/bmin ' N and then using
equation (2.7) to eliminate R, we get

Trelax

Tcross
' N

8 lnN
. (2.12)

Galaxies are ∼< 103Tcross old and have ∼> 106 stars, so stellar encounters have
negligible dynamical effect. In globular clusters, which may have ∼ 106 stars and be
∼ 105 crossing times old, stellar encounters start to become important, and in the cores
of globular clusters two-body relaxation is very important.

Problem 2.1: The v and m dependences of the relaxation time can actually be extracted
by a back of the envelope calculation.

Consider N stars of mass m each in a box of side R, and let these stars be fixed. Then
send another star through this box with speed v. How long does it take for the star to pass
near enough to another star that kinetic and two-body potential energies are equal? (Order
of magnitude only.) [15]
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Problem 2.2: Most researchers doing N -body simulations study the dynamics of galaxies,
but some study the dynamics of globular clusters. The latter group of people would seem to
have an easier job, because they can easily afford as many particles as there are stars, and they
don’t have to worry about gas dynamics. So you’d think that globular cluster dynamics would
have been cleaned up by now. But in fact, globular cluster dynamics has not been cleaned up,
and plenty of difficult research remains to be done. This problem is to work out why.

Consider a globular cluster and a galaxy, both ∼ 1010 yr old. The globular cluster has
size ∼ 100 pc and ∼ 106 stars with typical velocity 50 km s−1. The galaxy has ∼ 10 kpc
and ∼ 1010 stars with typical velocity 200 km s−1. Now let’s say both of these are simulated
using 106 particles. Can you see two reasons why the globular cluster simulation will be more
difficult? [10]

The collisionless Boltzmann equation

In the absence of two-body relaxation, stars move under the total gravitational field of
all other stars. This field depends only on location in space and we can express it by
the potential Φ(x). Thus the motion of any star is given by Hamilton’s equations

dx
dt

=
∂H

∂p
,

dp
dt

= − ∂H

∂x
, (2.13)

with Hamiltonian

H =
p2

2m
+ Φ(x). (2.14)

If you haven’t met Hamiltonian mechanics before, not to worry: you can easily verify
that equations (2.14) and (2.13) give the usual Newtonian equations; but remember
the form of equations (2.14).1 It’s very useful to consider the density of stars in 6-
dimensional ‘phase’ space (x,p); that density is called the distribution function and
denoted by f .

Since stars are conserved, f must satisfy a continuity equation:

∂f

∂t
+

∂

∂x
·
(
f
dx
dt

)
+

∂

∂p
·
(
f
dp
dt

)
= 0. (2.15)

Substituting from Hamilton’s equations gives

∂f

∂t
+
dx
dt
· ∂f
∂x

+
dp
dt
· ∂f
∂p
≡ df

dt
= 0. (2.16)

In Hamiltonian dynamics, (2.16) is known as Liouville’s theorem, but in stellar dynamics
it’s usually called the collisionless Boltzmann equation. Physically, it means that if you
move with a star, the phase space density around you stays constant. As the sun moves
inwards in the Galaxy, the stellar density around it will increase, but at the same time
the spread of stellar velocities around it will increase so as to keep phase space density
constant.

1 Hamiltonian dynamics is a beautiful subject in itself, and helps understand the relations—and
differences—between classical mechanics and optics, quantum mechanics, and quantum field theory.
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The collisionless Boltzmann equation, and the Poisson equation (which is the grav-
itational analogue of Gauss’s law in electrostatics) together constitute the basic equa-
tions of stellar dynamics:

df

dt
= 0, ∇2Φ(x) = 4πGρ(x). (2.17)

Example [N -body simulations] You have probably come across N -body simulations of stars
in galaxies. The particles in a galaxy simulation do not correspond to stars. They cannot,
they have too few particles (105 to maybe 108 particles max, versus maybe 1012 stars in the
galaxies being modelled). The appropriate interpretation of simulation particles is as Monte-
Carlo samplers of f . Simulation particles have to made collisionless artificially (since there
are comparatively few of them, the two-body relaxation time will be correspondingly shorter).

The standard way of doing this is to replace the 1/r gravitational potential by (r2 + a2)−
1
2 ,

which amounts to smearing out the mass on the ‘softening length’ scale a.

N -body simulations are widely used now to study the evolution of galaxies, and a trendy
research area at present is to incorporate gas dynamics in them. tu

Though f is a density in phase space, the full form of the collisionless Boltzmann
equation doesn’t have to be written in terms of x and p. We can express df/dt in any
set of six variables in phase space.

Example [Cylindrical coordinates] In terms of cylindrical coordinates R, φ, z and velocities
vR, vφ, vz we have

∂f

∂t
+ Ṙ

∂f

∂R
+ φ̇

∂f

∂φ
+ ż

∂f

∂z
+ v̇R

∂f

∂vR
+ v̇φ

∂f

∂vφ
+ v̇z

∂f

∂vz
= 0. (2.18)

To eliminate the dots we use the standard relations for velocity and acceleration components.
We have

Ṙ = vR, φ̇ =
vφ
R
, ż = vz

v̇R = − ∂Φ

∂R
+ v2

φ, v̇φ = − 1

R

∂Φ

∂φ
−
vRvφ
R

, v̇z = − ∂Φ

∂z
,

(2.19)

where we have noted substituted −∇Φ for the acceleration. tu

You should remember that f is always taken to be a density in six-dimensional phase
space, even in situations where it is a function of fewer variables. For example, if f
happens to be a function of energy alone, it is not the same as the density in energy
space.
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Orbits

The trajectories of individual stars (sometimes just called orbits) is in general highly
chaotic. This can be so even if there is no collective motion at all (f in equilibrium).
Actually, it’s not difficult to appreciate why. Think about making bread, the baker’s
dough being a sort of fluid. Dough is incompressible, but that doesn’t prevent you
stretching it in one direction and shrinking it in others, and then folding it back. So
while the dough keeps much the same shape, initially nearby particles within it can be
dispersed to widely different parts of it, through the repeated stretching and folding.
The same stretching and folding operation can take place in phase space. In fact it
appears that phase space is typically riddled with regions where f gets stretched in one
directions while being shrunk in others. Thus nearby orbits tend to diverge, and the
divergence is exponential in time, which is the technical definition of chaos in dynamical
systems. Simulations suggest that the e-folding time of the divergence is comparable
to Tcross, and gets shorter the more particles there are.

In some special situations, there is no chaos, and the system is said to be ‘inte-
grable’. If the dynamics is confined to one real-space dimension (hence two phase-space
dimensions) then no stretching-and-folding can happen, and orbits are regular. So in a
spherical system all orbits are regular. In addition, there are certain potentials (usually
referred to as Stäckel potentials) where the dynamics decouples into three effectively
one-dimensional systems; so if some equilibrium f generates a Stäckel potential, the
orbits will stay chaos-free. Also, small perturbations of non-chaotic systems tend to
produce only small regions of chaos,2 and orbits may be well described through pertur-
bation theory.

In integrable systems there are significant simplifications. Each orbit is (i) confined
to a three-dimensional toroidal subspace of six-dimensional phase space, and (ii) fills
its torus evenly.3 Phase space itself is filled by nested orbit-carrying tori—they have to
be nested, since orbits can’t cross in phase space. Therefore the time-average of each
orbit is completely specified once we have specified which torus it is on; this takes three
numbers for each orbit, and these are called ‘isolating integrals’—they are constants
for each orbit of course. Think of the isolating integrals as a coordinate system that
parametrizes orbital tori; transformations to a different set of isolating integrals is like
a coordinate transformation.

If isolating integrals exist, then any f that depends only on them will automati-
cally satisfy the collisionless Boltzmann equation. Conversely, since orbits fill their tori
evenly, any equilibrium f cannot depend on location on the tori, it can only depend
on the tori themselves, i.e., on the isolating integrals. This result is known as Jeans’
theorem.

You should be wary of Jeans’ theorem, especially when people tacitly assume it,
because as we saw, it assumes that the system is integrable, which is in general not the
case.

2 If you ever come across the ‘KAM theorem’, that’s basically it.

3 These two statements are important results from Hamiltonian dynamical systems which we won’t
try to prove here. But the statements that follow in this section are straightforward consequences of
(i) and (ii).
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Spherical systems

In spherical systems Jeans’ theorem does apply, so f can depend on (at most) three
integrals of motion. The simplest case is for f to be a function of energy E = 1

2v
2 + Φ

only. (Since we are considering bound systems, f = 0 for E < 0 always.) To find an
equilibrium solution, we only have to satisfy Poisson’s equation.

We’ll take G = 1 for this section, to simplify the expressions a bit. Poisson’s
equation is now

1
r2

d

dr

(
r2 dΦ

dr

)
= (4π)2

∫ √−2Φ

0

f
(

1
2v

2 + Φ
)
v2 dv. (2.20a)

We can also replace the integral over v by an integral over E:

1
r2

d

dr

(
r2 dΦ

dr

)
= (4π)2

√
2
∫ 0

Φ

√
E − Φ f(E) dE (2.20b)

In (2.20a) we take f(E) as given and try to solve for Φ and hence ρ(r); this is a nonlinear
differential equation. In (2.20b) we take Φ as given, and try to solve for f(E); this is a
linear integral equation.

There are f(E) models in the literature, and you can always concoct a new one by
picking some ρ(r), computing Φ(r) and then solving (2.20b) numerically. Note that the
velocity distribution is isotropic for any f(E). If f depends on other integrals of motion,
say angular momentum L or its z component, or both—thus f(E,L2, Lz)—then the
velocity distribution will be anisotropic, and there are many examples of these around
too.

Example [Two spherical isotropic distribution functions] The Plummer model has

Φ(r) = −(r2 + a2)−
1
2 , ρ(r) = −3a2

4π
Φ5, (2.21)

and the distribution function

f(E) =
24
√

2a2

7π3
(−E)

7
2 . (2.22)

can be verified by inserting in (2.20a). Because of the simple functional forms, the Plummer
model is occasionally useful for doing rough calculations, but the r−5 density profile is much
steeper than elliptical galaxies are observed to have.

The isothermal sphere is defined by analogy with a Maxwell-Boltzmann gas, as

f(E) =
ρ0

(2πσ2)
3
2

exp
(
− E
σ2

)
=

ρ0

(2πσ2)
3
2

exp

(
−v

2 + Φ

σ2

)
, (2.23)

and σ2 is like a temperature. Integrating over velocities gives

ρ = ρ0 exp
(
− Φ

σ2

)
. (2.24)

Using this, Poisson’s equation becomes

d

dr

(
r2 d ln ρ

dr

)
= −4π

σ2
r2ρ, (2.25)

for which the solution is

ρ(r) =
σ2

2πr2
, (2.26)

or σ2/(2πGr2) if we put back the G. The isothermal sphere has infinite mass! (A side effect
of this is that the boundary condition Φ(∞) = 0 cannot be used, which we why we needed the
redundant-looking constant ρ0 in (2.24) and (2.23).) Nevertheless, it is often used as a model,
with some large-r truncation assumed, for the dark halos of disc galaxies. tu
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The same ρ(r) can be produced by many different f , all having different velocity dis-
tributions.

The Jeans equations

Phase space quantities are hard to measure. Much more often we have information only
about averages, e.g., bulk velocities and velocity dispersions. So it is useful to derive
equations for the quantities

ρ =
∫
f d3v,

ρ 〈vi〉 =
∫
vi f d

3v,

ρσij =
∫

(vi − 〈vi〉)(vj − 〈vj〉) f d3v.

(2.27)

by taking moments of the collisionless Boltzmann equation (expressed in the cartesian
variables xi and vi).

Consider first the zeroth moment∫ (
∂f

∂t
+ vi

∂f

∂xi
− ∂Φ
∂xi

∂f

∂vi

)
d3v. (2.28)

If we integrate the last term by parts (equivalently, apply the divergence theorem) and
assume that f and its derivatives vanish for large enough v, the term vanishes. In the
middle term we can take the gradient outside the integral. This gives us

∂ρ

∂t
+
∂ρ 〈vi〉
∂xi

= 0, (2.29)

which is a continuity equation.
Now we consider the first moment∫ (

vi
∂f

∂t
+ vivj

∂f

∂xj
− ∂Φ
∂xj

vi
∂f

∂vj

)
d3v. (2.30)

Again, we integrate the last term by parts, and since∫
vi
∂f

∂vj
d3v = −

∫
δijf d

3v,

we get
∂ρ 〈vi〉
∂t

+
∂ρ 〈vivj〉
∂xj

= −ρ ∂Φ
∂xi

. (2.31)

From this we subtract 〈vi〉 times the continuity equation, and then substitute

〈vivj〉 = σij + 〈vi〉 〈vj〉 ,

to get

ρ
∂ 〈vi〉
∂t

+ ρ 〈vj〉
∂ 〈vi〉
∂xj

= −ρ ∂Φ
∂xi
− ∂ρσij

∂xj
, (2.32)
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which is the same as4

d 〈v〉
dt

= −∇Φ− 1
ρ
∇ · (ρσ). (2.33)

Finally we have an equation that reminds us of ordinary fluid dynamics but also shows
us why a stellar fluid is different. An ordinary fluid has

d 〈v〉
dt

= −∇Φ− p

ρ
+ viscous terms. (2.34)

where the pressure p arises because of the high rate of molecular encounters, which also
leads to the equation of state, and p is isotropic. In a stellar fluid ∇ · (ρσ) behaves like
a pressure, but it is anisotropic. A related fact is that in the flow of an ordinary fluid
the particle paths and streamlines coincide, whereas stellar orbits and the streamlines
〈v〉 do not generally coincide.

Example [Useful forms of the hydrodynamic equation] In a steady state axisymmetric system
like a disc galaxy we use cylindrical coordinates, and then ∂/∂t = ∂/∂φ = 0. Neglecting 〈vR〉
and 〈vz〉 (which is realistic), we have

1

R

∂

∂R
(RρσRR) +

∂

∂z
(ρσRz)− ρ

R

(〈
vφ
〉2

+ σφφ

)
= −ρ ∂Φ

∂R
,

∂

∂z
(ρσzz) +

1

R

∂

∂R
(RρσRz) = −ρ ∂Φ

∂z
.

(2.35)

For a steady state spherical system, we use spherical polar coordinates, so ∂/∂θ = ∂/∂φ =
0, and then neglect 〈vr〉 and 〈vθ〉. Then we have

d

dr
(ρσrr) +

ρ

r

[
2σrr −

(
σθθ + σφφ +

〈
vφ
〉2)]

= −ρ dΦ

dr
. (2.36)

These forms are quite useful. Note that Φ is the total potential but ρ, 〈v〉 , 〈σ〉 could be
for any subpopulation.

As a simple test to see if this apparatus really does work, let us make a crude model of
the Milky way halo. We take Φ = v2

0 ln r, assume σ is constant and isotropic with all diagonal
components = σ2 (say). Then we say ρ ∝ r−n and

〈
vφ
〉

= 0. This gives σ = v0/
√
n. For

the Milky Way halo, ρ ∝ r−3.5, v0 as measured from gas on circular orbits is 220 km/sec, and
rotation is negligible. So we expect σ ' 120 km/sec. And it is. tu

Problem 2.3: An E0 galaxy has a total density distribution

ρtot(r) =
ρ0

1 + r2/a2
.

Show that the enclosed mass M(r) ∝ r3 for r � a and M(r) ∝ r for r � a. [3]

Now take a population of massless test particles in the potential of this galaxy. Assume
that this population is spherical, non-rotating, isothermal and isotropic, with velocity disper-
sion σ in each velocity component. What is the radial density distribution of this test particle
population? [8]

At large r the test particle distribution simplifies and its form depends on a dimensionless
number. Give a physical interpretation of this number. What is the condition that the density
distributions of the test particle population and the galaxy itself have similar forms ar large
r? [7]

4 Note that d/dt is not ∂/∂t, but
d

dt
≡

∂

∂t
+ v · ∇

sometimes called the convective derivative; also sometimes written as D/Dt to emphasize that it’s not
∂/∂t.



3. The Interstellar Medium

The interstellar medium (ISM) is a mixture of the primordial gas left over from galaxy
formation and the material spewed out by dying stars. It is only a few percent of a
galaxy’s mass, and very very diffuse (∼< 103 atoms cm−3). But it is very important
because it is the stuff that forms stars. It is also the site of varied physical processes
that make it observable and fascinate the people studying them.

Gas

Under laboratory conditions, spectral lines with low transition probabilities are ‘forbid-
den’ because the excited states get collisionally de-excited before they can radiate. In
the ISM, collisional times are typically much longer than the lifetimes of excited states
with only forbidden transitions. So forbidden lines are observable from the ISM, and in
fact they can dominate the spectrum.

Cold gas emits only in radio, and the most important ISM line of all is the 21 cm line
of atomic hydrogen (H I). It comes from the hyperfine split ground state of the hydrogen
atom (split because of the coupling of the nuclear and electron spins). The spin flip
transition itself cannot be observed in a laboratory, but the split ground state shows
up in the hyperfine splitting of the Lyman lines. H I is observed in both emission or in
absorption against a background continuum source. One of the uses of H I observations
is to measure rotation velocities of gas. Molecular hydrogen (H2) has no radio lines,
which is unfortunate, since it prevents the coldest and densest parts of the ISM being
absorbed directly. What saves the situation somewhat is that CO has strong lines at
1.3 mm and 2.6 mm from transition between rotational states, and CO gets used as a
tracer of H2.

Hot gas is readily observed in optical. An important kind of object are H II re-
gions, which partially ionized hydrogen surrounding a very hot young star or stars (O
or B). Hot stars produce a large flux of ultraviolet photons, and any Lyman contin-
uum photons(i.e., λ < 912 Å) will photoionize hydrogen. The ionized hydrogen then
recombines. But it doesn’t have to recombine into the ground state, it can recombine
into an excited state and then radiatively decay after that. This process produces a
huge variety of observable lines and continuums, of Lyman, Balmer and on through the
infrared and into radio. Of each series, the longest wavelength (or α) line will be the
strongest, because the transition rate from principal quantum number n is strongest
to n− 1. Atoms in H II regions can also be collisionally excited. Atomic hydrogen has
no levels accessible at collision energies characteristic of H II regions (T ∼ 104 K) but
N II, O II, S II, O III, Ne III all do. The [O III] lines at 4959Å and 5007Å are particularly
prominent.

A planetary nebula is like a compact H II region, except that it surrounds the
exposed core of a highly evolved star rather than a hot young star. Because of their
bright emission lines and compactness, planetary nebulae can be detected from much
greater distances than individual ordinary stars; they are used as sort of tracers of stars.

The photoionization and recombination process in H II regions and planetary neb-
ulae produces, by a happy accident, one Balmer photon for each Lyman continuum
photon from the hot star, so the UV flux can be measured by observing an optical
spectrum. The reason is basically that the gas is opaque to Lyman photons and trans-
parent to other photons, since almost the H atoms are in the ground state. A Lyman

14
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continuum photon initially from the star will get absorbed by a hydrogen atom, produc-
ing a free electron. This electron will then be captured into some bound state. If it gets
captured to the ground state we are back where we started (with a ground state atom
and a Lyman continuum photon), so consider the case where the electron is captured
to some n > 1 state. Such a capture releases a free-bound continuum photon which
then escapes, and leaves an excited state which wants to decay to n = 1. If it decays
to n = 1 bypassing n = 2, it will just produce a Lyman photon which will get almost
certainly get absorbed again. Only if it decays to some n > 1 will a photon escape. In
other words, if the decay bypasses n = 2 it almost always gets another chance to decay
to n = 2 and produce a Balmer photon that escapes. The Lyα photons produced by
the final decay from n = 2 to n = 1 random-walk through the gas as they get absorbed
and re-emitted again and again. The total Balmer photon flux thus equals the Lyman
continuum photon flux. One can then place the source star in an optical-UV colour
magnitude diagram, and determine a colour temperature which is called the Zanstra
temperature in this context.

H II regions and planetary nebulae also produce thermal continuum radiation. The
process that produces this is free-free emission: free electrons in the H II can interact
with protons without recombination, and the acceleration of the electrons in this process
produces radiation. (Electrons can interact with other electrons in similar fashion as
well, but this produces no radiation because the net electric dipole moment doesn’t
change.) The resulting spectrum is not blackbody because the gas is transparent to
free-free photons. In fact the spectrum is quite flat at radio frequencies—this is the
same thing as saying that the time scale for free-free encounters is � 1/ν for radio
frequency ν.

When an interstellar gas cloud is seen in front of a continuum source, it produces
an enormous variety of absorption lines and bands, by no means all of them well un-
derstood. Perhaps the most puzzling ones are the so-called diffuse interstellar bands
in the infrared; apparently these are similar to what you get if you take bacteria out
of the river at Cardiff and stick them in a spectrograph, which led to some interesting
speculations some years ago. . .

Example [Cold interstellar CN] Here is a really cute (and slightly poignant) example of
what interstellar absorption lines can do for you. Like most heteronuclear molecules, CN has
rotational modes which produce radio lines. The radio lines can be observed directly, but
more interesting are the optical lines that have been split because of these rotational modes.
Observations of cold CN against background stars reveal, through the relative widths of the
split optical lines, the relative populations of the rotational modes, and hence the temperature
of the CN. The temperature turns out to be 2.73 K, i.e., these cold clouds are in thermal
equilibrium with the microwave background. The temperature of interstellar space was first
estimated as ' 3 K in 1941, well before the Big Bang predictions of 1948 and later, but nobody
made the connection at the time. tu

In the highest density H II regions (∼ 108 cm−3), either very near a young star, or
in a planetary-nebula-like system near the evolved star, population inversion between
certain states becomes possible. The overpopulated excited state then decays by stim-
ulated emission, i.e., it becomes a maser. An artificial maser or laser uses a cavity
with reflecting walls to mimic an enormous system, but in an astrophysical maser the
enormous system is available for free; so an astrophysical maser is not directed per-
pendicular to some mirrors but shines in all directions. But as in an artificial maser,
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the emission is coherent (hence polarized), with very narrow lines and high intensity.
Masers from OH and H20 are known. Their high intensity and relatively small size
makes masers very useful as kinematic tracers.

Finally, we’ll just briefly mention synchrotron radiation, which you’ll cover in more
detail in the high-energy astrophysics part. It’s a broad-band non-thermal radiation
emitted by electrons gyrating relativistically in a magnetic field, and can be observed
in both optical and radio. The photons are emitted in the instantaneous direction of
electron motion and polarized perpendicular to the magnetic field. The really spectac-
ular sources of synchrotron emission are systems with jets (young stellar objects with
bipolar outflows, or active galactic nuclei). It is synchrotron emission that lights up the
great lobes of radio galaxies.

Dust

Interstellar dust consists of particles of silicates or carbon compounds; the largest are
' 0.5µm with ∼ 104 atoms, but some appear to have ∼< 102 atoms and thus might be
thought of as large molecules. Their nastiest property is that they absorb and scatter
light, and the observational effect of these two are known as extinction. (Extinction in
magnitudes is denoted as AV for V -band and so on.) Extinction gets less severe for
λ ∼> 1µm as the wavelength gets much longer than the grains, but it is worse for blue
than red right. Hence objects are said to be ‘reddened’ by interstellar extinction. Grains
are transparent to X-rays, though. From our location, extinction is worst along the
Milky Way disc, and the Galactic Centre is completely opaque to optical observations.

However, extinction by dust does one very useful thing for optical astronomers.
Spinning dust grains tend to align with their long axes perpendicular to the local
magnetic field. They thus preferentially block light perpendicular to the magnetic field.
Thus the observed polarization will tend to be parallel to the magnetic field. Hence
polarization measurements of starlight reveal the direction of the magnetic field (or at
least the sky-projection of the direction).

Dust also reflects light, with some polarization. This is observable as reflection
nebulae, where the stars cannot be seen (at least in optical) but faint diffuse starlight
can be seen as reflected by dust.

Light absorbed by dust will be reradiated as a blackbody-ish spectrum. Such a
spectrum is observed (from space, by IRAS) as diffuse emission superimposed on a re-
flected starlight spectrum, but the associated temperature is extremely high—∼ 103 K.
The interpretation is that some dust grains are so small (< 100 atoms) that a single
ultraviolet photon packs enough energy to heat them to ∼ 103 K, after which these
‘stochastically heated’ grains cool again by radiating, mostly in the infrared. This
process may be part of the explanation for the correlation between infrared and ra-
dio continuum luminosities of galaxies (e.g., at 0.1 mm and 6 cm), which seems to be
independent of galaxy type. The idea is that ultraviolet photons from the formation
of massive stars cause stochastic heating of dust grains, which then reradiate them to
give the infrared luminosity. The supernovae resulting from the same stellar popula-
tions produce relativistic electrons which produce the radio continuum as synchrotron
emission.
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Chemical enrichment

The birth and death of stars and what that does to the interstellar medium is a large
and very important subject. We won’t be able to do it any sort of justice, but just for
a sampler let’s discuss the effect on chemical evolution of the ISM.

Consider a region of a galaxy, small enough to be fairly homogeneous, but large
enough to contain a good sample of stars. Suppose at time t, the total mass of this
region is Mtotal, Mstars in stars and Mgas in gas; also say Mmetal is the part of Mgas in
metals. Thus the metallicity of the gas is

Z ≡ Mmetal

Mgas
. (3.1)

Now we consider the effect of forming some new stars over some time δt. This time is
longer than the time massive stars spend on the main sequence, so the newly formed
massive stars are supposed to have already gone supernova and spewed some more
metals into the ISM. Let δMstars be the change of stellar (or stellar remnant) mass, and
let the metal mass contributed to the ISM by this generation of stars be pδMstars (p
is known as the ‘yield’ and we will take it to be constant). We want to find the time
evolution of Z, from

δZ = δ

(
Mmetal

Mgas

)
=
δMmetal − ZδMgas

Mgas
(3.2)

We will assume that the system starts with only gas and at Z = 0.
The simplest approximation is the ‘closed box model’, where gas and stars neither

enter not leave this region of the galaxy. Then

δMmetal = pδMstars − ZδMstars = (p− Z)δMstars (3.3)

and
0 = δMtotal = δMstars + δMgas. (3.4)

Inserting these in equation (3.2) gives

δZ = −pδMgas

Mgas
, (3.5)

whence

Z = −p ln
(
Mgas(t)
Mgas(0)

)
. (3.6)

In other words,
Z = −p ln (gas fraction) .

Magellanic irregulars fit this reasonably well, and p is estimated to be' 0.0025. In spiral
galaxies, the gas fraction in the disc increases as we go outwards, and Z is observed to
decrease, though perhaps more steeply than this crude model predicts.

The closed box model can also be used to calculate the distribution of stellar
metallicities, because the metallicity of each star approximately indicates Z when that
star was formed. If we take all the stars now with metallicities less than some Z1, the
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sum of their masses equals Mstars(t) for the t when Z equalled Z1. To get Mstars(t) we
rewrite (3.5) as

δZ =
pδMstars

Mgas(0)−Mstars(t)
(3.7)

which gives
Mstars(t) =

(
1− e−Z/p

)
Mgas(0). (3.8)

This gives a tolerably good fit for metal-poor globular clusters. But it fails badly for the
solar neighbourhood: the most metal rich stars have Z ' Z� ' 0.02, and (3.8) predicts
that ∼ 50% of solar neighbourhood stars will have Z ≤ 1

4Z�; in fact only about 2% do.
This is known as the ‘G-dwarf problem’.

The G-dwarf problem indicates that the closed-box model is an oversimplifica-
tion, and that loss and/or accretion of material into a star-forming region needs to be
considered.

Problem 3.1: In this problem we consider a ‘leaky-box’ model, which simulates the effect of
shocks from supernovae and winds from young massive stars by making gas leave the formerly
closed box at a rate proportional to the star formation rate:

δMtotal = −cδMstars.

Use this to work out Mgas(t) in terms of Mtotal(0) and Mstars(t). Now modify the closed-box
relation between δMmetal and δMstars by adding an appropriate leaking term. [6]

Use these two expressions to derive

δZ =
pδMstars

Mtotal(0)− (1 + c)Mstars
. [2]

This expression shows that the leaky box model won’t solve the G-dwarf problem?
Why? [5]

If we allow the box to accrete gas, that does make metal poor stars rarer.

Problem 3.2: In this problem we consider the ‘accreting-box’ model, another modification
of the closed-box model, this time allowing for metal-free gas to be accreted into the system.

From the assumption that no metal enters or leaves the region, relate δMmetal and δMstars.
Allowing for (metal-free) gas accretion, relate δMstars to δMtotal and δMgas. Use the above
to show that

δZ =
(p− Z)δMtotal − pδMgas

Mgas
. [8]

This equation can be solved exactly with some awkwardness, but for us it’s enough to consider
the simplest case whether the gas accretion rate equals the star formation rate, so Mgas stays
constant. For this simple case show that Z asymptotes to p. [6]

Can you argue physically why we should expect such behaviour for stellar metallicities in
this case? [5]

In fact this model predicts that ' 3% of solar neighbourhood stars will have Z ≤ 1
4Z�.



4. Rotation Curves

Gas and young stars will move on nearly closed orbits, and if the underlying potential
is axisymmetric these will be nearly circular. So if you measure the bulk velocity v
(of gas or young stars, not old stars) at any place on a galactic disc, you’ve measured
R (∂Φ/∂R); and if you measure v(R)—the ‘rotation curve’—you have information on
the mass distribution.

When people first starting measuring rotation curves (c. 1970), it quickly became
clear that the mass in disc galaxies doesn’t follow the visible disc. Disc galaxies gener-
ically have rotation curves that are fairly flat to as far out as they can be measured
(several scale radii). The simplest interpretation of a flat rotation curve is that enclosed
mass M(r) ∝ r, or ρ(r) ∝ 1/r2, a ‘dark halo’. The deep picture of M104 in part 1 of
these notes suggests that dark halos are not entirely dark, but as yet nobody knows
really knows how far they extend. And there is no good estimate of the total mass of
any disc galaxy. This is what makes disc rotation curves very important.

However, one needs to be a little careful about interpreting flat rotation curves.
The maximum contribution to the rotation curve from an e−R/R0 disc is not (as we
might naively expect) around R0 but around 2.5R0. Adding the effect of a bulge can
easily give a fairly flat rotation curve to 4R0 without a dark halo. To be confident
about the dark halo, one needs to have the rotation curve for ∼> 5R0. In practice,
that means H I measurements; optical rotation curves don’t go out far enough to say
anything about dark halos.

The rest of part 4 is a more detailed working out of the previous paragraph. It
follows an elegant derivation and explanation due to A.J. Kalnajs.

The potential from a disc with surface density Σ(R) is

Φ(R) = −G
∫ ∞

0

R′Σ(R′) dR′
∫ 2π

0

dφ√
R2 +R′2 − 2RR′ cosφ

. (4.1)

To make this tractable, let us first define1

2πL(u) ≡
∫ 2π

0

dφ√
1 + u2 − 2u cosφ

= 1 +
(

1
2u
)2 +

( 1
2

3
2u

2

2!

)2

+ . . . (u < 1). (4.2)

Then

Φ(R) = −2πG
∫ R

0

Σ(R′)
(
R′

R

)
L

(
R′

R

)
dR′ − 2πG

∫ ∞
R

Σ(R′)L
(
R

R′

)
dR′, (4.3)

and hence

v2(R) = R
∂Φ
∂R

= 2πG
∫ R

0

[(
R′

R

)
L

(
R′

R

)
+
(
R′

R

)2

L′
(
R′

R

)]
Σ(R′) dR′

−2πG
∫ ∞
R

(
R

R′

)
L′
(
R

R′

)
Σ(R′) dR′.

(4.4)

1 If you really want to know where that came from, look up any musty old celestial mechanics book
under ‘Laplace coefficients’.
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(Here L′ means a derivative!) The important thing to take away with you is not the
algebraic mess but the form of the relation, which is

v2(R) = 2πG
∫ ∞

0

K

(
R

R′

)
Σ(R′) dR′. (4.5)

Changing variables to
x = lnR, y = lnR′,

we can write this as a convolution

v2(R) = 2πG
∫ ∞
−∞

K(ex−y)R′Σ(R′) dy. (4.6)

The kernel K(R/R′) is in Figure 4.1.

Figure 4.1: The kernel K(R/R′). Observe that the R > R′ part tends to have higher
absolute value than the R < R′ part.

Figure 4.2: The dashed curve is RΣ(R) for an exponential disc with Σ ∝ e−R and the
solid curve is v2(R). Note that R is measured in disc scale lengths, but the vertical scales are
arbitrary.

Figure 4.2 shows RΣ(R) and v2 for an exponential disc, but the general shapes
aren’t very sensitive to whether Σ(R) is precisely exponential. The important qualita-
tive fact is that whatever RΣ(R) does, v2 does roughly the same, but expanded by a
factor of ' e.

The distinctive shape of the v2(lnR) curve for realistic discs makes it very easy to
recognize non-disc mass. Figure 4.3, following Kalnajs, shows the rotation curves you
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get by adding either a bulge or a dark halo. (Actually this figure fakes the bulge/halo
contribution by adding a smaller/larger disc; but if you properly add spherical mass dis-
tributions for disc/halo, the result is very similar.) Kalnajs’ point is that a bulge+disc
rotation curve has a similar shape to a disc+halo rotation curve—only the scale is dif-
ferent. So when examining a flat(-ish) rotation curve, you must ask what the disc scale
radius is.

Figure 4.3: Plots of v2 against lnR (upper panel) or v against R (lower panel) For one
curve in each panel, a second exponential disc with mass and scale radius both scaled down
by e2 ' 7.39 has been added (to mimic a bulge); for the other curve a second exponential
disc with mass and scale radius both scaled up by e2 ' 7.39 has been added (to mimic a dark
halo).

Problem 4.1: Express the integral equation (4.3) relating Φ(R) and Σ(R) as a convolution
in lnR. [10]

The convolution kernel differs from K(R/R′) of course, and in a particularly interesting
way in the R/R′ � 1 limit. Can you explain this difference using a physical argument? [10]



5. Gravitational Lensing

Gravitational lensing is about how the appearance of distant bright objects is altered
by the gravity of foreground mass. Being a purely gravitational effect makes lensing
astrophysically important as a probe of dark matter.

This part is more detailed than it needs to be. Only the section on microlensing
in the Milky Way is really syllabus material. The rest you should consider as relevant
background material plus general interest.

Photons are affected by a gravitational field, but not in the same way as massive
particles are. For the details we need general relativity, but fortunately, for astrophysical
applications we only need to take over a few simple results. The most important is that
if a light ray passes by a mass M with impact parameter R (� GM/c2 and � the size
of the mass), it gets deflected by an angular amount

α =
4GM
c2R

. (5.1)

In contrast, a massive body at high speed v gets deflected by α = 2GM/(v2R).

The lensing equation

To make (5.1) useful we need two approximations, both very good in almost all astro-
physical situations:
(i) The deflector is much smaller than the distances to the observer and the object

being viewed (the ‘source’);
(ii) The deflections are always very small, so we can freely use sinα = α, and also we

can get the total deflection from a mass distribution by integrating (5.1).
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α

Figure 5.1: Definitions of DL, DS, DLS, θ, θS, and α.
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Accordingly, let us consider a situation as in Figure 5.1: observer is viewing a
source at distance DS, with a lens (a mass screen) intervening at distance DL; DLS is
the distance from lens to the source.1 We’ll use angular coordinates for the transverse
position.2 Thus, θS is the position of the source, θ is its observed position after being
deflected—note that these are two-dimensional angles. Let Σ(θ) be the lens’s density
surface mass density (as in solar masses per steradian). Let α(θ) be the deflection
angle. Then, comparing vectors in the source plane, we get

DSθ = DSθS +DLSα. (5.2)

(By convention,3 α is directed outwards from the deflecting mass rather than towards
it.) Using (5.1) to get α in terms of Σ, we get

θ = θS +
DLS

DS
α(θ), α(θ) =

4G
c2DL

∫
Σ(θ′)(θ − θ′) d2θ′

|θ − θ′|2
. (5.3)

This is known as the lens equation. It gives θS as an explicit function of θ, but θ as an
implicit function of θS. Moreover, θ(θS) need not be single-valued, so sources can be
multiply imaged.

The arrival time surface

It’s possible to work entirely with the form (5.3), but there’s a much more intuitive
reformulation, which we’ll now derive.

We start by noting that the lens equation (5.3) amounts to equating a gradient to
zero:

∇T = 0, T = 1
2T0(θ − θS)2 −Ψ(θ),

Ψ(θ) =
4G
c3

∫
Σ(θ′) ln |θ − θ′| d2θ′, T0 =

DLDS

cDLS
.

(5.4)

The two terms in T express the change in light travel time for an arbitrary deflection:4

the first term is what we would get from geometrical considerations alone; the second
term is an extra time delay caused by the gravitational field.5 The requirement that T
be stationary is just Fermat’s principle.

Next we consider a point mass M , which happens to be precisely between us and
a point source. In other words θS = 0 and Σ(θ) = Mδ(θ). Then the lens equation is
solved by θ = θE, with

θ2
E =

4GM
c2

DLS

DLDS
, R2

E =
4GM
c2

DLDLS

DS
. (5.5)

Here RE is just the non-angular form of θE—it is called the Einstein radius. The image
will consist of a ring of angular radius θE, called the Einstein ring.

1 On galactic scales DL, DS, DLS are ordinary distances, but on cosmological scales they must be
understood as angular diameter distances, and DS 6= DL + DLS. The reason for this complication is
that the universe will have expanded substantially over the light travel time.

2 Later on, we’ll use θr, θx, θy as coordinates rather than r, x, y, to remind us that these are angles
on the sky, not distances.

3 The astrophysical convention being that you first think how a rational person would do it, and
then you change the sign.

4 In cosmology both terms need to be multiplied by (1 + zL).
5 The gravitational time delay can be derived directly from general relativity, independently of

(5.1), and is known as the Shapiro time delay. Radio astronomers can measure it directly.



24 Gravitational Lensing

Problem 5.1: For very distant sources (i.e., DS � DL) we can write

θE = (. . .)×
√
M/DL.

Find (. . .) in arcsec, if M is measured in solar masses and DL in parsecs. [4]

By a Gauss’s-law type argument, for any circular mass distribution Σ(θr), Ψ(θr) and
α(θ) will be influenced only by interior mass. So we’ll get the same images for any
circular distribution of the mass M , provided it fits within an Einstein radius. Bodies
that fit within their own Einstein radius are said to be ‘compact’. But the Einstein
radius depends on where the source and observer are:

RE ∼ (Schwarzschild radius×DL)
1
2 .

This sort of means that the further away you look, the easier it gets to see examples of
gravitational lensing. It’s a surprising fact at first, but it’s really just the gravitational
analogue of a familiar fact about glass lenses—to get the maximum effect from a lens
you have to be near the focal plane, if you’re too near the lens doesn’t have much effect.

For given DL, DS, to get a compact object you have to pack a mass (in projection)
into a circle of radius θE; but the area of the circle is proportional to the mass. So
clearly there has to be a critical density, say Σcrit, such that if Σ ≥ Σcrit somewhere
then there is a compact (sub)-object. Working out the algebra we easily get

Σcrit =
DLDS

DLS

c2

4πG
. (5.6)

Using this we can write (5.4) more concisely as

∇T = 0, T = T0

[
1
2 (θ − θS)2 − ψ(θ)

]
ψ(θ) =

1
π

∫
κ(θ′) ln |θ − θ′| d2θ′,

(5.7)

where κ is the projected mass density in units of the critical density. From the second
line of 5.7 it should be evident that ψ satisfies a two-dimensional Poisson equation

∇2ψ = 2κ. (5.8)

The fact there is a critical density, and that it depends on distances, has important
astrophysical consequences. For example, a galaxy as a whole (a smooth distribution
of ∼ 1012M� on a scale of ∼ 105 pc) is not compact to lensing for DL ∼< 109 pc—
cosmological distances. But clumps within the galaxy may be compact at much smaller
distances. In particular, a star is compact to lensing at distances of even ∼< 1 pc.

The surface T (θ) is known as the time delay surface or the arrival time surface.
Wherever the arrival time is stationary (i.e., the surface as a maximum, minimum,
or saddle point) there’ll be constructive interference, and an image. This is Fermat’s
principle. Furthermore, the less the curvature of the surface at the images, the more
magnified the image will be. We’ll formalize this in the next section.

Try to visualize the arrival time surface. The geometrical part is a parabola with
a minimum at θS. Having mass in the lens pushes up the surface variously. If κ(θ) > 1
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anywhere, there will be a maximum somewhere near there, hence another image. There
must be a third image too, because to have a minimum and a maximum in a surface
you must have a saddle point somewhere. In fact

maxima + minima = saddle points + 1. (5.9)

This is a really a statement about geometry that should be intuitively clear, though a
formal proof is difficult.

A good way of gaining some intuition about the arrival time surface is to take
a transparency with a blank piece of paper behind it and look at the reflections of a
light bulb. Notice how images merge and split, and how you get grotesquely stretched
images just as they do. Deep images of rich clusters of galaxies show just these effects!

Magnification

By magnification we mean: how much does the image move when we move the source?
It should be clear that this magnification can’t be a scalar, because an image doesn’t in
general move in the same direction as the source. In fact the magnification is a tensor.
We’ll denote it by M (A for ‘amplification’ is also used). Formalizing our definition, we
have

M−1 =
∂θS

∂θ
=

∂2

∂θ2
T (θ). (5.10)

In cartesian coordinates

M−1 =

 1− ∂2ψ

∂θ2
x

∂2ψ

∂θxθy
∂2ψ

∂θyθx
1− ∂2ψ

∂θ2
y

. (5.11)

Notice that M−1 is basically taking the curvature of the arrival time surface.
It is helpful to write M−1 in terms of its eigenvalues, and the usual form is like

M−1 = (1− κ)
(

1 0
0 1

)
− γ

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)
. (5.12)

The eigenvalues are of course 1− κ± γ. The first term in (5.12) is the trace part—and
comparing equations (5.11) and (5.8) shows that it must be κ—while the second term is
traceless. The κ thing produces an isotropic expansion or contraction, while the γ thing
produces a stretching in the φ direction and a shrinking in the perpendicular direction;
κ is known as ‘convergence’ and γ as ‘shear’.

The determinant of M can be thought of as a scalar magnification.

|M | = [(1− κ)2 + γ2]−1. (5.13)

The places where one of the eigenvalues of M−1 becomes zero (and in consequence
|M | is infinite) are in general curves and are known as critical curves. When critical
curves are mapped onto the source plane through the lens equation, they give caustics;
a source lying on a caustic gets infinitely magnified.
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Example [Point mass and isothermal lenses] For a point mass, the lens equation is

θSx = θx −
θx

θ2
r
θ2
E, θSy = θy −

θy

θ2
r
θ2
E,

and this gives

M−1 =

 1−
(

1

θ2
r

+ 2
θ2
x

θ4
r

)
θ2
E 2

θxθy

θ4
r
θ2
E

2
θxθy

θ4
r
θ2
E 1−

(
1

θ2
r

+ 2
θ2
y

θ4
r

)
θ2
E

.
Taking the determinant and simplifying, we get

|M |−1 = 1−
θ4
E

θ4
r
. (5.14)

For a circular mass distribution Σ ∝ θ−1
r (known as the ‘isothermal lens’, because it is

just the ρ ∝ 1/r2 isothermal sphere in projection) the lens equation is

θSx = θx −
θx
θr
θ2
E, θSy = θy −

θy
θr
θ2
E,

and gives

M−1 =

 1−
(

1

θr
+
θ2
x

θ3
r

)
θ2
E

θxθy

θ3
r
θ2
E

θxθy

θ3
r
θ2
E 1−

(
1

θr
+
θ2
y

θ3
r

)
θ2
E

.
And from this we get

|M |−1 = 1− θE
θr
. (5.15)

It’s shorter in polar coordinates, but tensor components in polar coordinates can get
confusing. tu

Magnification in lensing conserves surface brightness. We can prove this in a rather fun
way. Let us consider the axial direction as a formal time variable t; then light rays can
be thought of as trajectories. Now allow observers to be at arbitrary transverse position
(say w—two dimensional) and arbitrary t. Then θ as observed at (w, t) is just the local
dw/dt for the corresponding light ray, up to a constant factor. This means we can make
a formal analogy with Hamiltonian formulation of stellar dynamics, with θ (up to a
constant) playing the role of the momentum, w playing the role of the coordinates, and
ψ(w, t) replacing the Newtonian potential. The phase space density f is the density of
photons in (w,θ) space, or the number of photons per unit solid angle on the sky per
unit telescope area, i.e., the surface brightness. The collisionless Boltzmann equation
applies (as it does for any Hamiltonian system) and it tells us that surface brightness is
conserved along trajectories! Surface brightness must be conserved by the act of placing
the lens there too—think of surface brightness before and after going through the lens.
QED. We must be careful, though, to understand ‘along the trajectories’ correctly. It
means we must always be looking at photons from the same source, so if the image is
moved in the sky by lensing we must follow it when we measure surface brightness.

In other words, lensing changes the apparent sizes (and shapes) of objects, but
without altering their surface brightness.
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Problem 5.2: For unresolved sources, we don’t observe the surface brightness but only the
luminosity, say L. In a survey of objects with luminosity function f(L) to a limit of Lmin, the
number of objects detected will be∫ ∞

Lmin

f(L) dL× 〈area of survey〉 .

Now suppose there is a foreground lens in the survey area with uniform scalar magnification
|M |. This will increase the effective luminosity limit of the survey to Lmin/|M |, and hence
change the number of objects detected. The changed number of objects is not, however,∫ ∞

Lmin/|M |
f(L) dL× 〈area of survey〉 .

Correct this formula. [10]

This effect is known as ‘amplification bias’.

That’s more than enough theory, let’s discuss real systems a little.

Multiple-image QSOs

These happen when a foreground galaxy is within ∼< θE (in projection) of a QSO, and
produces two or four images with arcsecond order separations. Two-image systems
have a minimum and a saddle point, while four-image systems have two minima and
two saddle points. In both cases there’s a maximum too, at the bottom of the galaxy’s
potential well; but since that is also generally the densest part of the galaxy, κ is very
high and |M | nearly vanishes, so these central images are too faint to detect.

Multiple-image QSOs are of great astrophysical interest, and two things make them
so.

The first is that since QSOs are often very time-variable and the different images
have different arrival times, the images will show the same time-variability, but with
offsets. These offsets are simply the differences in T (θ) between different images. (So far
they have been explicitly measured for two lenses.) Provided we know (or can model)
κ(θ), the measured time offsets tell us T0, and hence H0. Basically it’s this: normally
we can only measure dimensionless things (image separations, relative magnifications)
in lenses systems; but if we succeed in measuring a quantity that has a scale (the time
delays) that tells us the scale of the universe (H0). In practice, there is considerable
uncertainty about the distribution of mass in the lensing galaxies, and this translates
into an uncertainty in the inferred H0 that is much larger than errors in the time delays.
Maybe this problem can be overcome, maybe not. . .

The second thing has to do with the extremely small size of QSOs in optical
continuum. Now the κ(θ) of a galaxy isn’t perfectly smooth, it becomes granular on
the scale of individual stars. This produces a very complicated network of critical lines
(in the lens plane), and a corresponding complicated network of caustics in the source
plane (like the pattern at the bottom of a swimming pool). The optical continuum
emitting regions of QSOs are small enough to fit between the caustics, but the line
emitting regions straddle several caustics. As proper motions move the caustic network,
the continuum region will sometimes cross a caustic, and show a sudden change in
brightness; the time taken for the brightness to change is the time it take to cross the
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caustic. This is the phenomenon of QSO microlensing: continuum shows it but lines
don’t. (It’s just the gravitational version of stars twinkling and planets not twinkling.)
This has been observed, and modelling the caustic network and putting in plausible
values for the proper motion leads to an estimate of the intrinsic size of the continuum
regions of QSOs. It’s very small ∼ 100 AU.

Galaxy clusters

Galaxy clusters are generally not in dynamical equilibrium (there haven’t been enough
crossing times since they formed). Their mass distributions and ψ potentials are thus
warped in more complicated ways than for single galaxies. They are also much bigger
on the sky and thus have many more background objects (faint blue galaxies) to lens.

The transparency with a paper behind it and several lightbulbs overhead is a good
simulacrum of lensing by a cluster. Rich clusters show many highly stretched images
of background galaxies, and these are known as arcs. A deep HST image of Abell 2218
shows over a hundred arcs, including seven multiple image systems.

An arc is close to a zero eigenvalue ofM−1, and is stretched along the corresponding
eigenvalue. Thus each arc provides some sort of constraint on the ψ of the cluster.

Clusters also show weak lensing. That’s when the eigenvalues 1 − κ ± γ are too
close to unity to show up as arcs, but if many galaxies in the same region are examined
then statistically a stretching is measurable. The statistical stretching measures the
ratio of the two eigenvalues, and thus γ/(1− κ).

Several groups have been reconstructing cluster mass profiles from information
provided by multiple-images, arcs, and weak lensing.

Microlensing in the Milky Way

One possibility for the dark matter in the Milky Way halo is that it consists of brown
dwarfs, compact objects below the hydrogen burning threshold of 0.08M�. Such objects
would act as point lenses. A point lens has two images, at

θ = 1
2

(
θS ±

√
θ2

S + 4θ2
E

)
. (5.16)

(There is formally a third image at θ = 0, i.e., at the lens itself, but for a point mass
this image has zero magnification.) The image separation for a ∼M0 lens at distances
of ∼ 10, kpc is < 1 mas, far too small to resolve. What will be observed is a brightening
equal to the combined magnification of both images. Using the result 5.14 for |M | for
a point lens, and adding the absolute values of |M | at the two image positions, we get

Mtot =
u2 + 2

u(u2 + 4)
1
2
, u =

θS

θE
. (5.17)

Now because of stellar motions, θS will change by an amount θE over times of order a
month, so microlensing in the Milky Way can be observed by monitoring light curves.
If the background source star has impact parameter b and velocity v (projected onto
the lens place) with respect to the lens, then

u =
(b2 + v2t2)

1
2

DLθE
. (5.18)
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Figure 5.2: Light curves for impact parameters of RE (lowest), 0.5RE and 0.2RE. The unit
of time is how long it takes the source to move a distance RE.

Inserting (5.18) into (5.17) gives us Mtot(0), i.e., the light curve, plotted for three
different b in Figure 5.2. The height of a measured light curve immediately gives RE/b,
and the width gives RE/v.

Though trying to resolve the images images in microlensing seems hopeless with
foreseeable technology, there are some prospects for tracking the moving double image
indirectly. By combining the positions and magnifications of the two images, we have
for the centroid

θcen =
u(3 + u2)

2 + u2
θE. (5.19)

Such microlensing events are rare, because θS has to be ∼< θE for significant mag-
nification. People speak of an optical depth τ to microlensing in a field. This is the
probability of a star being (in projection) within θE of a foreground lens, at any given
time. From equation (5.18) it amounts to the probability of Mtot ≥ 2/

√
5 = 1.34. It’s

just the covering factor of discs of radius θE (Einstein rings) from all lenses between
us and the stars in the field.6 The source stars might be bright stars in the Large
Magellanic Cloud (LMC) and the lenses very faint stars or brown dwarfs in the Milky
Way halo.

Using equation (5.5) for RE and considering the total area covered by the Einstein
rings of lenses at distances between DL and DL + dDL in a patch of sky, and then
integrating over DL, we have

τ =
4πG
c2DS

∫ DS

0

DLDLS ρ(DL) dDL. (5.20)

Problem 5.3: Derive the formula (5.20) for the microlensing optical depth. [10]

Imagine an observer at radius r = 1 in an isothermal sphere made of machos, look-
ing outwards (i.e., towards the anti-centre) at sources at radius r = a, and monitoring for
microlensing. Show that τ for this observer will be

τ = 2
σ2

c2

[
a+ 1

a− 1
ln a− 2

]
. [6]

[
∫ a

1
x−2(x− 1)(a− x) dx = (1 + a) ln a− 2(a− 1).]

6 So optical depth is a bit of a misnomer.



30 Gravitational Lensing

The really nice thing about the formula (5.20) is that it doesn’t depend on the mass
distribution of the lenses, as long as each mass fits within its own Einstein radius (diffuse
gas clouds don’t count, nor does any kind of diffuse dark matter). So τ estimated from
light curve monitoring could be used to make inferences about ρ.

How large is τ through the Galactic halo? To estimate that, we need an estimate
for ρ. Now the Milky Way rotation curve suggests an isothermal halo, ρ = σ2/(2πGr2),
with σ ∼ 200 km/sec. If we then say that r will be of order the D factors in (5.20), we
get

τ ∼ σ2

c2
, or τ ∼ 10−7 to 10−6. (5.21)

So to have any hope of detecting such microlensing events, it is necessary to monitor
the light curves of millions of stars. Four such surveys have been started up in the
last two years, observing fields in the LMC and/or the Milky Way bulge. (The bulge
surveys don’t go through the halo of course, but through part of the Milky Way disc.)7

The current estimates for τ are ∼ 10−7 towards the LMC and ' 3× 10−6 towards the
bulge. How much of the lensing mass is in brown dwarfs as distinct from faint stars,
and whether the lensing mass alone can account for rotation curve data are not yet
clear. Meanwhile, the huge number of variable stars discovered by these surveys are
revolutionizing that field of study.

7 An estimate of τ from a survey will include a correction for the detection efficiency. Surveys
have to be very wary of spurious detections; hence any light curve possibly contaminated by stellar
variability has to be discarded for microlensing purposes. Detection efficiencies are of order 30%.



6. The Milky Way

The Milky Way is, as far as we know, a typical disc galaxy. Figure 6.1 is a cartoon
to remind you of the different components of the Milky Way. The luminous parts are
mostly a disc of Pop I stars and a bulge of older Pop II stars. We live in the disc, about
8.5 kpc from the centre. Apart from stars, the disc also has clusters of young stars and
H II regions, and dust and gas; the gas is mostly observed as an H I layer which flares at
large radii. There is some evidence that there are two spiral arms in the disc (the dust
makes it hard to tell). The bulge has a bar, though the dimensions of it are unclear.
But the most massive part is the halo; there are some old stars (and globular clusters of
very old stars) in the halo, but most of the halo is dark matter of unknown composition.

That is not all: there are also the small companion galaxies. The best known
of these are the the Large and Small Magellanic Clouds (LMC and SMC) which are
' 50 kpc away; these may or may not be part of a trail of debris known as the Magellanic
Stream. Then there is the Sagittarius Dwarf galaxy which seems be to being sucked
into the Milky Way halo now.

Figure 6.1: Cartoon of the Milky Way (by Mike Merrifield).

31
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The mass of the Milky Way

While there are good estimates of enclosed mass of the Milky Way within different radii,
it is not known where the halo of the Milky Way finally fades out (or even if the size
of the halo is a very meaningful concept). So the only way to get at the total mass of
the Milky Way is to observe its effect on other galaxies. The simplest but most robust
of these comes from an analysis of the mutual dynamics of the Milky Way and M31
(Andromeda); it is known as the timing argument.

The observational inputs are (i) M31 is ' 750 kpc away, and (ii) the Milky Way
and M31 are approaching at ' 120 km/sec. A simple approximation for their dynamics
is to suppose that they started out at the same point with initial recessional velocities
from the Big Bang, and have since turned around because of mutual gravity. This is
not strictly true of course, because galaxies had not already formed at the Big Bang;
however it is thought that galaxies (at least galaxies like these) formed early in the
history of the universe, so the approximation may be acceptable. Writing l for the
distance and M for the combined mass in the Milky Way and in M31, the equation of
of motion for the reduced Keplerian one-body problem is

d2l

dt2
= −GM

l2
. (6.1)

In considering a Keplerian problem without perturbation we are, of course, assuming
that the gravity from Local Group dwarfs and the cosmological tidal field is negligible;
but as there are no other large galaxies within a few Mpc this seems a fair approximation.
It is not obvious how to solve this nonlinear equation, but fortunately the solution is
known and easy to verify; it is most conveniently expressed in parametric form, as

t = τ0(η − sin η),

l =
(
GMτ2

0

) 1
3 (1− cos η).

(6.2)

Here τ0 is an integration constant, the other integration constant has been eliminated
by the boundary condition l(t = 0) = 0. Now consider the dimensionless quantity(

t0
l0

)(
dl

dt

)
t0

=
sin η0(η0 − sin η0)

(1− cos η0)2
, (6.3)

where the subscripts in t0 and so on refer to the current time, as conventional in
cosmology. Inserting the observed values for l0 and (dl/dt)t0 and a plausible value of
15 Gyr for t0 (the age of the universe), we get −2.4 for the left hand side. The solution
for η0 to give the same value on the right hand side is 4.3. Inserting these values in
(6.2) we get τ0 = 2.9 Gyr and1

M ' 4× 1012M�. (6.4)

From its luminosity and rotation curve, M31 appears to have of order twice the mass of
the Milky Way. This implies that the mass of Milky Way exceeds 1012M�. Estimates
for the mass of the luminous part of the Milky Way range from 0.05 to 0.12× 1012M�.

1 It is useful to remember G in useful astrophysical units as 4.98× 10−15 M−1
� pc3 yr−2.
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Problem 6.1: The mass estimate from the timing argument involves solving a difficult
differential equation and then an algebraic equation. But one can do a back-of-the-envelope
version of the calculation using just dimensional analysis.

Show that the inputs (a) the Universe is ∼ 10 Gyr old and the Milky Way and M31
formed early, (b) M31 is turning round about now, (c) M31 is ∼ 1 Mpc away, and (d) G =
4.98 × 10−15M−1

� pc3 yr−2 imply that the combined mass of the Milky Way and M31 is

M ' 2× 1012M�. [10]

Figure 6.2: Distances and velocities of six Local Group dwarf galaxies, and predictions for
different values of GM/τ0 (by Alan Whiting).

The timing argument can be applied not only to Andromeda, but also to Local Group
dwarf galaxies (which have much less mass and behave just as tracers). Figure 6.2
shows plots l against dl/dt for some Local Group dwarfs, along with the predictions of
the timing argument for different values of GM/τ0.

l =
(
GMτ2

0

) 1
3 (1− cos η).

dl

dt
=
(
GM

τ0

) 1
3 sin η

1− cos η

(6.5)

Problem 6.2: If we replace sin and cos in (6.5) with sinh and cosh, the result still satisfies
the differential equation (6.1). Verify this, and explain how it relevant to Figure 6.2. [25]
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The solar neighbourhood

The Milky Way is a differentially rotating system. The local standard of rest (LSR)
is a system located at the sun and moving with the local circular velocity (which is
' 200 km/sec). The sun has its own peculiar motion of ' 13 km/sec with respect to
the LSR.

The rotation velocity and its derivative at the solar position are traditionally ex-
pressed in terms of Oort’s constants:

A = 1
2

(
vφ
R
− ∂vφ
∂R

)
,

B = − 1
2

(
vφ
R

+
∂vφ
∂R

)
.

(6.6)

The reason is that A is vanishes for solid body rotation, and can be measured from line
of sight velocity data without proper motions (which in the past were hard to measure).
But now that we have accurate proper motions from Hipparcos, and hence (combining
with ground-based line-of-sight velocities) three-dimensional stellar velocities in the
solar neighbourhood, A and B are less important.

If you take the average (three-dimensional) velocity and dispersions of any class of
stars in the solar neighbourhood, then 〈vR〉 and 〈vz〉 turn out to be nearly zero, while
〈vφ〉 is such that 〈vφ〉 − vLSR is negative and ∝ σRR. This is known as the ‘asymmetric
drift’ and is nothing but our old friend rotational support versus pressure support.
Young stars are almost entirely supported by 〈vφ〉, like the gas that produced them.
Older stars pick up increasing amounts of pressure support in the form of σRR; they
then need less vφ to support them, and thus tend to lag behind the LSR. The linear
relation can be derived from the Jeans equations, but we won’t go through that because
you’ve probably had enough of Jeans equations for now. . .

When examined in detail using Hipparcos proper motions, the velocity structure in
the solar neighbourhood is more complicated than anyone expected. Figure 6.3 shows
a reconstruction of the stellar (u, v) (i.e., radial and tangential velocity) distribution
in the solar neighbourhood for stars in different ranges of the main sequence.2 Notice
the clumps in the velocity distribution which appear for stars of all ages. (And these
are clumps only in velocity space, not in real space.) The idea that there are groups
of stars at similar velocities is itself not new—it actually dates from the early proper
motion measurements of nearly a century ago. But these ‘streams’ have generally
been interpreted as groups of stars which formed in the same complex and were later
stretched in real space over several galactic orbits. The surprising new finding is that
the ‘streams’ are seen for stars of all ages, which indicates a dynamical origin; they
seem to be wanting to tell us something interesting about Milky Way dynamics, but as
yet we don’t know what.

2 The Schwarzschild ellipsoid and its vertex deviation that you may find in textbooks should now
be considered obsolete—they are essentially the result of washing out the structure in Figure 6.3.
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Figure 6.3: Distribution of radial (u) and tangential (v) velocities of main sequence stars
in the solar neighbourhood, recently reconstructed from Hipparcos proper motions by Walter
Dehnen (1998). The upper left panel is for the youngest (and bluest) stars; these are estimated
to be < 0.4 Gyr old. The upper right panel is for stars younger than 2 Gyr, and the lower left
panel is for stars younger than 8 Gyr. The lower right panel shows the combined distribution
for all main sequence stars. The sun is at (0, 0) and the LSR is marked by a triangle.

The Bar

There is little doubt now that the Milky Way bulge is triaxial—there is a (rotating)
bar with the positive l side nearer to us and moving away. The evidence for this was
at first indirect, as the following. Consider gas in the ring, which must move on closed
orbits. If it moved on circular orbits in the disc, and we measured its Galactic longitude
l and line of sight velocity v, then all the gas at positive l would have one sign for v
and similarly all the gas at negative l would have the opposite sign for v. In fact gas
at positive l is seen with both signs for v, and likewise at negative l. So the gas orbits
must be non-circular, and hence the gravitational potential must be non-circular in the
disc. This suggests a bar and indeed the observed gas kinematics is well fitted by a bar.

The features of a bar can in fact be seen in an infrared map of the bulge, if you
know what to look for. Figure 6.4 shows a bar in the plane, and its effect on an l, b
map.
(i) The side nearer to us is brighter. Contours of constant surface brightness are

further apart in both l and b on the nearer size.
(ii) Very near the centre, the further side appears brighter, so the brightest spot is

slightly to the further size of l = 0. The reason is that on the further side our
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line of sight passes through a greater depth of bar material, which more than
compensates for it being slightly further.

The features (i) can be discerned in many different data sets; the feature (ii) is harder
to find, it just about shows up in the COBE maps of the bulge.

Figure 6.4: Schematic of the bar in the Milky Way Bulge, viewed from the North Galactic
pole (left), and from the Sun (right). (From Blitz and Spergel, ApJ, 1991. The right panel
uses minus the usual convention for l.)

The Sagittarius Dwarf

We’ll end our discussion of galaxies with the Sagittarius Dwarf. It may seem amazing
that this fairly substantial companion galaxy of the Milky Way remained undiscovered
till 1993; the reason is that it’s behind the bulge, and thus has the densest part of
the Milky Way in the foreground as camouflage. We don’t know yet how large the
Sagittarius Dwarf is, because it can’t be spotted against the foreground in an image. A
lower limit on its size comes indirectly from microlensing surveys, because they detect
RR Lyraes in their fields. Figure 6.5 shows its rough extent.

The Sagittarius Dwarf is presumably being tidally stretched as it falls into the
Milky Way halo; that would explain its being long and thin. Has the Milky Way eaten
many such galaxies in the past?
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Figure 6.5: A partial map of the Sagittarius dwarf galaxy, from RR Lyraes. We are at
(0, 0), the ellipses around (8.5, 0) represent the bulge, and the four circles indicate the four
microlensing survey fields where the RR Lyraes were found. (From Minniti et al. 1997.)


