
Problem Set 1

1. Simplify the following

(a) cos 120◦

(b) sin 75◦ sin 15◦ [10]

2. Find
∫

sin4 x dx and
∫ 2π

0
sin4 x dx. [10]

3. Show that for positive integers m,n∫ 2π

0

sinmx sinnx dx = πδmn∫ 2π

0

cosmx cosnx dx = πδmn

where
δmn ≡

{ 1 if m = n
0 otherwise.

[10]

4. Show that if

In ≡
∫ 2π

0

xn exp(ix) dx

then
In = i (nIn−1 − (2π)n) .

Hence evaluate
∫ 2π

0
x2 sin(x) dx. [15]

5. Find dy/dx where
x = u− 1

2 sin 2u, y = sin2 u

and simplify it. [5]

6. Use rescaling to evaluate∫
dx

a2 + x2
and

∫ ∞

0

xne−ax dx

where a is a constant and n is a non-negative integer. [You may assume the answers for
a = 1.] [10]

7. Let x = cosφ, y = sinφ, f = x2 + y2. Compute df/dφ.

Try and interpret your answer geometrically. [10]
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8. Given y = uv, where u and v are functions of x, use the chain rule to derive

y′ = uv
(
v′ lnu+

v

u
u′

)
. [10]

9. Show that
∫∞
0

sinx e−x dx is finite but
∫∞
0

tanx e−x dx diverges. [10]

10. Compute
∫ π

0
sinx dx using the trapezoidal rule with 6 intervals (i.e., evaluate the

sine at 30◦, 60◦, etc.)

How accurate is the answer? [10]

Prize question. This question is optional. The first correct solution (any time up to
the end of term) wins £10. Solutions to Dr. Saha please.

Show that ∫ π/2

0

ln(sinx) dx = − 1
2π ln 2.

Hint: Try and relate the LHS to
∫ π/2

0
ln(cosx) dx. Then add both integrals and use

some cunning. . .



Problem Set 2

1. Suppose we are given

f(x) = 1
2a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

and
df

dx
= 1

2A0 +
∞∑

n=1

(An cosnx+Bn sinnx) .

Derive A0, An, Bn in terms of a0, an, bn with brief explanations. [10]

2. Show that for −π < x < π

|x| = π

2
− 4
π

∑
n odd

cosnx
n2

[20]

3. Show that for −π < x < π

x = 2
∑
n=1

(−)n+1

n
sinnx . (1)

Now, with the help of (1)

(a) Derive
1− 1

3 + 1
5 + . . . =

π

4
.

(b) Use Parseval’s relation [which recall is 1
π

∫ π

−π
f2(x) dx = 1

2a
2
0 +

∑∞
n=1(a

2
n + b2n) in

the usual notation] to derive an infinite series for π2. [25]

4. Write down the Fourier series for

f(x) =
{ 0 if − π < x < 0
x if 0 < x < π.

Simplify the series at x = π to derive a series for π2. [20]

5. We are given an odd function f(x) and we want to approximate it in the domain
[−π, π] by a finite series

N∑
n=1

sn sinnx

with suitable coefficients sn. To find the optimal sn we first define a function which
measures the ‘badness’ of the approximation

R =
∫ π

0

(
f(x)−

∑N
n=1 sn sinnx

)2

dx

and then minimize R by requiring
∂R

∂sm
= 0.

Solve this last equation for sm and compare with the usual Fourier sine coefficients
bm. [25]
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Problem Set 3

1. We want to find a path y(x) between two given endpoints such that∫
(y′2 − y2) dx

is extremized. Determine the Euler-Lagrange equation for the problem and its general
solution.

What is the particular solution if the endpoints are (0, 0) and (π
2 ,

π
2 )? [20]

2. Give the common name for the curve

x = φ cosφ y = φ sinφ

with a brief explanation or sketch. [The common name will be obvious from a sketch.]

Show that arc length along this curve is∫ √
1 + φ2 dφ

and then solve the integral. [Try the substitution φ = sinhx; the identity cosh 2x =
2 cosh2 x− 1 is also useful.] [20]

3. Let X(x, y) and Y (x, y) be well-behaved functions. Show that the Euler-Lagrange
equation for extremizing the integral∫

X dx+ Y dy =
∫

(X + Y y′) dx

between given endpoints is
∂X

∂y
=
∂Y

∂x
.

What does this condition say about the dependence of the integral on the path? [20]

4. Consider a drag strip in the shape of the curve y(x). If we measure y downwards,
the speed of a body released at (0, 0) and sliding down without friction is

√
y. What is

the time taken for such a body to get to some point y(x1) along the drag strip? Derive
an Euler-Lagrange equation for a shape that extremizes the time. Verify that a cycloid
satisfies that equation.

This is known as the brachistochrone problem. [20]

5. The brachistochrone problem is the most famous problem in the calculus of varia-
tions. Look it up on the web and write a mini essay (100 words or less) on why you
think it became famous. [20]

Note: Half the marks are for looking up the relevant historical facts, the rest are for
making some intelligent comment on them.
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Problem Set 4

1. Work out the angle between the vectors 2 i + 2 j + k and 4 i + j− k. [8]

2. Describe each of the following surfaces in three dimensional space. [For example,
x2 + y2 = 1 is a cylinder of radius 1 whose axis is the z axis.]

(a) z = 0

(b) x2 + y2 + z2 − 2y − 4z + 1 = 0

(c) x2 + y2 = z [16]

3. Consider a sphere of radius 3 centred at the origin.

(a) Express the surface of the sphere in the form f(x, y, z) = 0.

(b) Find a plane tangent to the sphere at the point r1 = (1, 2, 2).

(c) Find the position vector for a line through r1 and r2 = (2, 1, 2).

(d) Find the position vector of a line through r1 and normal to the sphere. [20]

4. For any vector v (having nonzero magnitude v) relate dv/dt to dv/dt and hence
show that

dv

dt
= 0 ⇒ dv

dt
⊥ v . [12]

5. Given an arbitrary constant vector a, simplify ∇|r− a|. [8]

Hint: Can you think of a substitution that would simplify the derivatives?

6. Calculate the following

∇ · r, ∇×r, r.∇r, ∇ ·
(

r̂
r2

)
. [20]

7. If ∇2Φ = 0, show that ∇Φ has zero divergence and curl. [8]

8. Consider a rotation by 90◦ about the z axis, taking x → x′ etc. Evaluate x′2 i′ +
y′2 j′ + z′2 k′ under this transformation. [8]

Prize question. The first correct solution received by Dr. Saha before the end of term
wins £10.

For the differential equations
r̈ = −∇(r−1)

show that
ṙ×(r×ṙ)− r̂ = const.
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Problem Set 5

Derive the following vector identities using index notation.

You may assume the identity

εijk εimn = δjmδkn − δkmδjn.

1. (A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C) [20]

2. ∇×(ψu) = (∇ψ)×u + ψ∇×u [20]

3. ∇ · (u×v) = v · ∇×u− u · ∇×v [20]

4. ∇×(u×v) = u∇ · v − v∇ · u + v · ∇u− u · ∇v [20]

5. ∇×∇×u = ∇∇ · u−∇ · ∇u [20]
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Problem Set 6

1. Find the Earth polar coordinates of the following cities:

(a) Antananarivo (Tananarive)

(b) Chihuahua,

(c) Makkah (Mecca),

(d) Singapore.

Answers may be rounded to the nearest degree. [16]

2. How would you explain the shape of the segments of an orange to someone who
knows about spherical polar coordinates but has never seen an orange?

[Must be done without pictures.] [12]

3. In the accompanying figure the vector ê1 is recognizable as êz since it points towards
increasing z.

x

y

z

ê2

ê3

ê1

x

y

z

ê5

ê4

ê6

Figure for problem 3.

Identify the other basis vectors ê2, . . . , ê6, including minus signs if needed. Justify your
identification in a few sentences. [16]

4. Invert the relation  êρ

êφ

êz

 =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

  i
j
k


for cylindrical coordinates, to i, j, k in terms of êρ, êφ, êz.

Hence show that the position vector r can be expressed as ρ êρ + z êz. [12]

5. Show that in cylindrical coordinates

˙̂eρ = φ̇ êφ
˙̂eφ = −φ̇ êρ
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and hence show that

r̈ = (ρ̈− ρφ̇2) êρ + (ρφ̈+ 2ρ̇φ̇) êφ + z̈ êz. [12]

6. Consider the two-dimensional coordinate system (α, β) defined through

x = sinhα sinβ, y = coshα cosβ.

Curves of constant α are ellipses, while curves of constant β are hyperbolae.

Show that this coordinate system is orthogonal.

Hint: Can you show that êα · êβ = 0? [16]

7. Show that about 4% of the Earth’s surface lies north of the Arctic circle.

Hint: No calculator is needed, but remembering Taylor series will help. [16]

Prize question. The first correct solution received by Dr. Saha before the end of term
wins £10.

Show ∫ ∞

0

xn− 1
2 e−x dx = (n− 1

2 )(n− 3
2 ) . . . 1

2

√
π

where n is an integer ≥ 0.



Problem Set 7

1. Calculate ∮
F · dr, F = −y i + x j + z k

around the circle x2 + y2 = 1 in the x, y plane. [16]

2. Compute ∫
(∇×F) · dS, F = −y i + x j + z k

over (i) the disc z = 0, ρ ≤ 1, and (ii) the unit hemisphere r = 1, z > 0. [20]

3. Evaluate ∫
r×dr
r2

along the line (0, a, t), where a is a positive constant and −∞ < t <∞. [20]

4. Consider a line integral
∫

F · dr of each of the following vector fields.

(a) F = x i + y j + z k

(b) F = x i + z j + y k

(c) F = x i + z j− y k

(d) F = yz i + xz j + xy k

In each case, state whether the line integral will depend on the path. Give brief reasons
in your answer. [20]

5. Show that ∫
rn−3 dV

(1 + r)n+1

over a sphere of radius R centred at the origin equals (4π/n)(1 + 1/R)−n. [24]
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Problem Set 8

1. Show that over any closed surface∮
r · dS = 3 〈enclosed volume〉 . [8]

2. An important theorem in complex variables (called Cauchy’s theorem) states that
if there are two well-behaved functions u(x, y) and v(x, y) satisfying(

∂u

∂x

)
=

(
∂v

∂y

) (
∂u

∂y

)
= −

(
∂v

∂x

)
and an arbitrary closed curve C in the x, y plane then∮

C

(u+ iv) (dx+ idy) = 0.

Show that Cauchy’s theorem is a special case of Green’s theorem in the plane.

Hint: Try separating out the real and imaginary parts of the integral. [12]

3. Show that the following are all zero.

(a)
∮

r · dr over an arbitrary closed path.

(b)
∮

r×dS over an arbitrary closed surface. [Hint: Try taking the k component.]

(c)
∮
dS over an arbitrary closed surface. [28]

4. Write down the explicit form of

∇×F =
1

h1h2h3

∣∣∣∣∣∣∣∣
h1 ê1 h2 ê2 h3 ê3

∂

∂u1

∂

∂u2

∂

∂u3

h1F1 h2F2 h3F3

∣∣∣∣∣∣∣∣
in spherical polar coordinates

Calculate ∇× êr using that explicit form.

Can you get the value of ∇× êr without using the determinant? [Hint: Can you express
êr as the gradient of something?] [16]

5. Compute ∇2ψ where

ψ(r) =
1

n− 1

[(
1 +

1
r

)1−n

− 1

]
.

Simplify ψ and ∇2ψ for n = 1. [16]

6. Prove that divergence of a curl is identically zero, without doing any coordinate-
dependent calculation, in the following way.

First consider two surfaces enclosed by the same closed curve (for example, the northern
and southern hemispheres enclosed by the equator). Then invoke the divergence and
Stokes’ theorems using suitable arguments. You may wish to use a sketch. [20]
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Problem Set 9

1. In section 9.6 of the notes, if we had chosen k2 instead of −k2 for the constant, what
would have been different? [10]

2. Consider the square x, y ∈ [0, π], and an integer n. What are the values of the
following on the boundaries of the square?

(a) sin(nx) sinh(ny)

(b) sinh(nx) sin(ny)

(c) sin(nx) sinh(n(π − y))

(d) sinh(n(π − x)) sin(ny) [15]

3. A function F (x, y) satisfies Laplace’s equation in the square x, y ∈ [0, 1] with bound-
ary values as indicated below.

x

1− y2

0

0

This F (x, y) can be split into two functions

F (x, y) = f(x, y) + g(x, y)

such that f(x, y) = 0 at the corners and g(x, y) = F (x, y) at the corners.

(a) Find g(x, y).

(b) Find f(x, y) on the sides. [The full solution for f(x, y) is not required for this
problem.] [10]

4. Solve Laplace’s equation for f(x, y) in the square x, y ∈ [0, 1] with boundary values
as indicated below.

0

y(1− y)

0

0

[20]

5. A relative of the Laplace equation is the Helmholtz equation

∇2ψ + ψ = 0 .
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Suppose this equation has solutions of the form

ψ(ρ, φ) = Jm(ρ) e−imφ

what differential equation must Jm(ρ) satisfy? [20]

6. A function ψ(x, y) satisfies Laplace’s equation and is finite and single-valued in
the circle x2 + y2. Write down the form of ψ in cylindrical coordinates, with a brief
explanation. [You may assume the general solution in cylindrical coordinates.] Hence
show that the average of ψ over the circle equals the value at the centre. [15]

7. Legendre polynomials satisfy many identities, one of which is

1√
1− 2hx+ h2

=
∞∑

l=0

hlPl(x)

where h is a parameter independent of x.

Expand the LHS to order h2 and verify that the expansion coefficients are indeed the
the first three Legendre polynomials. [10]


